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Double Floquet-Bloch transforms and the far-field asymptotics of Green’s
functions tailored to periodic structures
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We propose a general procedure to study double integrals arising when considering wave propagation in
periodic structures. This method, based on a complex deformation of the integration surface to bypass the
integrands’ singularities, is particularly efficient to estimate the Green’s functions of such structures in the far
field. We provide several illustrative examples and explicit asymptotic formulas. Special attention is devoted to
the pathological cases of degeneracies, such as Dirac conical points.
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I. INTRODUCTION

The study of wave propagation within periodic structures
has interested mathematicians and physicists for a long time
[1]. The emergence of metamaterials has contributed to its re-
cent surge in popularity. Initially focused on electromagnetic
applications (e.g., photonics [2–4] or cloaking [5,6]), this field
has grown significantly in the past two decades with a myriad
of applications in elasticity and acoustics where metamaterials
are now being used and manufactured routinely, the term
phononics has now gained in popularity. An excellent, re-
cent and comprehensive review on those so-called mechanical
metamaterials can be found in Ref. [7].

With this paper, we make a connection between our recent
work on the application of multidimensional complex analysis
to diffraction theory [8–19] and the topic of wave propagation
in periodic structures. The main similarity between these two
subfields of wave study comes from the fact that, in both
cases the wave field can be written as a multiple integral
of the Fourier type. In diffraction theory, this comes from
applying a multiple Fourier transform to the BVP at hand,
while for periodic structure it comes from applying a multiple
Floquet-Bloch transform. The difference lies in the surface of
integration which is R2 in diffraction theory and [−π, π ]2 for
periodic structures.

Though commonly named Floquet-Bloch transform in the
research community working on waves in periodic struc-
tures, this transform is sometimes just called Bloch transform,
generalized Fourier series, discrete Fourier transform, or Z-
transform with a change of variables. For more about it and
its properties, we refer the reader to Refs. [20–23].
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In both diffraction theory and the present topic, a direct
link can be made between the singularities of the integrand
and the far-field behavior of the physical field. Moreover they
share the feature that for a wave number with a nonzero imag-
inary part, the integrand is singularity-free on the integration
surface, while, as the wave number becomes real, singularities
hit the integration surface. To make sense of the physical
field, one can deform the surface of integration into C2, while
avoiding the singularities of the integrand. We have described
this deformation process in detail in Ref. [16] in the context of
diffraction theory, and we will show here that it can be applied
in the present context. As for diffraction theory, we show here
that only special points on the singularity set of the integrand
are responsible for wavelike components in the far field.

The topic of asymptotic estimation of multidimensional
Fourier integrals were addressed before in Refs. [24–26].
However, it was done in the context of real analysis and for
the case when studied integrals can be treated as nested ones.
Particularly, the case of polar singularity for which 2D Fourier
integral can be reduced using residue theorem to a sum of 1D
oscillating integrals was studied there. However, the approach
described in Ref. [16] does not have such restrictions and is
based on the local deformation of integration surfaces in C2. It
is worth mentioning the recent study in Ref. [27], where such
deformation is used for the numerical evaluation of Floquet-
Bloch integrals and is referred to as a “complex deformation
of the Brillouin zone.”

One important phenomena in periodic structures is the
occurrence of degeneracies. Roughly speaking a degeneracy
occurs when, at a given frequency, the singularity structure of
the integrand (also known as the dispersion diagram) experi-
ences a change in its topology. This can for example be a loop
shrinking to a point or two branches of a hyperbola that start
touching each other. These points are important as they have
been shown to lead to very interesting physical behavior [7],
such as the existence of bandgaps, and can sometimes be ex-
ploited to give rise to so-called topologically protected modes
[28]. A well known example of a topological mode is a valley
mode which arises in hegaxonal lattices due to the symmetry
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properties of the so-called Dirac cones corresponding to a
degeneracy of the dispersion diagram in a conical point. Such
cones are the main feature of unique properties in graphene
[29] and were recently studied in a mechanical context [30];
they can be exploited practically to achieve acoustic cloaking
and collimation (see, e.g., Ref. [31]). Another example of a
degeneracy is a parabolic maxima or minima of the disper-
sion diagram that can lead to negative refraction at material
interfaces, known as a maxon or roton behavior [32,33]. Local
minimums can also be exploited practically to achieve colli-
mation (see, e.g., Ref. [34]).

In this article, we will focus on the study of Green’s
functions specifically tailored to the periodic structure of the
media and solution to the Helmholtz equation (continuous or
discrete) forced at a specific source location and potentially
subjected to boundary conditions on periodically arranged
scatterers. Our specific aim will be to extract the far-field be-
havior of such Green’s functions. The Helmholtz equation is
obtained by assuming time-harmonic solutions to the linear
wave equation with angular frequency ω. Throughout this ar-
ticle, we use the e−iωt convention. Related work in the discrete
setting include Refs. [35,36]. In Ref. [35] the degeneracies are
not considered however. In Ref. [36], an interesting approach
inspired by the technique of high-frequency homogenization
(see, e.g., Refs. [37–40]) allows them to derive some results
at specific degeneracies. We will endeavour to show that our
approach can lead to similar results and can also be employed
in the continuous setting.

The rest of the article is organized as follows. In Sec. II,
we set the general framework within which we will work,
describing the physical fields we are interested in as double
integrals whose integrand have specific properties. In Sec. III,
we show that this framework is indeed relevant by providing
two illustrative examples, one in the discrete setting of a
square lattice (Sec. III A) and one in the continuous setting of
a phononic crystal (Sec. III B). In Sec. IV, we explain how
one can and should deform the integration surface for real
wave numbers, before giving a brief but general description
on how this can be used to extract far-field asymptotics in
Sec. V. Section VI is dedicated to the asymptotics obtained
away from degeneracies, while Sec. VII considers a set of
specific degeneracies: local extrema of the dispersion diagram
in Sec. VII A 1, hyperbolic degeneracies (crossing with re-
building) in Sec. VII A 2, as well a conical (Dirac) points in
Sec. VII B 1.

II. GENERAL FRAMEWORK

Let us consider wave fields in doubly periodic media ex-
cited by a point source that can be written u(r; rs; k, κ), where
r = (x1, x2) ∈ R2 represents the space variables, rs represents
the source location, and k + iκ is a scalar parameter chosen
such that k > 0 and κ � 0. This parameter is generally inter-
preted as the wave number of the problem with an added small
positive imaginary part.

Let us assume that the media has double periodicity given
by two vectors d and �, leading to this media being repre-
sented as a repetition of some identical parallelograms. We
will refer to the parallelogram containing the origin r = 0 as
the unit cell and denote it S0. Introduce a 2 × 2 invertible

matrix � whose columns are the vectors d and �, respectively.
So that any integer combination of those vectors m1d + m2�

for some m = (m1, m2) ∈ Z2 can be written as �m.
Due to the double periodicity of the media, the wave field

u can formally be written for all m ∈ Z2, as the following
double integral

u(r + �m; rs; k, κ) = 1

4π2

∫∫
B

F (r; rs; ξ; k, κ)e−im·ξdξ,

(1)

where the surface of integration B is the square B =
[−π, π ]2 ⊂ R2 and is known as the Brillouin zone. Expres-
sion (1) is known as an inverse Floquet-Bloch transform. The
integration variable is ξ = (ξ1, ξ2), dξ is dξ1dξ2, and F is the
direct Floquet-Bloch transform of u and is defined as

F (r; rs; ξ; k, κ) =
∑

m∈Z2

u(r + �m; rs; k, κ)eim·ξ, (2)

and sometimes referred to as the resolvent. The variable ξ is
sometimes called the Bloch wave vector, the Bloch quasi-
momentum or the Floquet exponents. In what follows, we
will think of it as a pair of complex variables, that is we
consider that ξ ∈ C2, and we will assume that the transform
F (r; rs; ξ; k, κ) is holomorphic as a function of ξ ∈ C2 away
from its singularity set H (k, κ). The singularity set is known
as the dispersion diagram of the media, which is usually
interpreted as the set of all eigenwaves of the media. Indeed,
each point (ξ, k, κ) that belongs to H (k, κ) corresponds to
an eigenwave V (r; ξ; k, κ) obeying the Floquet periodicity
conditions:

V (r + d; ξ; k, κ) = e−iξ1V (r; ξ; k, κ),

V (r + l ; ξ; k, κ) = e−iξ2V (r; ξ; k, κ).

We will further assume that F (r; rs; ξ; k, κ) has the so-called
real property that is that:

(P1) If κ > 0, then H (k, κ) ∩ B = ∅, i.e., F is
singularity-free on B, and hence the integral (1) is
well-defined in this case. The singularity set H (k, κ) is
a union of irreducible components σ j (k, κ) for j = 1, 2, . . .,
each described as the zero set of a holomorphic function of ξ,
depending on the parameters k and κ, denoted gj (ξ; k, κ).

(P2) If κ = 0, then the singularities of F hit B, and
H ′(k) ≡ H (k, 0) ∩ B is a union of smooth one dimensional
curves σ ′

1(k), . . . , σ ′
N (k) that are called the real traces of

the irreducible singular components σ1(k, 0), . . . , σN (k, 0) of
H (k, 0). It also means that gj (ξ; k, 0) is real whenever its
arguments are real. In the context of periodic structures, these
real traces are also sometimes called equi- or isofrequency
contours, or slowness curves.

(P3) The real traces σ ′
j are regular in the sense that if ξ� ∈

σ ′
j , then ∇ξg j (ξ

�; k, 0) �= 0 and ∂g j

∂κ
(ξ�, k, 0) �= 0.

Because of point P2, the integral (1) is not well-defined
when κ = 0, and it needs to be rewritten as

u(r + �m; rs; k, 0) = 1

4π2

∫∫
�

F (r; rs; ξ; k, 0)e−im·ξdξ, (3)

where � is an admissible deformation/indentation of B into
C2, in the sense that H (k, 0) ∩ � = ∅ and that one can deform
B to � smoothly without hitting any singularities of F for
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FIG. 1. A discrete square lattice (left) and its H ′(k) for different
values of k, the arrow shows an increasing value of k (right).

any small enough κ. Due to the two-dimensional version of
Cauchy’s integral theorem [41], such deformation does not
change the value of the integral. However, because � is not
real anymore, dξ should be thought of in terms of differential
forms in Eq. (3), and we write dξ = dξ1 ∧ dξ2. The defor-
mation process B → � will be explained in more detail in
Sec. IV.

The aim of the present work is to study the far-field behav-
ior of u(r + �m; rs; k, 0) as |m| → ∞. To do this, we will fix
an observation direction m̃∈ Z2 and study u for m = Nm̃ as
the integer N tends to infinity. For each chosen observation m̃
we will show that

u(r + �m; rs; k, 0) ≈
N→∞

∑
q

u(q)
loc (m; r; rs; k),

where the far-field wave components u(q)
loc can be written down

explicitly and results from local consideration around a set
of special points ξq belonging to B. This is similar to what
we found in Ref. [16] for double Fourier transforms in the
context of diffraction theory and called the locality principle.
The importance of the real traces of the integrand of multiple
integrals in diffraction problems was previously highlighted
in Ref. [42] in the context of blade-gust interactions in which
the real traces are called the wave-number surfaces.

Additional results will be provided for values of k asso-
ciated with degeneracies corresponding to the shrinking of
a real trace to a point. But before delving any further into
this, we wish to show that the analyticity of F and its real
property are not unreasonable assumptions, by considering
two illustrating examples: a discrete lattice (Fig. 1, left), and a
simple phononic crystal (Fig. 2, left). A common understand-
ing is that all singularities of F are poles if there is no energy
leakage from the medium to some other subsystem. This will
be the case in the examples considered below. However, one
can expect singularities of the branching type, say, if the 2D
medium is a thin layer placed atop some acoustic half-space.

FIG. 2. A phononic crystal (left) and decomposition of the
boundary ∂ (S0 \ 	) with illustration of the orientation of the normal
n (right).

The method developed in Ref. [16] and in what follows is able
to deal with such nonpolar singularities.

