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Elastic electron scattering and localization in a chain with isotopic disorder
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We study elastic electron scattering and localization by ubiquitous isotopic disorder in one-dimensional
systems appearing due to an interaction with phonon modes localized at the isotope impurities. By using a
tight-binding model with an intersite hopping matrix element dependent on the interatomic distance, we find a
mass-dependent backscattering probability by single and pairs of isotopic impurities. For the pairs, in addition to
the mass, the distance between the isotopes plays a critical role. Single impurities effectively attract electrons and
can produce localized weakly bound electron states. In the presence of disorder, the electron free path at positive
energies becomes finite and the corresponding Anderson localization at the spatial scale greatly exceeding the

distance between the impurities becomes possible.
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I. INTRODUCTION

Ubiquitous isotopic disorder leads to a finite zero-
temperature resistivity even in metals where all other kinds
of disorder do not exist. Since isotopic substitution does not
produce an explicitly position-dependent random potential,
the understanding and analysis of this residual resistivity
is a highly nontrivial problem. This purely quantum effect
based on the zero-point atomic motion was understood in
Refs. [1,2]. The approaches of Refs. [1,2] are different. Ref-
erence [1] considered random kinetic energy of the lattice
vibrations as the source of the electron scattering in terms
of higher-order, beyond the first Born approximation, scat-
tering theory. Later, it was shown in Ref. [2] that the Born
approximation can be applied taking into account the random-
ization of the crystal lattice Debye-Waller factor by isotopic
disorder. Both approaches result in a very small nonzero
zero-temperature resistivity. Being the origin of unusual elas-
tic and inelastic electron scattering [3], the isotopic disorder
calls for studies of