III. TWO ILLUSTRATING EXAMPLES

A. Green’s function of a discrete lattice

Let us start by studying the discrete Helmholtz Green’s
function of a square lattice. Without loss of generality, we can
assume that the lattice points are lying on the integer points
m = (m1, m2) ∈ Z2 of a Cartesian plane and that the point
source is at the origin. The matrix � is simply the identity
matrix, d ≡ e1 = (1, 0)ᵀ and � ≡ e2 = (0, 1)ᵀ. Because of
the discrete nature of this media, the periodic cells are just
points and hence there are no explicit dependency on r and
rs. For these reasons, the quantity u(r + �m; rs; k, κ) of the
general framework can just be written u(m; k, κ). It satisfies
the discrete Helmholtz equation, forced at the origin, given by

u(m + e1; k, κ) + u(m − e1; k, κ) + u(m + e2; k, κ)

+ u(m − e2; k, κ) + ((k + iκ)2 − 4)u(m; k, κ) = δm10δm20,

(4)

where u(m; k, κ) represents the out-of-plane displacement of
the node m = (m1, m2) for instance, δ is the Kronecker delta,
k + iκ is the wave number, with real part k � 0 and a small
imaginary part κ � 0.

For ξ = (ξ1, ξ2), we can formally introduce the double
Floquet-Bloch transform

F (ξ; k, κ) =
∑

m∈Z2

u(m; k, κ)eim·ξ,

where, as for u, we have removed the dependency on r and
rs from F . Applying this transform to the governing equation
(4), we obtain an explicit expression for F given by

F (ξ; k, κ) = 1

2 cos(ξ1) + 2 cos(ξ2) + ((k + iκ)2 − 4)
· (5)

It is clear that, as a function of ξ ∈ C2, F (ξ; k, κ) is holomor-
phic everywhere away from its singularity set H (k, κ), which
happens to be the polar set defined by

H (k, κ) = {ξ ∈ C2, 2 cos(ξ1) + 2 cos(ξ2)

+ ((k + iκ)2 − 4) = 0}.
In fact here, for each (k, κ), there is only one

irreducible component σ1(k, κ) with defining function
g1(ξ; k, κ) = 2 cos(ξ1) + 2 cos(ξ2) + ((k + iκ)2 − 4).

It is clear that if κ > 0, then H (k, κ) ∩ B = ∅ (point P1)
so that in this case, u is simply given by

u(m, k, κ) = 1

4π2

∫∫
B

F (ξ; k, κ)e−im·ξdξ. (6)

We now want to study the limit κ → 0. For k > 2
√

2,
H ′(k) ≡ H (k, 0) ∩ B = ∅, and the integral (6) remains valid.
However, if 0 < k < 2 or 2 < k < 2

√
2, then the singularities

of F (ξ; k, 0) intersect the real plane as a set of smooth one-
dimensional curves σ ′

1(k) (point P2 of the real property), as
illustrated in Fig. 1 (right), and one can check that they are
regular by direct computation (point P3 of the real property).
So F has the real property for those k. In this case, for the
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integral (6) to make sense, the surface B should be indented
to a surface � that is close to B everywhere but bypasses the
singularities to give

u(m; k, 0) = 1

4π2

∫∫
�

F (ξ; k, 0)e−im·ξdξ, (7)

and we are hence exactly within the general framework de-
scribed in Sec. II.

Note further that, when k = 0 or k = 2
√

2, the real traces
shrink into points, while as k → 2 the curves become straight
intersecting lines. At these specific values of k, we lose the
point P3 of the real property. A careful study of these degen-
eracies will be provided in Sec. VII.

B. Simple phononic crystal

1. Formulation

Let us consider a 2D continuous periodic medium with
double period given by the vectors d and � lying in a Cartesian
plane r = (x1, x2) ∈ R2. The periodically repeated parallelo-
gram cells S all contain an identical scatterer 	 say subject
to some boundary condition (BC), as illustrated in Fig. 2
(left). The discussion below is general in nature and holds
for many boundary conditions: Dirichlet (u = 0), Neumann
(n · ∇u = 0), or real positive Robin (n · ∇u + βu = 0, with
β > 0). With very minor modifications, it can also be applied
for penetrable scatterers or continuously varying material
properties. We are interested in finding the tailored Green’s
function of this medium. Let us hence assume without loss
of generality that a point source rs is located away from 	

within the cell S0 that contains the origin, so rs ∈ S0 \ 	. We
are interested in solving the Helmholtz equation

�ru(r; rs; k, κ) + (k + iκ)2u(r; rs; k, κ) = δ(r − rs), (8)

with BC on each ∂	, where k + iκ is the wave number, with
positive real part k and a small positive imaginary part κ. Let
r ∈ S0 \ 	 and formally introduce the double Floquet-Bloch
transform

F (r; rs; ξ; k, κ) =
∑

m∈Z2

u(r + �m; rs; k, κ )eim·ξ.

By applying the Floquet-Bloch transform to the governing
equation (8), and noting that differential operators in the r
variable commute with the transform, it can be seen that, for
r ∈ S0 \ 	,

�rF (r; rs; ξ; k, κ) + (k + iκ)2F (r; rs; ξ; k, κ) = δ(r − rs),

(9)

and that F also satisfies the same BC on ∂	 as u does.
Moreover, direct calculations show that it has the Floquet
periodicity property (also called ξ-quasiperiodicity w.r.t. �):

∀ j ∈ Z2, F (r + � j; rs; ξ; k, κ) = e−iξ· jF (r; rs; ξ; k, κ).

(10)

Note that Eq. (10) implies its gradient counterpart:

∀ j ∈ Z2, ∇rF (r + � j; rs; ξ; k, κ) = e−iξ· j∇rF (r; rs; ξ; k, κ).

(11)

Hence, to find F , one needs to solve Eq. (9) on the unit cell
S0 subject to BC on ∂	 and Floquet periodicity conditions
(10) and (11). For these reasons, F is often referred to as
the tailored quasiperiodic Green’s function of the problem
associated with ξ.

In what follows, we want to show that F can be understood
as a holomorphic function of ξ with the real property. To get
there, we first need to study F when ξ is real.

2. Self-adjointness and an explicit formula for F when ξ is real

Let us consider ξ ∈ B ⊂ R2 and consider the operator1

L = −� with a domain domξ consisting of functions defined
on S0 \ 	, that satisfy BC on ∂	 and are ξ-quasiperiodic w.r.t.
�. Let us consider the usual L2 inner product defined for two
functions f (r) and g(r) in domξ by

( f , g) =
∫∫

S0\	
f g†dS(r),

where † means complex conjugate. By Green’s identity, we
have

(L f , g) =
∫∫

S0\	
∇ f · ∇g†dS −

∫
∂ (S0\	)

(n · ∇ f )g†d�,

(12)

where ∂ (S0 \ 	) can be decomposed into ∂ (S0 \ 	) = ∂ST
0 ∪

∂SB
0 ∪ ∂SR

0 ∪ ∂SL
0 ∪ ∂	 and the normal is outgoing as de-

scribed in Fig. 2 (right).
Due to the ξ-quasiperiodicity, and the fact that (e−iξ1,2 )† =

e+iξ1,2 when ξ is real, it is direct to show that∫
∂SR∪∂SL

(n · ∇ f )g†d� = 0 and
∫

∂ST ∪∂SB

(n · ∇ f )g†d� = 0,

leading to the second term in the right-hand side of Eq. (12) to
simplify to − ∫

∂	
(n · ∇ f )g†d�. Following the same approach,

we can show that for f , g ∈ domξ, we get

( f ,Lg) =
∫∫

S0\	
∇ f · ∇g†dS −

∫
∂	

f (n · ∇g†)d�. (13)

Using the BC, one can show directly that
∫
∂	

(n · ∇ f )g†d� =∫
∂	

f (n · ∇g†)d� (for Dirichlet and Neumann these terms
are just zero, and equal to β

∫
∂	

f g†d� for Robin for some
β > 0). Therefore, by comparing Eqs. (12) and (13) we find
that (L f , g) = ( f ,Lg) for all f , g ∈ domξ, that is, the oper-
ator (L, domξ ) is symmetric. As a result, one automatically
gets that its eigenvalues are real. Moreover, using g = f in
Eq. (12), we find that for all f ∈ domξ , (L f , f ) � 0 and that it
is only zero for f = 0. In other words, the operator (L, domξ )
is nonnegative. These two properties (symmetry and nonneg-
ativity) imply that (L, domξ ) is self-adjoint and nonnegative.
So far we have not been very precise about the regularity of
the functions in domξ . We can follow two approaches to show
the self-adjoint property. Either we consider smooth functions
to start with, and then show that (L, domξ ) has a nonnegative

1In this section there are no ambiguity about which variable the
Laplacian is defined with respect to, so there is no need for the
subscript r.
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self-adjoint (Friedrichs) extension (see, e.g., Refs. [43–45]).
Equivalently, we can bypass this step and consider functions
to be in an appropriate Sobolev space from the start and in this
case (L, domξ ) is directly self-adjoint.

As a consequence, the spectral theorem implies that the
eigenvalues of this operator are discrete, real, and positive and
can hence be written as

0 � λ0 � λ1 � λ2 � · · · � λ j � · · · , (14)

with λ j → +∞ as j → ∞. We are using � in Eq. (14) to
account for multiple eigenvalues. The eigenfunctions Vj as-
sociated to the eigenvalues λ j span the entire function space
domξ and are orthogonal, that is (Vj,V�) = 0 if j �= �. Be-
cause everything here depends on ξ, we will from now on
write

λ j ≡ λ j (ξ) and Vj ≡ Vj (r; ξ).

Note now that F (r; rs; ξ; k, κ) is in domξ, a domain spanned
by the eigenfunctions of (L, domξ ). Therefore, F can be writ-
ten as

F (r; rs; ξ; k, κ) =
∞∑
j=0

Aj (rs; k, κ)Vj (r; ξ),

for some coefficients Aj to be determined. Using the orthog-
onality of the eigenfunctions, the symmetry of the operator
(L, domξ ), the fact that the eigenvalues are real, Eq. (9) and
the properties of the Dirac delta function, we find that

Aj (rs; k, κ) = 1

((k + iκ)2 − λ j (ξ))

V †
j (rs; ξ)

(Vj (·, ξ),Vj (·, ξ))
·

This leads to an explicit expression for F :

F (r; rs; ξ; k, κ) =
∞∑
j=0

1

((k + iκ)2 − λ j (ξ))
× V †

j (rs; ξ)

‖V †
j (.; ξ)‖

× Vj (r; ξ)

‖Vj (.; ξ)‖ , (15)

where ‖.‖ = √
(., .) and we have used the fact that ‖V †

j ‖ =
‖Vj‖. Given the form of Eq. (15), it is clear that, as expected,
F does not depend on the choice of normalization of the
eigenfunctions. Using the fact that if (λ j (ξ),Vj (r; ξ)) is an
eigenpair of (L, domξ ) then (λ j (ξ),V †

j (r; ξ)) is an eigenpair
of (L, dom−ξ ), the formula (15) can be rewritten as

F (r; rs; ξ; k, κ) =
∞∑
j=0

1

((k + iκ)2 − λ j (ξ))

× Vj (rs; −ξ)Vj (r; ξ)

〈Vj (·; −ξ),Vj (.; ξ)〉 , (16)

where the bracket 〈·, ·〉 is defined for two functions f and
g as

〈 f , g〉 =
∫∫

S0\	
f (r)g(r)dS.

The advantage of Eq. (16) over Eq. (15) is that it does not con-
tain any complex conjugate symbol, which will prove helpful
when we will attempt to analytically continue this formula for
complex ξ.

FIG. 3. Deformation of the integration contour with respect to ξ2.

Remark III.1. The discrete example can also be written as
a special case of Eq. (15). In that case, there is only one eigen-
value for the eigenvalue problem −�̃ f = λ f , where �̃ is
the discrete Laplacian defined by �̃ f = f (m + e1) + f (m −
e1) + f (m + e2) − f (m − e2) − 4 f (m), subject to Floquet
quasiperiodic conditions f (m + j) = e−iξ· j f (m), with the in-
ner product ( f , g) = f (0)g†(0). This problem has only one
eigenvalue λ0(ξ) = 4 − 2 cos(ξ1) − 2 cos(ξ2), the eigenfunc-
tion is given by any constant V0(0; ξ) �= 0. Moreover we have
r = rs = 0 and, given the definition of the inner product, we
have that V †

0 (0; ξ)V0(0; ξ)/(‖V †
0 ‖‖V0‖) = 1. Hence, Eq. (5)

can indeed be thought of as a special case of Eq. (15). �
Remark III.2. Since the double integral (3) with Eq. (16)

has only polar singularities, one can convert it into a single
integral by taking the integral either with respect to ξ1 or ξ2.
For example, let us assume that m2 < 0. Fix some value of
ξ1 ∈ [−π, π ]. The contour of integration can be transformed
from the segment [−π, π ] into the contour shown in Fig. 3.
The added passes along the vertical half-lines compensate
each other due to periodicity. The integrand is exponentially
small at infinity, so one can close the contour there. Finally,
the integral with respect to ξ2 becomes expressed a sum of
poles located inside the contour (i.e., in the upper half-plane
when κ > 0). Denote the position of these poles by � j (ξ1).
The expression for the integral is as follows

u(r; rs; k, κ ) = − i

2π

∫ π

−π

dξ1

∞∑
j=0

e−im·ξ j

∂λ j/∂ξ2

× Vj (rs; ξ j )Vj (r; ξ j )

〈Vj (·; −ξ j ),Vj (·; ξ j )〉
, (17)

where ξ j ≡ (ξ1, � j (ξ1)), and the derivative ∂λ j/∂ξ2 is evalu-
ated at ξ j . Equation (17) is a series-integral representation of
the field. Instead of taking the integral with respect to ξ2, one
can use ξ1 and get an alternative series-integral representation.
In Ref. [46] we consider a pair of representations in a similar
situation and demonstrate an equivalence between them.

Note that the representation (17) is an integral of a differen-
tial form defined on a complex manifold (possibly with some
points removed). The integral is taken along some contours on
this manifold. A special technique [47,48] can be applied to
estimate such an integral. Below, however, we prefer to inves-
tigate the initial double integral representation (1) using the
methods introduced in Refs. [14,16]. Indeed, the two methods
are equivalent, but the second one is more demonstrative and
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can handle singularities that are more complicated than simple
poles. �

To show that such phononic crystal fits the general frame-
work of Sec. II, it remains to show that F can be analytically
continued when ξ becomes complex. It can indeed be shown
to be true, but the proof is a bit technical. Hence, in order not
to break the flow of the paper, we have decided to give it in
Appendix A.

3. Singularity set and integral formulations

Given the explicit formula (15) and its analytic property,
we therefore have access to the singular set of F , which
happens to be a set of polar singularities. It is given by

H (k, κ) =
⋃
j∈N

σ j (k, κ), where

σ j (k, κ) = {ξ ∈ C2, g j (ξ; k, κ) = (k + iκ)2 − λ j (ξ) = 0}.
Since λ j (ξ) is real for real ξ, it is clear that H (k, κ) ∪ B = ∅
if κ > 0 so the integral representation (1) is valid (point P1).
Moreover, because λ j (ξ) are real-valued smooth functions on
B, its level sets are in general smooth curves (point P2), and
so, apart from some potential pathological points where P3
might be violated, F does indeed have the real property and
the modified integral representation (3) would normally be re-
quired. Therefore, this phononic crystal example fits perfectly
within the general framework discussed in Sec. II.

Motivated by the fact that the general framework of Sec. II
is indeed relevant, we will now discuss the deformation pro-
cess B → � in more details.

IV. MORE ON THE INDENTED SURFACE
OF INTEGRATION �

A. Type of deformed surfaces

Throughout this article, we will only consider deformed
surfaces of a certain class, namely those that can be
parametrized by their real parts. In other words, they can be
viewed as a small complex perturbation of B. More specifi-
cally, we will consider surfaces that can be written as follows:

� = {
ξ� = ξ + iη(ξ) ∈ C2,

where ξ ∈ B and η = (η1, η2)ᵀ ∈ R2
}
.

We suppose that η is small |η| � 1 and impose periodic-
ity: η(−π, ξ2) = η(π, ξ2) and η(ξ1,−π ) = η(ξ1, π ). Such a
surface � is hence completely described by a real vector
field η defined over B. Moreover, for any ξ ∈ B, we have
Re[ξ�(ξ)] = ξ and Im[ξ�(ξ)] = η(ξ).

B. Bypassing the singularities

We have shown in Ref. [16] (Theorem 3.2) that for such a
surface not to intersect the singular set H (k, 0) of a function
with the real property, it is sufficient for the vector field η to
satisfy two conditions:

(1) For any ξ ∈ H ′(k) ≡ H (k, 0) ∩ B, η(ξ) �= 0.
(2) The vector field η should not be tangent to any irre-

ducible component of H ′(k).

.

FIG. 4. The arrow indicating two different bypasses of H ′(k) in
the case of the discrete lattice for some k chosen such that 0 < k < 2.

If these conditions are satisfied, then we can always find
a smooth positive real factor function ε(ξ) say such that the
surface parametrized by the vector field ε(ξ)η(ξ) does not
intersect H (k, 0) and B can be deformed continuously to this
surface without intersection H (k, κ) for small enough κ > 0.
From now on, we will omit this factor and just use η when
describing such surface.

We have also shown in Ref. [16] that there are only two
ways that such a deformed surface can bypass an irreducible
component σ ′

j (k) of H ′(k). The difference between these two
possibilities is the side of σ ′

j (k) that η is pointing to. Moreover,
knowing how � bypasses σ ′

j (k) at one point is enough to
know the type of bypass everywhere. Indeed, because of the
two properties above, it is not possible for η to point to two
different sides of σ ′

j (k). A full understanding of such bypass
can hence be visualized by a simple arrow atop the real traces
that indicates which side η is pointing to. This arrow is the
arrow part of the bridge and arrow notation developed in
Refs. [13,16]. For the purpose of this article, we will not need
to introduce the bridge. For instance, in Fig. 4 we illustrate the
two possible ways in which a surface � can bypass the closed
loop that is the singularity trace in the case of the discrete
lattice for 0 < k < 2. Such bypasses can be realized using the
following parametrizations:

η(ξ) = (η1(ξ), η2(ξ))

= ± exp(−(F (ξ; k, 0))−2)(sin(ξ1), sin(ξ2)), (18)

where F (ξ; k, κ) is given by Eq. (5). The vector field η for the
bypass in Fig. 4, left is shown in Fig. 5.

FIG. 5. The vector field η that provides admissible deformation
of B in the case of the discrete lattice for some k chosen such that
0 < k < 2 as given by Eq. (18) using the + sign.
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FIG. 6. Correct choice of bypass for the discrete lattice example.

C. Choosing the correct bypass, link with radiation condition

For a given k, for each irreducible component σ ′
j (k) of

H ′(k), we have therefore the choice between two types of
bypasses.

The procedure to make the right choice is easy to im-
plement and can simply be summarized as follows. Draw
σ ′

j (k) and pick ξ� on it, then for some small δk > 0, draw
σ ′

j (k + δk). The group velocity vector ∇ξk at ξ� should hence
point toward σ ′

j (k + δk). Pick η(ξ�) to point to the opposite
side, as illustrated in Fig. 6. The proof of why this procedure
is valid is given in Appendix B.

Remark IV.1. Another, equivalent, way of choosing the by-
pass is described in Ref. [16]. �

Example IV.2. Let us consider the discrete lattice example,
with 0 < k < 2, for which H ′(k) is a smooth closed curve
surrounding 0. Draw σ ′

1(k) and pick ξ�, draw σ ′
1(k + δk),

deduce the direction of the group velocity vector, and hence
deduce the direction of η(ξ�). �

Example IV.3. Here we provide an example for which the
above method fails. Consider the function

g j (ξ; k, κ) = (ξ1 − 1)(ξ1 + 1) + ξ 2
2 + 2(k + iκ)ξ2.

The point ξ� = (±1, 0) ∈ σ ′
j (k) for any real k. Here

∂Gj

∂ k̃
(ξ�; k�) = 0. What happens in that case is that σ ′

j (k) and
σ ′

j (k + δk) are circles that intersect at ξ�. This prevents one to
choose a consistent orientation of the indentation vector η and
this is due to a violation of the point P3. �

This choice is not just a mathematical trick that allows us
to write down an integral as κ → 0, but it is intimately related
to the definition of a radiation condition at infinity through a
limiting absorption principle (see, e.g., Ref. [22]). In fact we
find that thinking of radiation condition in this way might be
more natural: the radiation condition is the correct choice of
bypasses.

By radiation condition here we mean a condition that en-
sures the problem is well-posed and has a unique, physical,
solution. In classical scattering theory, for the problem of
an incident plane wave impinging on a compact obstacle
surrounded by an infinite acoustic media for instance, this
is generally done in two, equivalent ways. The first way is
to ensure that the Sommerfeld radiation condition is satisfied
(this can be done for real wave number k). The second way is
to use the limiting absorption principle (let the wave number
k have a small positive real part, and ensure that the scattered

field is exponentially decaying at infinity). For periodic media,
there is no such thing as a Sommerfeld radiation condition.
Hence, the approach usually taken is that of limiting absorp-
tion principle. In-depth consideration on this topic can, for
example, be found in Refs. [22,49]. The main difficulty with
the limiting absorption principle is to show that the admissible
solution found for κ > 0 has a limit as κ → 0 and to write
down this limit. This is exactly what we are doing here. We
effectively make sense of this limit by writing it explicitly
as a well-behaved integral. The only information we need to
write this integral is the correct choice of bypass. Once this is
done, we then have made sense of the limit κ → 0 and hence
effectively provided a radiation condition. A corollary to this
is that if one cannot find an appropriate surface deforma-
tion, then there are no possible radiation conditions. Special
frequencies (corresponding to degeneracies, see Sec. VII) at
which no radiation conditions can exist have been exhibited
for discrete settings in, e.g., Refs. [50,51]. Understanding the
radiation condition for periodic structures, and the asymptotic
behavior of waves propagating in such structures, is essential.
This could for instance pave the way to effective conditions
(akin to perfectly matched layers in classical scattering the-
ory) to be used for numerical computations on the boundary
of a truncated domain to mimic an infinite periodic domain.
Efforts in that direction for periodic waveguides have already
taken place (see, e.g., Ref. [49]).

V. BRIEF SUMMARY OF THE GENERAL PROCEDURE

Let us consider a wave field u associated to a spectral
function F that satisfy the general framework of Sec. II. Let us
assume a correct choice of bypass (orientation of the vector η)
for each irreducible components σ ′

j (k) of H ′(k), as explained
in Sec. IV. We assume hereafter that κ = 0 since this pa-
rameter was only necessary to define the correct indentation
�. We will therefore simplify the notations by removing the
κ dependency: H (k, 0) ≡ H (k), u(r + �m; rs; k, 0) ≡ u(r +
�m; rs; k) and F (r; rs; ξ; k, 0) ≡ F (r; rs; ξ; k). Recall that we
are interested in obtaining a far-field asymptotic expansion for
u. To do this, we fix an observation direction m̃ and study
u(r + �m; rs; k, 0) for m = Nm̃ as the integer N → ∞. For
each observation direction, our aim is to provide an expansion
of the type

u(r + �m; rs; k) ≈
N→∞

∑
q

u(q)
loc (m; r; rs; k), (19)

where each of the wave components u(q)
loc are known explicitly.

According to the locality principle (see Refs. [14,16]), we
expect each u(q)

loc to result from local considerations around
a special point ξq ∈ B. These special points can be found
through a second stage of integration surface deformation. We
deform � into another surface �′ according to the following
properties:

(i) �′ is also of the type described in Sec. IV, and can be
described by a real vector field η′.

(ii) The deformation from � to �′ is admissible: this is a
continuous deformation during which the singularity set of F
is not hit. As a result, η and η′ points to the same side of the
real traces of F .
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(a) (b) (c) (d)

FIG. 7. Schematic illustration of some special and not special points.

(iii) The deformation is desired: for ξ ∈ B, the exponen-
tial factor e−im·ξ�′ (ξ) in the integrand of Eq. (3) should be
exponentially decaying as N → ∞. This is true provided that
m̃ · η′(ξ) < 0.

(iv) Points ξ ∈ B in the neighborhood of which it is impos-
sible to find a deformation � → �′ that is both admissible and
desired are called special points.

We are now in a position of summarizing some of the
findings of Ref. [16] regarding which points are special or not.

(v) Nonsingular points are not special. By nonsingular we
mean points ξ ∈ B \ H ′(k). This in particular implies that if
we are within a band gap, i.e., if k is such that H ′(k) ∩ B = ∅,
then the Green’s function decays exponentially at infinity, as
expected. See Fig. 7(a).

(vi) Saddles on singularities (SoS) are special. A SoS is
a point ξ ∈ σ ′

j (k) such that at ξ we have m̃ ⊥ σ ′
j (k) and m̃ ·

η > 0. See Fig. 7(b). Note that this case is well known in the
theory of anisotropic media [24]: the wave vector of a wave
propagating in a certain direction is given by the point where
the direction is orthogonal to the slowness surface. This is a
generalization of the concept of the group velocity.

(vii) Singular points belonging to only one irreducible
component are not special unless they are SoS. See Fig. 7(c).

(viii) Tangential crossings between two real traces are not
special unless they are SoS.

(ix) Transverse crossings between two real traces are spe-
cial. See Fig. 7(d). They lead to some asymptotic contribution
for m̃ belonging to one “active” quadrant of the real plane.

In the next section, we will give the asymptotic formulas
associated with the special points described above. For iso-
lated SoS (Sec. VI A) and transverse crossings (Sec. VI B),
the formulas can be obtained directly from Ref. [16]. The
only difference is that here � and B are finite, while they
were doubly infinite in Ref. [16]. However, since only local
considerations are needed to obtain the results, everything still
holds.

VI. ASYMPTOTICS ASSOCIATED WITH SPECIAL POINTS

A. Isolated saddle on a singularity (SoS)

Let us start by fixing m̃, r and rs and k and a choice of
bypass for H ′(k). Now consider a SoS ξ� on an irreducible real
trace component σ ′

j of H ′(k) with defining function g j (ξ; k).
By definition of a SoS, we have m̃ ⊥ σ ′

j and m̃ · η > 0 at ξ�,
see Fig. 7(b). Let us further assume that ξ� belongs to no other
irreducible component, and that σ ′

j has nonzero curvature at
ξ�. The latter assumption implies that the SoS is isolated.

However, if σ ′
j were to have straight fragments, then noniso-

lated SoS might occur and nonlocal considerations would be
needed. Straight fragments were not studied in Ref. [16], but
we will consider them in the present paper; see Sec. VI C.

To write down the asymptotics associated with this point,
we first need to introduce some quantities that characterise
the singularity. Define a�

j = ∂ξ1 g j (ξ
�; k), b�

j = ∂ξ2 g j (ξ
�; k) and

the normal vector n� = (a�
j, b

�
j )
ᵀ/

√
(a�

j )
2 + (b�

j )
2 . Because

m̃ ⊥ σ ′
j , there exists a scalar s = ±1 defined such that m̃ =

s|m̃|n�. The sign of s depends on the choice of bypass
and defining function. An equivalent definition of s is s =
sign(η� · n�), where η� = η(ξ�) and η is the indentation vector
field associated to �. For brevity, we also introduce N� =
N |m̃|/

√
(a�

j )
2 + (b�

j )
2 .

We further assume that the leading component of F re-
sponsible for the activity of ξ� has the following behavior as
ξ → ξ�:

F (r; rs; ξ; k) ≈ 4π2A(r; rs)(g j (ξ; k))−μ.

We use the change of variable ξ ↔ ζ, where

ζ1 = b�
j (ξ1 − ξ�

1 ) − a�
j (ξ2 − ξ�

2 ) and ζ2 = g j (ξ; k),

ensuring that ζ1 is tangent to σ ′
j and ζ2 is transverse to σ ′

j . We
therefore have

ξ − ξ� = �ζ + O
(
ζ 2

1 + ζ1ζ2 + ζ 2
2

)
, where

� = 1

(a�
j )

2 + (b�
j )

2

(
b�

j a�
j

−a�
j b�

j

)
.

Moreover, the nonzero curvature property leads to the exis-
tence of a unique α �= 0 such that

ζ2 ≈ a�
j (ξ1 − ξ�

1 ) + b�
j (ξ2 − ξ�

2 ) − αζ 2
1 + O

(
ζ 2

2 + ζ1ζ2
)
.

We have now introduced all the required quantities to write
down the far-field wave component uloc resulting from the
special point ξ�, as presented in Ref. [16]:

uloc(m; r; rs; k) ≈
N→∞

2πA(r; rs)e−im·ξ�√
πe−isμπ/2

�(μ)((a�
j )

2 + (b�
j )

2)(N�)3/2−μ

×
{

e−iπ/4/
√

sα if sα > 0

eiπ/4/
√−sα if sα < 0

, (20)

where � is the usual gamma function.
It is worth to mention, that a particular case of asymptotic

(20) for (g j (ξ; k))μ being a polynomial was obtained in Refs.
[24,25] by methods of 1D complex analysis applied to the
series-integral representation (17).
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Example VI.1. Consider the Green’s function of the dis-
crete lattice. Let k be small but finite. Then, near the
singularity (where ξ1 and ξ2 are also small), Eq. (5) can be
approximated as follows:

F ≈ 1

k2 − ξ 2
1 − ξ 2

2

· (21)

Thus, the real trace of the irreducible singularity is a circle,
and for any given m there is one active SoS given by ξ� =
−km/|m|. Using Eq. (20) we obtain

uloc(m; r; rs; k) ≈
|m|→∞

− eiπ/4

2
√

2π

eik|m|
√

k|m| , (22)

where we have used that A = 1
4π2 , (a�

j )
2 + (b�

j )
2 = 4k2, N� =

|m|/(2k), μ = 1, s = 1, and α = 1
4k2 . The latter has a sim-

ple physical interpretation. It is the far-field asymptotics of
the Green’s function associated to the continuous problem,
namely − i

4 H (1)
0 (k|m|). Indeed, when k is small (4) can be con-

sidered as a finite difference approximation of the Helmholtz
equation on a plane with a point source at the origin. �

B. Transverse crossings

Let us start by fixing m̃, r and rs and k again. Con-
sider a point ξ� ∈ σ ′

1 ∩ σ ′
2, where σ ′

1 and σ ′
2 are two

irreducible components of H ′(k) with respective defining
functions g1(ξ; k) and g2(ξ; k). Unlike for the SoS, the po-
sition of such a point does not depend on m̃. Define the
real quantities a�

1,2 = ∂ξ1 g1,2(ξ�; k) and b�
1,2 = ∂ξ2 g1,2(ξ�; k).

The crossing being transverse means that the quantity �� =
a�

1b
�
2 − a�

2b
�
1 is not zero. Because it is always possible to

swap notations for σ ′
1 and σ ′

2, we can assume without
loss of generality that �� > 0. We can naturally define
the normals n�

1,2 as n�
1 = (a�

1, b
�
1)ᵀ/

√
(a�

1)2 + (b�
1)2 and n�

2 =
(a�

2, b
�
2)ᵀ/

√
(a�

2)2 + (b�
2)2 and the sign factors s1,2 = ±1 can

be defined by s1 = sign(η� · n�
1) and s2 = sign(η� · n�

2), where
η� = η(ξ�) and η is the indentation vector field associated
to �.

Let us now assume that the leading component of F re-
sponsible for the activity of ξ� has the following behavior as
ξ → ξ�:

F (r; rs; ξ; k) ≈ 4π2A(r; rs)(g1(ξ))−μ1 (g2(ξ))−μ2 . (23)

We have now introduced all the required quantities to write
down the far-field wave component uloc resulting from the
special point ξ�, as presented in Ref. [16]:

uloc ≈
N→∞

4π2A(r; rs)e−im·ξ�

e−i π
2 (s1μ1+s2μ2 )

�(μ1)�(μ2)(��)μ1+μ2−1

× H(s1(m1b�
2 − m2a�

2))

|m1b�
2 − m2a�

2|1−μ1

× H(s2(−m1b�
1 + m2a�

1))

| − m1b�
1 + m2a�

1|1−μ2
. (24)

FIG. 8. Schematic illustration of nonisolated SoS.

Note that the presence of the Heaviside function H implies
that such point ξ� has a region of activity and a region of in-
activity. These depend on the choice of indentation associated
to σ ′

1 and σ ′
2. A visual way of determining those regions of

activity has been provided in Ref. [16].

Additive crossings

The local approximation (23) of F plays an important part
in what is discussed above. In Ref. [16], we have shown that
if the crossing ξ� is additive, then ξ� does not lead to any
asymptotic contribution. A crossing ξ� is additive, if, locally
around ξ�, we can write F (ξ) = F1(ξ) + F2(ξ), where F1 is
not singular on σ ′

1 and F2 is not singular on σ ′
2. Additive

crossings have been shown to occur and to be important in
diffraction theory (see, e.g., Refs. [8,11,13,17]), but have not
been observed in periodic media so far. Given the form of the
eigenexpansion (16), it is likely that crossings resulting from
an intersection of two eigenvalues are going to be additive in
the examples considered and will therefore not contribute to
the far-field asymptotics of u.

C. Flat singularities and nonisolated SoS

Let us consider the case when a portion of an irreducible
real trace component σ ′

j is a straight segment S , as shown in
Fig. 8. Let us further assume that m̃ ⊥ S and that m̃ · η > 0,
so that all points ξ� ∈ S are nonisolated SoS. They all need
to be considered to obtain a far-field approximation in the
observation direction m̃. This will be done as follows. Because
it is straight, S can be associated to a defining function g(ξ; k)
of the form

g(ξ; k) = aξ1 + bξ2 + c,

with normal vector n = (a, b)ᵀ/
√
a2 + b2. Denote the end-

points of S as ξs and ξe. Since m̃ ⊥ S we can write m̃ =
s|m̃|n, with s = ±1. Similar to Sec. VI A, we introduce N� =
N |m̃|/√a2 + b2, as well as the new coordinates: ζ1 = bξ1 −
aξ2 and ζ2 = g(ξ; k).

We further assume that, in the vicinity of S , F behaves as

F (r; rs; ξ; k) ≈ 4π2A(r; rs)ζ−μ
2 h(ζ1),

where h(ζ1) is some regular function of the longitudinal coor-
dinate ζ1.

Using the latter, and the fact that the Jacobian of the change
of variables ξ → ζ behaves as (a2 + b2)−1, the integral (2) can
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be approximated as follows:

uloc ≈
N→∞

A(r; rs)e−iscN�

a2 + b2

∫ ζ e
1

ζ s
1

h(ζ1)dζ1

×
∫ ∞+isε

−∞+isε
ζ

−μ
2 e−isN�ζ2 dζ2, (25)

where ζ s
1 = bξ s

1 − aξ s
2, ζ e

1 = bξ e
1 − aξ e

2 . Note that only an
exponentially small error has been introduced by making the
limits of integration in ζ2 go to infinity. The integral in ζ2 can
be evaluated explicitly in terms of the gamma function, which
leads to

uloc ≈
N→∞

2πA(r; rs)e−iscN�

e−isμπ/2

�(μ)(a2 + b2)(N�)1−μ

∫ ζ e
1

ζ s
1

h(ζ1)dζ1. (26)

A similar consideration for the case of a polynomial singular-
ity has been given in Refs. [24,25]. It is an interesting formula,
as one can see that it leads to some kind of beam for this
specific value of m on which the wave will decay less fast
(or not at all if μ = 1) than in the other observation directions
associated with a usual isolated SoS behavior.

Finally, the situation where special points are located very
close to each other or are merging requires special care and
will provide intermediate asymptotics, often referred to as
penumbra zone in diffraction theory. In the next section we
will concentrate on degeneracies, a phenomenon that did not
appear in our studies on diffraction theory, but that is funda-
mental to the study of wave propagation in periodic structures.

VII. DEGENERACIES

Without losing too much in generality, below we will
focus on a field u described by a spectral function F that
can be written as an eigenprojection of the type (16). As
mentioned earlier this encompasses at least the two examples
of Secs. III A and III B. We remain interested in the case of
real k. For simplicity, we will rename the terms containing the
eigenfunctions as Ej so that we can write

F (r; rs; ξ; k) =
∞∑
j=0

Ej (r; rs; ξ)

(k2 − λ j (ξ))

for real ξ ∈ B. In this section, we will consider another type of
special points that we call degeneracies. These can be loosely
defined as a change of topology in the real traces of F at a
specific wave number. These occur for example when H (k)
contains a loop that becomes smaller and smaller as k changes,
until ultimately shrinking at some k = k� or when H (k) con-
tains two branches of a hyperbola that eventually touch at
some k = k�. Indeed, in both cases the surface of integration
becomes pinched between singularities, and thus the resulting
integral becomes singular. Each type of degeneracy needs to
be treated differently. Our aim here is to provide an approxi-
mation for u(r + �m; rs; k) that is valid when both |m| → ∞
and k → k�. A similar aim, though with a different approach
base on the high-frequency homogenization technique was
successfully followed in Ref. [36]. We will start by consid-
ering degeneracies that remain a simple eigenvalue, typically
represented by local extrema of the dispersion diagram or

hyperbolic crossing, and then consider degeneracies involving
two eigenvalues simultaneously such as Dirac conical points.

A. General procedure for a simple nonzero eigenvalue

Let us choose a pair (ξ�, k�) ∈ B × R+ that is a degeneracy
associated to a simple eigenvalue. In other words, there is a
unique � such that λ�(ξ�) = (k�)2 > 0 and the topology of the
real trace σ ′

� associated to λ� changes as k → k�. Our aim is
to provide a far-field approximation for u that is valid as k
approaches k�. Let us change the variables from (ξ, k) to (ζ, k̂)
by introducing k̂ = k − k� and defining ζ as local variables
centred at ξ�, with a nonsingular Jacobian matrix �� such that
as ξ → ξ� (and hence ζ → 0), we have ξ − ξ� ≈ ��ζ.

Because λ�(ξ�) > 0, we can, at least locally, introduce the
function 	(ζ) defined by

	(ζ) =
√

λ�(ξ) − k�,

chosen such that, for (ξ, k) in some neighborhood of (ξ�, k�),
we have the singularity of F described by k = √

λ�(ξ) or in
our new variables, k̂ = 	(ζ). In a neighborhood of (ξ�, k�),
we can therefore write F as follows:

F (r; rs; ξ; k) = E�(r; rs; ξ)

(k2 − λ�(ξ))
+ regular terms

≈ E�(r; rs; ξ
�)

(k� + k̂)2 − (k� + 	(ζ))2
+ regular terms,

where we have used the definition of 	 and the fact that
E�(r; rs; ξ) is analytic around ξ�. According to Ref. [16], the
regular terms do not contribute to the asymptotics of u, and
we are just left with the contribution

uloc(m; r; rs; k) = E�(r; rs; ξ
�) det(��)e−im·ξ�

4π2
I, where

I =
∫∫

�

e−iα·ζ

(k� + k̂)2 − (k� + 	(ζ))2
dζ

is the canonical integral associated to the degeneracy point
(ξ�, k�). Here α = (��)ᵀm, det(��) is the determinant of the
Jacobian arising from the change of variable, and � is the
image of � in the new variable ζ. Because k� > 0, this local
integral can be further simplified to

I ≈ 1

2k�

∫∫
�

e−iα·ζ

k̂ − 	0(ζ)
dζ,

where 	0(ζ) is a local (Taylor-like) approximation to 	(ζ)
as ζ → 0. The integrand is not periodic anymore, and is only
singular in the neighborhood of ζ = 0. We can then expand
the finite surface of integration � to a doubly infinite one,
denoted �∞, that is almost R2 everywhere apart from the
neighborhood of 0 and on which the integrand is exponentially
decaying as |α| → ∞ (or, equivalently, |m| → ∞). There-
fore, the canonical integral can be approximated by

I ≈ 1

2k�

∫∫
�∞

e−iα·ζ

k̂ − 	0(ζ)
dζ, (27)

where �∞ can be seen as a small deformation of R2 that
bypasses the singularity at ζ = 0. We will consider three cases
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FIG. 9. Typical simple eigenvalue degeneracies: local maximum (left) and minimum (right).

specifically: local minimums and local maximums (shrink-
ing loops, see Fig. 9), as well as hyperbolic crossings (see
Fig. 10).

1. Local maximums and minimums

Because the eigenvalues are smooth away from double
eigenvalues, a local maximum is required to be smooth and
is usually quadratic. The function 	 can then be typically
assumed to behave like

	(ζ) ≈
ζ→0

	0(ζ) = − 1
�

(
ζ 2

1 + ζ 2
2

)
for some � > 0. Using Eq. (27) we have

I ≈ Imax = �

2k�

∫∫
�∞

e−iα·ζ

�k̂ + ζ 2
1 + ζ 2

2

dζ.

Using the bypass of Fig. 9, left, this integral can be evaluated:

Imax =
⎧⎨
⎩

�π
k� K0(|α̃|N

√
�k̂) if k̂ > 0

− i�π2

2k� H (2)
0 (|α̃|N

√
−�k̂) if k̂ < 0

,

where

α̃ = α/N, |α̃| =
√

α̃2
1 + α̃2

1 . (28)

Using the usual far-field approximations for the modified
Bessel function and the Hankel functions, we recover that,
as N

√
|k̂| → ∞, the integral Imax is exponentially decaying

if k̂ > 0 (no asymptotic contribution), and oscillatory and
algebraically decaying if k̂ < 0 (wave component asymptotic
contribution), as one might expect from a local maximum
of a dispersion diagram. This far-field behavior is consistent
with the fact that for k̂ < 0 we have a SoS for all m̃, while
for k̂ > 0, no SoS are present. Note that if k were to have a
small imaginary part κ > 0, then the imaginary part of

√
−�k̂

would be negative and H (2)
0 (|α̃|N

√
−�k̂) would indeed decay

exponentially to zero as N → ∞, which is consistent with the
limiting absorption principle.

Using the near-field approximations for the modified
Bessel function and the Hankel functions, we find that, as
N

√
|k̂| → 0, Imax blows up like log(|α̃|N

√
|k̂|), highlighting

a resonance phenomena, as expected.

FIG. 10. Typical simple eigenvalue hyperbolic degeneracy, to-
gether with the orientation of the indentation vector η: example of
crossing and rebuilding.

Similarly, a local minimum can be described by

	(ζ) ≈
ζ→0

	0(ζ) = 1
�

(
ζ 2

1 + ζ 2
2

)
,

for some � > 0, that leads to

Imin =
⎧⎨
⎩

i�π2

2k� H (1)
0 (|α̃|N

√
�k̂) if k̂ > 0

�π
k� K0(|α̃|N

√
−�k̂) if k̂ < 0

Acoustic waves or phonons in gases, liquids, and solids
with a parabolic maximum and minimum are referred to as
maxons and rotons, respectively [32,33].

Example VII.1. Consider the Green’s function of a discrete
lattice for some k close to k� = 2

√
2. Then, in the vicinity of

ξ� = (π, π ) Eq. (5) can be approximated as

F ≈ 1

2k�k̂ + ζ 2
1 + ζ 2

2

, ζn = ξn − π, n ∈ {1, 2}, (29)

i.e., it has a local maximum at (π, π ). Maxons can also be
observed at the points (−π, π ), (π,−π ), (−π,−π ). �

2. Crossing with rebuilding: A seeming contradiction

Let us now consider the case when the function 	(ζ) can
be approximated by

	(ζ) ≈
ζ→0

	0(ζ) = ζ1ζ2. (30)

The evolution of the dispersion diagram is illustrated in
Fig. 10. If k̂ > 0 or k̂ < 0, then it is possible to define a
valid indentation of the surface of integration given by the
orientation of the vector field η. However, when k̂ = 0 (i.e.,
k = k�), we seem to reach a contradiction. Indeed, if we en-
force continuity of the bypass as k̂ → 0, as it should be, then
we obtain the middle configuration of Fig. 10. In this case,
we have two clear singularity components: the vertical line
ζ1 = 0 and the horizontal line ζ2 = 0. Following the bypass
rules of Ref. [16] that we recalled in Sec. IV, the bypass
should be continuous along each of these lines. But we see
in Fig. 10 (middle graph) that it changes at the origin when
k = k� and therefore violates the bypass rules. This means that
for this crossing, we cannot define a proper indented surface of
integration, and the methods of Refs. [14,16] cannot be used to
describe the wave field resulting from this crossing. In other
words, it is impossible to make sense of the integral (1) for
this value of k, as no admissible deformation of the surface
of integration can be made. This is a well-known phenomena
for lattices and metamaterials. For example, in Ref. [51] it is
stated that one cannot formulate a radiation condition for the
corresponding stationary problem.

Let k be close to k�. In this case, the canonical integral to
consider is of the type

I ≈ Ihyp = 1

2k�

∫∫
�∞

e−iα·ζ

k̂ − ζ1ζ2
dζ. (31)
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Let us for simplicity deal with k̂ > 0, the case k̂ < 0 can be dealt with in a very similar manner. This integral is somewhat
standard and can be taken exactly to give

Ihyp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π2

k� H (1)
0 (2

√
α̃1α̃2N

√
k̂) if α1 > 0 and α2 > 0

−2iπ
k� K0(2

√−α̃1α̃2N
√

k̂) if α1 > 0 and α2 < 0
−2iπ

k� K0(2
√−α̃1α̃2N

√
k̂) if α1 < 0 and α2 > 0

π2

k� H (1)
0 (2

√
α̃1α̃2N

√
k̂) if α1 < 0 and α2 < 0

. (32)

This represents a propagating wave in the quadrant for which
α1 and α2 have the same sign, and no wave component
otherwise. This is expected and can be recovered by study-
ing the SoS of this problem. For k̂ < 0, the “propagating”
and “evanescent” quadrants are swapped. Note that only one
branch of the hyperbola contains an SoS when we are in a
propagating quadrant. Using the near-field asymptotics of the
Hankel and modified Bessel functions, one can see that the
integral has a logarithmic singularity as k̂ → 0 which is a
consequence of a pinching of the integration surface at the
crossing point of the dispersion diagram.

Example VII.2. Consider again the Green’s function of the
discrete lattice. Let k be close to k� = 2. Then, in the vicinity
of the crossing point ξ� = (0, π ) the dispersion diagram can
be approximated as

F ≈ 1/4

k̂−ζ1ζ2
, ζ1 = ξ1 − (ξ2 − π )

2
, ζ2 = ξ1 + ξ2 − π

2
,

(33)

which leads to an integral of the type (31). While the station-
ary problem for (4) does not make sense for k = k� = 2, the
physical question of what will happen if the lattice is excited
exactly at this resonance frequency remains valid. We study
the corresponding time domain problem in Appendix C for
the sake of completeness. �

B. General procedure for a double eigenvalue

Let us choose a pair (ξ�, k�) ∈ B × R+ and an index � ∈
N, such that λ�(ξ�) � 0 is a double eigenvalue of (L, domξ� )
and (k�)2 = λ�(ξ�).

Let us denote by V (1)
� (r) and V (2)

� (r) the two associated or-
thogonal eigenfunctions, normalized such that (V (m)

� ,V (k)
� ) =

δm,k for m,k ∈ {1, 2}. Note that dependence on ξ� is not
indicated for V (m)

� (r).
Our aim remains to provide a far-field approximation for u

that is valid as k approaches k�. Using perturbation analysis,
we show in Appendix D that as ξ → ξ�, F (r; rs; ξ; k) can be
approximated as

F (r; rs; ξ; k) ≈ a1V
(1)
� (r) + a2V

(2)
� (r), (34)

where the vector a = (a1, a2)ᵀ has the following form:

a = (Y − δ
(�)
λ I2)−1

(
(V (1)

� (rs))†

(V (2)
� (rs))†

)
, (35)

where δ�
λ := λ�(ξ�) − k2 = (k�)2 − k2 and I2 is the 2 × 2

identity matrix. The matrix Y is

Y = δξ1Y (L) + δξ2Y (B),

Y (L) =
(

Y (L)
1,1 Y (L)

1,2

Y (L)
2,1 Y (L)

2,2

)
,

Y (B) =
(

Y (B)
1,1 Y (B)

1,2

Y (B)
2,1 Y (B)

2,2

)
, (36)

where δξ1 = (ξ1 − ξ�
1 ), δξ2 = (ξ2 − ξ�

2 ), and the quantities
Y (L,B)
m,k

are given by

Y (L)
m,k

= i
∫

∂SL
0

V (k)
� (r)

(
n · ∇V (m)

�

)†

− (
n · ∇V (k)

� (r)
)(

V (m)
�

)†
ds,

Y (B)
m,k

= i
∫

∂SB
0

V (k)
� (r)

(
n · ∇V (m)

�

)†

− (
n · ∇V (k)

� (r)
)(

V (m)
�

)†
ds.

Consider the eigenfunction V�(r; ξ) for ξ in the neighbor-
hood of ξ�, that corresponds to the eigenvalue λ�(ξ). Similarly,
it can be approximated as

V�(r; ξ) ≈ ã1V
(1)
� (r) + ã2V

(2)
� (r) (37)

for some new vector ã = (ã1, ã2)ᵀ that is given as solution of
the following homogeneous system of linear equations:(

Y − δ
(�)
λ I2

)
ã = 0. (38)

The latter can only have a nontrivial solution provided that

det
(
Y − δ

(�)
λ I2

) = 0. (39)

This equation gives a local approximation to the dispersion
diagram.

Dirac conical points

As we have done previously, let us consider a local change
of variables ξ = (ξ1, ξ2) ↔ ζ = (ζ1, ζ2), such that, as ξ →
ξ�, we have ξ − ξ� ≈ ��ζ, where �� is the invertible Ja-
cobian matrix associated to the change of variable. We can
then rewrite Y = δξ1Y (L) + δξ2Y (B) in the new coordinate
system as

Y = ζ1Ỹ (1) + ζ2Ỹ (2),

where the matrices Ỹ (1,2) can be written in terms of Y (L,B)

and the entries of ��. Let us assume that we are in a situation
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FIG. 11. Typical conical Dirac point double eigenvalue
degeneracy.

where (see example below, and Appendix E)

Ỹ (1) =
(

q1 q†
2

q2 −q1

)
and Ỹ (2) =

(
q3 q†

4
q4 −q3

)
, (40)

where q j are such that

q2
1 + |q2|2 = 1, q2

3 + |q4|2 = 1, q4q†
2 + q†

4q2 + 2q1q3 = 0.

Therefore, Eq. (39) implies that the dispersion diagram is lo-
cally approximated by (δ(�)

λ )2 = ζ 2
1 + ζ 2

2 . Then, from Eq. (35)
we get(

a1

a2

)
= 1

ζ 2
1 + ζ 2

2 − (
δ

(�)
λ

)2

×
(

δ
(�)
λ + q1ζ1 + q3ζ2 q†

2ζ1 + q†
4ζ2

q2ζ1 + q4ζ2 δ
(�)
λ − q1ζ1 − q3ζ2

)

×
(

(V (1)
� (rs))†

(V (2)
� (rs))†

)
. (41)

If k� �= 0, upon introducing k̂ = k − k�, and remembering
that δ

(�)
λ = (k�)2 − k2 the dispersion diagram can then be lo-

cally approximated by (2k�k̂)2 = ζ 2
1 + ζ 2

2 , which is a circular
cone (see Fig. 11) merging at k̂ = 0, each part of which is
defined by

k̂ = ± 1

2k�

√
ζ 2

1 + ζ 2
2 .

We now focus on finding the asymptotic component of u
resulting from such degeneracy. Upon introducing ρ = 2k�k̂
and noting that δ

(�)
λ ≈ −ρ, Eq. (41) can be further simpli-

fied to(
a1

a2

)
≈ 1

ζ 2
1 + ζ 2

2 − ρ2

×
(

q1ζ1 + q3ζ2−ρ q†
2ζ1 + q†

4ζ2

q2ζ1 + q4ζ2 −q1ζ1 − q3ζ2−ρ

)

×
(

(V (1)
� (rs))†

(V (2)
� (rs))†

)
. (42)

Using the approximation (34) we can write the associated far-
field wave component uloc as

uloc(m; r; rs; k) = det(��)e−im·ξ�

4π2

×
⎛
⎝ 2∑

m,k=1

ImkV (m)
� (r)(V (k)

� (rs))†

⎞
⎠,

(43)

where the integrals Imk are given by

I11 =
∫∫

�∞

(q1ζ1 + q3ζ2−ρ)e−iα·ζ

ζ 2
1 + ζ 2

2 − ρ2
dζ,

I12 =
∫∫

�∞

(q†
2ζ1 + q†

4ζ2)e−iα·ζ

ζ 2
1 + ζ 2

2 − ρ2
dζ,

I21 =
∫∫

�∞

(q2ζ1 + q4ζ2)e−iα·ζ

ζ 2
1 + ζ 2

2 − ρ2
dζ,

I22 = −
∫∫

�∞

(q1ζ1 + q3ζ2+ρ)e−iα·ζ

ζ 2
1 + ζ 2

2 − ρ2
dζ.

Computing the Imk integrals can be reduced to the com-
putation of only three canonical integrals, J0, J1 and J2

given by

J0(α, ρ) =
∫∫

�∞

e−iα·ζ

ζ 2
1 + ζ 2

2 − ρ2
dζ,

(44)

J1,2(α, ρ) =
∫∫

�∞

ζ1,2e−iα·ζ

ζ 2
1 + ζ 2

2 − ρ2
dζ,

as indeed we have

I11 = q1J1 + q3J2−ρJ0,

I12 = q†
2J1 + q†

4J2,

I21 = q2J1 + q4J2,

I22 = −q1J1 − q3J2−ρJ0.

For k̂ > 0, these canonical integrals are given by

J0(α, ρ) = iπ2H (1)
0 (ρ|α|) and

J1,2(α, ρ) = π2ρα1,2

|α| H (1)
1 (ρ|α|),

while for k̂ < 0 they will be written in terms of H (2)
0 (−ρ|α|)

and H (2)
1 (−ρ|α|). Note that for fixed large N and k̂ → 0,

J0(α̃N, 2k�k̂) behaves like k̂ log(k̂N ), which tends to zero as
k̂ → 0. Moreover the quantities J1,2(α̃N, 2k�k̂) behave like
1/N and are therefore not zero in that limit. Note further that
as k̂N → ∞, all the terms, J0(α̃N, 2k�k̂) and J1,2(α̃N, 2k�k̂)
have a wave-like behavior dictated by the far field of the Han-
kel functions and can be shown to behave like e2ik� k̂|α̃|N√

k̂/N .
Example VII.3. Consider a finite element formulation for

the phononic crystal problem with Neumann boundary condi-
tions on circular scatterers. Let each cell be approximated by
linear triangular elements. The discrete field can be described
by the set of values u(m, j), where m is the number of the
cell, and j is the node index inside the cell, where j is running
through {1, . . . , Ncell}, Ncell being the number of nodes in the
cell. The field satisfies a matrix equation of the form

KU − k2MU = E, (45)

where K and M are infinite stiffness and mass matrices, U
is an infinite vector of the field values u(m, j), and E is a
forcing term. Due to the geometry of the problem, the matrices
K and M are periodic in the sense that they are made up of a
repetition of some Ncell × Ncell matrices K0 and M0. Let us
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inner nodes
left nodes
right nodes
upper nodes
bottom nodes
corner nodes

FIG. 12. Geometry of the FEM problem (left), and dispersion surfaces of the first two eigenvalues (right).

take the Floquet-Bloch transform

Fj (ξ) =
∑

m∈Z2

u(m, j)eim·ξ, (46)

and construct a Ncell × 1 vector F(ξ) whose components are
denoted Fj (ξ). As shown in Appendix E, because of quasiperi-
odicity, all the information contained in F can be reduced to
a smaller N̂ × 1 vector F̂ , that satisfies the following matrix
equation:

K̂(ξ)F̂(ξ) − k2M̂(ξ)F̂(ξ) = Ê(ξ), (47)

where K̂ and M̂ are N̂ × N̂ mass and stiffness matrices for a
unit cell with ξ-quasiperiodic boundary conditions and Ê is a
forcing N̂ × 1 vector. Since Eq. (47) is a matrix equation of
finite dimension, it can be solved by inversion, leading to F̂
and then F. The field can then be recovered using the inverse
Floquet-Bloch transform:

u(m, j) = 1

4π2

∫∫
B

Fj (ξ)e−im·ξdξ. (48)

Let V̂ j (ξ) be the eigenvector associated to the eigen-
value λ̂ j (ξ) of the generalized eigenvalue problem K̂(ξ)V̂ =
λM̂(ξ)V̂, i.e., we have

K̂(ξ)V̂ j (ξ) = λ̂ j (ξ)M̂(ξ)V̂ j (ξ). (49)

Consider the mesh of equilateral triangles shown in Fig. 12
(left), and plot the first two eigenvalues as functions of ξ.
The corresponding dispersion surfaces are shown in Fig. 12
(right). As indicated by arrows on Fig. 12, there are two
points corresponding to a double eigenvalue. A result similar
to Eq. (34) can be derived for the FEM problem, which is
done in Appendix E, and it is shown there that the matrices
(their analogues for the discrete problem to be precise) Ỹ (1,2)

have the same structure (40). Hence, those double eigenvalue
points are indeed Dirac conical points. �

VIII. CONCLUSION AND PERSPECTIVES

We have developed a general procedure to study double
integrals of Floquet-Bloch type occurring when studying

wave propagation in complex structures. In particular, we
gave explicit formulas for the Green’s functions associated
to these structures and estimated their far-field behavior. To
do this we used results of multidimensional complex analysis
to efficiently deform the surface of integration in C2. The
general framework developed was shown to be relevant for
practical examples such as discrete lattices and continuous
phononic crystals. We also used our approach to shed some
light on degeneracies, including Dirac conical points, maxons,
rotons and hyperbolic degeneracies. Here we have insisted
on obtaining explicit asymptotic formulas, but we note that
the deformations proposed can also be used for an efficient
numerical evaluation of such highly oscillatory double in-
tegrals. Extensions to the present work, will be to describe
optimal surface deformations and also to extend our approach
to three-dimensional wave propagation.
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APPENDIX A: HOW TO DEFINE F WHEN ξ IS COMPLEX
FOR THE PHONONIC CRYSTAL OF SECTION III B?

Let us consider ξ ∈ C2 \ R2. We can define the ex-
act same operator (L, domξ ), following the same technique
as in Sec. III B 2, but keeping in mind that this time
we have (e−iξ1,2 )† �= e+iξ1,2 , we can show that (L f , g) �=
( f ,Lg). Hence, the operator is nonsymmetric and cannot be
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FIG. 13. Illustration of the auxiliary regions A and B within the
unit cell.

self-adjoint anymore, so it is not quite clear how to find F in
that case.

Remember that our aim remains to show that F , as a func-
tion of ξ, can be analytically continued in a C2 neighborhood
of B. The easiest way to prove this is to introduce a new
function and a new operator. Start by decomposing S0 into
three distinct regions A, B and S0 \ {A ∪ B}, where A is a
neighborhood of ∂ST

0 ∪ ∂SB
0 ∪ ∂SR

0 ∪ ∂SL
0 , and B is a neigh-

borhood of ∂	, as illustrated in Fig. 13. For these regions,
define the function χ (r) that is smooth on S0, strictly positive
on S0 \ {A ∪ B}, and satisfies

χ (r) =
{

1 if r ∈ A
0 if r ∈ B

.

Consider now f in domξ, that is f is ξ-quasiperiodic w.r.t.
� and satisfies BC on ∂	, and introduce the new function φ

defined by

φ(r) = f (r)/ψξ (r), where ψξ (r) = e+iξ·�−1rχ (r). (A1)

This is an analytic function of ξ that is never zero on S0. With
this definition we have that

φ(r) =
{

e−iξ·�−1r f (r) if r ∈ A
f (r) if r ∈ B

,

which implies that φ gives rise to a �-periodic function and
satisfies the same BC as f on ∂	. In other words, if f ∈ domξ,
then φ ∈ dom0. By direct calculations, it can be shown that

L f = φLψξ − 2

(
∂ψξ

∂x1

∂φ

∂x1
+ ∂ψξ

∂x2

∂φ

∂x2

)
+ ψξLφ.

This suggests introducing a new differential operator Lξ de-
fined by

Lξφ ≡ 1

ψξ

L f = φ

ψξ

Lψξ − 2

ψξ

(
∂ψξ

∂x1

∂φ

∂x1
+ ∂ψξ

∂x2

∂φ

∂x2

)
+ Lφ

the dependence of Lξ on ξ is explicit, and given the def-
inition of ψξ , it is analytic. With this definition, we have
L f = ψξLξφ, and therefore L f = λ f ⇔ Lξφ = λφ. In other
words, solving the eigenvalue problem associated to the oper-
ator (L, domξ ) is equivalent to solving the eigenvalue problem
associated to the operator (Lξ, dom0), where dom0 is the
set of �-periodic functions that satisfy the correct BC on
∂	. The advantage of this new formulation is that all the
operators Lξ have the same domain, and that they depend
analytically on ξ. As such the family of operators (Lξ, dom0)
is a holomorphic family of operators or type (A) as treated in
Ref. [43] (Sec. VII.2). Moreover, we know that for real ξ, the
operators (L, domξ ) are self-adjoint and so this is also the case

for (Lξ, dom0). Hence, the family of operators (Lξ, dom0)
is a self-adjoint real holomorphic family of operators, see
Ref. [43] (Sec. VII.3.2).

A direct consequence of this is that the eigenvalues λ j (ξ)
with multiplicity 1 are real-analytic functions of ξ, and so
are the eigenfunctions. Of course, one needs to be careful
when saying that the eigenfunctions are analytic in ξ since
they are defined up to an arbitrary multiplication constant
that may depend nonanalytically on ξ. However, the quantity
Vj (rs;−ξ)Vj (r;ξ)
〈Vj (·;−ξ),Vj (.;ξ)〉 is completely independent of the choice of nor-
malization, so this term is clearly analytic in ξ.

This result stops being valid for an eigenvalue with multi-
plicity >1, see, e.g., Refs. [43] (Sec. II.1) and [52]. In what
follows, unless specified otherwise, we will assume that all
eigenvalues have multiplicity one. Though we will also dis-
cuss specific cases of multiple eigenvalues. Because of this
real-analyticity property, we automatically deduce that eigen-
values and eigenprojections can be analytically continued into
the complex plane in a neighborhood of B. As a result, the for-
mula (16), and therefore F can also be analytically continued
for ξ ∈ C2 that lives in a neighborhood of B.

Remark A.1. For Dirichlet BC or continuously varying
properties, one can simply let A = S0, B = ∅ and χ (r) ≡ 1.
The operator Lξ then simplifies to −(( ∂

∂x1
− iβ1)2 + ( ∂

∂x2
−

iβ2)2), where β = (β1, β2) is a linear function of ξ defined
by β ≡ (�−1)ᵀξ. Introducing such operator is quite standard
in media with periodic material properties, see, e.g., Ref. [53]
(chapter 4, p. 615) and Ref. [54], where it is known as the
operator for the shifted cell problem. �

APPENDIX B: PROOF OF THE BYPASS
CHOICE PROCEDURE

Consider an irreducible component σ j (k, κ) of the singu-
larity set of F with defining analytic function g j (ξ; k, κ). For
simplicity, let us introduce the function Gj (ξ; k̃), such that
Gj (ξ; k + iκ) ≡ gj (ξ; k, κ). Let us fix k > 0 and consider a
point ξ� ∈ σ ′

j (k), that is we have Gj (ξ
�; k) ≡ g j (ξ

�; k, 0) = 0.
Now, provided that Gj is analytic in a C3 neighborhood of
(ξ�; k) and that ∂Gj

∂ k̃
(ξ�; k) �= 0, the implicit function theorem

implies that for (ξ; k̃) in a C3 neighborhood of (ξ�; k), there
exists a unique analytic function f such that Gj (ξ; k̃) = 0 ⇔
k̃ = f (ξ).

Let us consider k̃ = k + iκ for some small κ > 0 and
look for points ξ ∈ σ j (k, κ) such that ξ = ξ�+iξ‡ for some
ξ‡ ∈ R2. Using the implicit function theorem, valid since we
can choose κ as small as we want and ξ‡ → 0 as κ → 0, we
obtain k + iκ = f (ξ�+iξ‡), which can be Taylor expanded to
obtain

κ ≈ ξ‡ · ∇ f (ξ�). (B1)

By definition of f , we know that ∇ f (ξ�) ⊥ σ ′
j (k), and there-

fore, since κ > 0, Eq. (B1) implies that ξ‡ and ∇ f (ξ�) point
toward the same side of σ ′

j (k). Now we want to choose a
surface indentation about ξ� such that it does not cross the
singularity, that is that in the limiting process ξ‡ → 0, the
surface is not crossed. In other words, we should have ξ� +
iη �= ξ� + iξ‡ as ξ‡ → 0. To ensure that this is the case, it is
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enough to insist that η and ξ‡ point to a different side of σ ′(k).
Hence, if we can find which side of σ ′

j (k) the vector ∇ f (ξ�)
is pointing to, then the bypass is determined by choosing η to
point in the other direction. But, by definition, ∇ f (ξ�), which
is also known as the group velocity vector, points toward
increasing real k (see, e.g., Ref. [25,42]).

APPENDIX C: RESONANCE EXCITATION
OF A DISCRETE LATTICE

Assume that the unknown u(m, t ) satisfies the discrete
linear wave equation with effective wave speed c subject to
a harmonic forcing at the origin starting at t = 0:

u(m + e1; t ) + u(m − e1; t ) + u(m + e2; t ) + u(m − e2; t )

− 4u(m; t ) − 1

c2

d2u

dt2
(m; t ) = δm10δm20e−iω�tH(t ), (C1)

where ω� is specifically chosen to be ω� = k�c, for some k� >

0 and H is the Heaviside function. Let us apply the double
Floquet-Bloch transform in m and the Fourier transform in t
of Eq. (C1). Upon denoting

F(ξ; ω) :=
∫ ∞

−∞

∑
m∈Z2

u(m, t )eim·ξeiωt dt,

direct computations lead to

F(ξ; ω) = i(
2 cos(ξ1) + 2 cos(ξ2) + (

ω2

c2 − 4
))

(ω − ω�)
,

with inverse

u(m, t ) = 1

8π3

∫ ∞+iε

−∞+iε

∫∫
B
F(ξ; ω)e−im·ξe−iωt dξdω.

Let us now change the variable ω ↔ kc in the ω integral
to get

u(m, t ) = i

8π3

∫∫
B

e−im·ξ
∫ ∞+iε

−∞+iε

× e−ikct

(k − �(ξ))(k + �(ξ))(k − k�)
dkdξ,

where �(ξ) = √
4 − 2 cos(ξ1) − 2 cos(ξ2). Let us consider

the inner integral for some fixed ξ ∈ B. The integrand has
three poles in the k plane: k1 = k�, k2 = �(ξ), and k3 =
−�(ξ) that happen to be real. By closing the contour of the k
integral in the lower-half k plane, we get

u(m, t ) = 1

4π2

∫∫
B

e−im·ξG(ξ; k�; t )dξ, (C2)

where

G(ξ; k�; t ) = e−ik�ct

(k� − �(ξ))(k� + �(ξ))
− e−i�(ξ)ct

2�(ξ)(k� − �(ξ))

+ ei�(ξ)ct

2�(ξ)(k� + �(ξ))
· (C3)

Recall that we did all this because we were interested in
the singularity defined by k� = �(ξ). It is remarkable that
through this change of integration order, the resulting inte-
grand G(ξ; k�; t ) is actually regular on the set k� = �(ξ).

Indeed, the third term is straightforwardly regular there, while
the singularities of each of the first two terms cancel each
other. Therefore, the integral (C2) is actually well-defined,
unlike the integral (1).

In the simple case when k� �= 2, we can consider that the
first term of Eq. (C3) yields the time harmonic solution, while
the other two terms are transient. Indeed, just by considering
the first term we obtain the exact same integral as Eq. (6)
multiplied by the time harmonic factor e−iω�t . The other two
terms can be shown to decay as t → ∞.

Let us now assume that k� = 2 and study the specific cross-
ing at ξ� = (0, π ). Consider the linear change of variables
ξ ↔ ζ defined by

ζ1 = ξ1 − (ξ2 − π )

2
and ζ2 = ξ1 + ξ2 − π

2
,

leading to ξ − ξ� = ��ζ, where �� = ( 1 1
−1 1) and det(��) =

2. Note that, as ξ → ξ�, k� − �(ξ) ≈ −ζ1ζ2, and that this
coincides with the ansatz (30). The vector α defined by α =
(��)ᵀm is given by α1 = m1 − m2 and α2 = m1+m2. Using
this change of variables, the local contribution due to ξ� aris-
ing from Eq. (C2) is given by

uloc(m, t ) = −(−1)m2
e−ik�ct

8π2
× Itime, where

Itime =
∫∫

�∞

(1 − e−iζ1ζ2ct )

ζ1ζ2
e−iα·ζdζ.

When α1 > 0 and α2 > 0, the integral Itime can be shown
to be

Itime = 2iπei α1α2
ct �

(α1α2

ct

)
, where �(z) :=

∫ ∞

0

eizτ

1 + τ
dτ.

(C4)

Noting that �(z) ∼ log(z) as z → 0, one can see that Itime

blows up like log(1/t ) as t → ∞, which is indeed represen-
tative of a resonance phenomena, and illustrates why it is not
possible to obtain a stationary solution.

APPENDIX D: DERIVATION OF EQ. (34)

Remember that we consider a pair (ξ�, k�) ∈ B × R+ and
an index � ∈ N, such that λ�(ξ�) � 0 is a double eigenvalue of
(L, domξ� ) and (k�)2 = λ�(ξ�). The two associated orthogonal
eigenfunctions are V (1)

� (r) and V (2)
� (r), which are normalized

such that (V (m)
� ,V (k)

� ) = δm,k for m,k ∈ {1, 2}. For simplic-
ity, we assume that all the other eigenvalues are simple and
remain so in a neighborhood of ξ�. We also assume that the
other orthogonal eigenfunctions Vj (r; ξ�) are also normalized
so that (Vj (·; ξ�),Vj (·; ξ�)) = 1. This set of eigenfunctions
spans domξ� , and using the ideas of Appendix A, we know
that these eigenfunctions divided by ψξ� [defined in Eq. (A1)]
span dom0.

So let us consider (ξ, k) in the neighborhood of (ξ�, k�).
Since the function F (r; rs; ξ; k) is in domξ, we know that
F (r; rs; ξ; k)/ψξ is in dom0. This allows us to write F in terms
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of the eigenfunctions associated to ξ�:

F (r; rs; ξ; k) =
⎛
⎝a1V

(1)
� (r) + a2V

(2)
� (r) +

∑
j �=�

b jVj (r; ξ�)

⎞
⎠

× ψξ (r)

ψξ� (r)
(D1)

for some unknown constants a1, a2 and b j to be determined.
Let us apply perturbation analysis to Eq. (D1). Let δξ =

|ξ − ξ�| be a small parameter. Then,

ψξ

ψξ�

≈ 1 + i(ξ − ξ�) · �−1rχ (r). (D2)

Suppose that

a1,2 = O(1/δξ ), b j = O(1). (D3)

Then, using the latter, approximate F as follows:

F (r; rs; ξ; k) ≈ a1V
(1)
� (r) + a2V

(2)
� (r)

+
∑
j �=�

b jVj (r; ξ�) + ϒ(r), (D4)

where we defined

ϒ(r) ≡ i(ξ − ξ�) · �−1rχ (r)(a1V
(1)
� (r) + a2V

(2)
� (r)). (D5)

Note that we have kept only the terms of order 1/δξ and 1. Let
us use the orthogonality of the eigenfunctions to determine
the coefficients a1,2 and b1,2. Apply the Helmholtz operator
L − k2 to Eq. (D4) to get rid of F :

−δ(rs) = δ
(�)
λ (a1V

(1)
� (r) + a2V

(2)
� (r))

+
∑
j �=�

b jδ
( j)
λ Vj (r; ξ�) + L[ϒ] − k2ϒ(r), (D6)

where we defined

δ
(�)
λ := λ�(ξ�) − k2 = (k�)2 − k2 and δ

( j)
λ := λ j (ξ

�) − k2,

(D7)

for j �= �. We assume that δ
(�)
λ is small in the sense that δ

(�)
λ =

O(δξ ). Then, taking the product [Eq. (D6), V (m)
� ] where m ∈

{1, 2}, using orthogonality and keeping terms of order 1 leads
to the following system of equations for a1,2:

−(
V (m)

� (rs)
)† ≈ δ

(�)
λ am + (

L[ϒ],V (m)
�

) − (
ϒ,LV (m)

�

)
.

(D8)

The idea is now to use Green’s theorem to rewrite the last
two terms as an integral over ∂S0 (see Fig. 13). Since L is
not self-adjoint in domξ , a boundary term emerges in Green’s
formula. Namely, we have(

L[ϒ],V (m)
�

) − (
ϒ,LV (m)

�

)
=

∫
∂S0

[
ϒ

(
n · ∇V (m)

�

)† − (n · ∇ϒ)
(
V (m)

�

)†]
ds, (D9)

where we took into account that ϒ is zero on ∂	. Then, after
some algebra and using the periodicity of V (m)

� and Eq. (D5)

we get(
L[ϒ],V (m)

�

) − (
ϒ,LV (m)

�

)
= −δξ1

(
a1Y

(L)
m,1 + a2Y

(L)
m,2

) − δξ2

(
a1Y

(B)
m,1 + a2Y

(B)
m,2

)
,

where we defined δξ1 = (ξ1 − ξ�
1 ), δξ2 = (ξ2 − ξ�

2 ) and

Y (L)
m,k

= i
∫

∂SL
0

V (k)
� (r)

(
n · ∇V (m)

�

)†

− (
n · ∇V (k)

� (r)
)(

V (m)
�

)†
ds,

Y (B)
m,k

= i
∫

∂SB
0

V (k)
� (r)

(
n · ∇V (m)

�

)†

− (
n · ∇V (k)

� (r)
)(

V (m)
�

)†
ds.

Finally, we obtain the following expression for the coeffi-
cients a = (a1, a2)ᵀ:

a = (
Y − δ

(�)
λ I2

)−1

((
V (1)

� (rs)
)†

(
V (2)

� (rs)
)†

)
,

where I2 is the 2 × 2 identity matrix and

Y = δξ1Y (L) + δξ2Y (B),

Y (L) =
(

Y (L)
1,1 Y (L)

1,2

Y (L)
2,1 Y (L)

2,2

)
,

Y (B) =
(

Y (B)
1,1 Y (B)

1,2

Y (B)
2,1 Y (B)

2,2

)
, (D10)

therefore recovering Eq. (35).
Using a similar approach, one can obtain the expressions

for the coefficients b j :

b j ≈ −Vj (rs; ξ
�)

δ
( j)
λ

·

Note that for small δ
(�)
λ and δξ the coefficients am dominate

over the coefficients b j , which is consistent with the assump-
tion (D3).

APPENDIX E: FEM MODEL OF A PHONONIC CRYSTAL

1. Structure of the stiffness and mass matrices for quasiperiodic
boundary conditions

Following a classical FEM procedure, one can obtain the
stiffness matrix K0 and the mass matrix M0 for a cell, such that
the infinite matrices K and M are made up of infinitely many
such Ncell × Ncell block matrices K0 and M0, respectively.
Note that by definition of K0 and M0, we can define

Em
kin = 1

2 U̇†
mK0U̇m, and Em

pot = 1
2 U†

mM0Um,

corresponding to the kinetic and potential energy of the mth
meshed cell, respectively, where Um is a vector of field values
for the mth cell, and {̇} stands for time derivative, and where,
whenever used on a vector, (·)† stands for the conjugate
transpose. The Ncell × 1 vector F(ξ) defined by Floquet-Bloch
transformation in Example VII.3 can be written in the block
form

F = (
Fᵀ

i , Fᵀ
l , Fᵀ

b , Fᵀ
r , Fᵀ

u , Fᵀ
c1
, Fᵀ

c2
, Fᵀ

c3
, Fᵀ

c4

)ᵀ, (E1)
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where {i, l, b, r, u} correspond to the {inner, left, bottom, right, upper} nodes, and {c1, c2, c3, c4} indicate the {bottom left, upper
left, upper right, bottom right} corner nodes (see Fig. 12). Due to the ξ quasiperiodicity of F(ξ), the following conditions should
be satisfied:

Fr = e−iξ1 Fl , Fu = e−iξ2 Fb, (E2)

Fc2 = e−iξ2 Fc1 , Fc3 = e−i(ξ1+ξ2 )Fc1 , Fc4 = e−iξ1 Fc1 .

Similarly, write the Ncell × Ncell matrix K0 in the block form:

K0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kii Kil Kib Kir Kiu Kic1 . . . Kic4

Kli Kll Klb Klr Klu Klc1 . . . Klc4

Kbi Kbl Kbb Kbr Kbu Kbc1 . . . Kbc4

Kri Krl Krb Krr Kru Krc1 . . . Krc4

Kui Kul Kub Kur Kuu Kuc1 . . . Kuc4

Kc1i Kc1l Kc1b Kc1r Kc1u Kc1c1 . . . Kc1c4
...

...
...

...
...

...
. . .

...

Kc4i Kc4l Kc4b Kc4r Kc4u Kc4c1 . . . Kc4c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E3)

Following the discussion in Example VII.3, we can introduce the reduced N̂ × 1 vector F̂ that contains all the necessary
information and is defined by

F̂ = (
Fᵀ

i , Fᵀ
l , Fᵀ

b , Fᵀ
c1

)ᵀ, (E4)

so that N̂ = Ni + Nl + Nb + 1 = Ncell − Nr − Nu − 3, where {Ni, Nl , Nb, Nr, Nu} correspond to the number of
{inner, left, bottom, right, upper} nodes in a cell. Then, it follows from Eqs. (E2) and (E3) that the associated reduced
matrix K̂(ξ) introduced in Example VII.3 has the following structure:

K̂(ξ) ≡

⎛
⎜⎜⎜⎜⎝

Kii Kil + Kire−iξ1 Kib + Kiue−iξ2 K̂ic1 (ξ)

Kli + Krieiξ1 Kll + Krr K̂lb(ξ) K̂lc1 (ξ)

Kbi + Krieiξ2 K̂bl (ξ) Kbb + Kuu K̂bc1 (ξ)

K̂c1i(ξ) K̂c1l (ξ) K̂c1b(ξ) K̂c1c1

⎞
⎟⎟⎟⎟⎠, (E5)

where

K̂lb(ξ) = Klb + Krbeiξ1 + Kruei(ξ1−ξ2 ) + Klue−iξ2 ,

K̂bl (ξ) = Kbl + Kule
iξ2 + Kbre−iξ1 + Kurei(ξ2−ξ1 ),

K̂c1c1 = Kc1c1 + Kc2c2 + Kc3c3 + Kc4c4 ,

K̂ic1 (ξ) = Kic1 + Kic2 e−iξ2 + Kic3 e−i(ξ1+ξ2 ) + Kic4 e−iξ1 ,

K̂c1i(ξ) = Kc1i + Kc2ie
iξ2 + Kc3ie

i(ξ1+ξ2 ) + Kc4ie
iξ1 ,

K̂lc1 (ξ) = Klc1 + (
Klc2 + Klc3

)
e−iξ2 + Klc4 ,

K̂c1l (ξ) = Kc1l + (
Kc2l + Kc3l

)
eiξ2 + Kc4l ,

K̂bc1 (ξ) = Kbc1 + Kbc2 + (
Kbc3 + Kbc4

)
eiξ1 ,

K̂c1b(ξ) = Kc1b + Kc2b + (
Kc3b + Kc4b

)
e−iξ1 .

The matrix M̂(ξ) can be built in a similar way and has the
same structure as K̂(ξ).

2. Perturbation analysis near a double eigenvalue

Let us for simplicity consider the case of a lumped mass
matrix, i.e., M̂ being diagonal, and thus not depending on
ξ. Let V̂1,2(ξ�) be the orthonormal eigenvectors of the prob-
lem (49) corresponding to the double eigenvalue λ̂1(ξ�) =
λ̂2(ξ�) = (k�)2, so that

V̂†
i (ξ�)M̂V̂ j (ξ

�) = δi j, (E6)

where δi j is the Kronecker delta. In the same spirit as in the
continuous case, we assume that when ξ is close to ξ�, we can
write

F (ξ) ≈
N̂∑
j

a j (ξ)V̂j (ξ
�). (E7)

Let us find the leading terms in the approximation (E7). To do
this, expand the matrix K̂(ξ) in a Taylor series near ξ� to get

K̂(ξ) ≈ K̂(ξ�) + δξ1 D1 + δξ2 D2, (E8)

where

Di = ∂K̂

∂ξi
(ξ�), (E9)

for i = 1, 2, and δξi are defined in the same way as in Ap-
pendix D.

Considering Eqs. (E6)–(E8), Eq. (47) becomes[
δξ1 D1 + δξ2 D2 + δλM̂

]
(a1V̂1(ξ�) + a2V̂2(ξ�))

+
N̂∑

j=3

a j
[
(λ̂ j (ξ

�) − (k�)2)M̂V̂ j (ξ
�)

+ [
δξ1 D1 + δξ2 D2 + δλM̂

]
V̂ j (ξ

�)
] = Ê, (E10)
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FIG. 14. Direct modeling (left) and asymptotic estimation using Eq. (E15) (right).

where δλ = (k�)2 − k2. Upon defining δξ as in Appendix D,
let us further assume that

a1, a2 = O(1/δξ ), a j = O(1), j = 3, 4, ..., N̂ .

After multiplying (E10) successively by V̂†
1(ξ), and V̂†

2(ξ) and
collecting the O(1) terms, we obtain the system of equations

(Y − δλI2)

(
a1

a2

)
=

(
Ṽ1

Ṽ2

)
, (E11)

where Y = δξ1 Y(1) + δξ2 Y(2), and for i ∈ {1, 2} we define

Y(i) = −
⎛
⎝V̂†

1(ξ�)DiV̂1(ξ�) V̂†
1(ξ�)DiV̂2(ξ�)

V̂†
2(ξ�)DiV̂1(ξ�) V̂†

2(ξ�)DiV̂2(ξ�)

⎞
⎠, and

Ṽi = −V̂†
i (ξ�)Ê.

Solving Eq. (E11) by direct inversion, we obtain an analog of
Eq. (35):(

a1

a2

)
= 1

D(ξ)

(Y22 − δλ −Y12

−Y21 Y11 − δλ

)(
Ṽ1

Ṽ2

)
, (E12)

where

D(ξ) = det(Y − δλI2) = (δλ)2 − δλtr(Y ) + det(Y ) (E13)

is the local dispersion function. For Example VII.3, direct
computations show that tr(Y ) = 0, so that D reduces to

D(ξ) = (δλ)2 − C1
(
δξ1

)2 − C2
(
δξ2

)2 − C3δξ1δξ2 ,

where the coefficients C1,C2,C3 are given by

C1 = − det(Y(1)), C2 = − det(Y(2)),

C3 = −Y (1)
11 Y (2)

22 − Y (1)
22 Y (2)

11 + Y (1)
21 Y (2)

12 + Y (1)
12 Y (2)

21 .

Upon introducing the change of variables ξ ↔ ζ, so that ξ −
ξ� = ��ζ, where

ζ =
(

ζ1

ζ2

)
, �� =

(
2(4C1 − C2

3 /C2)−1/2 0

−C3/C2(4C1 − C2
3 /C2)−1/2 C−1/2

2

)
,

we can obtain a canonical form for D(ξ):

D = (δλ)2 − ζ 2
1 − ζ 2

2 . (E14)

One can then rewrite Y as Y = ζ1Ỹ(1) + ζ2Ỹ(2), and check
directly that Ỹ (1,2) have the same structure as in Eq. (40).

Finally, estimating Eq. (48) in the far field, we obtain

Ûloc(m) ≈ e−im·ξ�

det ��

4π2
×

2∑
i, j=1

V̂iIi, jṼ j, (E15)

where

I11 = −Ỹ (1)
11 J1(α, δλ) − Ỹ (2)

11 J2(α, δλ) − δλJ0(α, δλ),

I12 = −(
Ỹ (1)

21

)†J1(α, δλ) − (
Ỹ (2)

21

)†J2(α, δλ),

I21 = −Ỹ (1)
21 J1(α, δλ) − (

Ỹ (2)
21

)
J2(α, δλ),

I22 = Ỹ (1)
11 J1(α, δλ) + Ỹ (2)

11 J2 − δλJ0(α, δλ),

where α = (��)ᵀm, and the Ji are the canonical integrals de-
fined in Eq. (44). Here Ûloc(m) is a vector of size N̂ organized
in a way similar to Eq. (E4) for a given m, with entries tending
to u(m, j) as |m| → ∞.

Let us illustrate Eq. (E15) numerically. One way to eval-
uate Ûloc directly is to take a large enough domain of cells
and consider a time domain problem with a harmonic point
source:

KU(t ) + 1

c2
M

d2

dt2
U(t ) = e−i(ω�+δω)t E , (E16)

where K and M are the standard mass and stiffness matrices,
ω� is the frequency corresponding to the Dirac point k� =
ω�/c, δω is a small perturbation, and c is the wave velocity.
The latter is a system of ordinary differential equations, and
can be solved numerically using some time integration scheme
such as the fourth-order Runge-Kutta method. Then, U(t )eiω�t

provides an approximation to Ûloc at the nodes where the wave
process has stabilized, that are far enough from the domain
boundary and not affected by the reflected field. The result
(real part of the field) of the time domain modeling along
with the asymptotic estimation (E15) is presented in Fig. 14.
The geometry of one cell is presented in Fig. 12, left. The
crystal was excited gradually by a point source in the 0th cell.
If we introduce a numbering in the cell by a pair of indices
going along the sides of the cell, and let the left bottom node
be indexed by (0,0), then the node (6,4) was excited. The
excitation has been turned on gradually in order not to excite
higher modes of the cell. Time domain modeling has been
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conducted for a mesh of 104 cells, with 3400 steps in time, and
time step and mesh step equal to 0.1 and 0.55, respectively.

The other parameters were as follows: c = 1, δλ = 10−3, and
ω� = 0.8156.
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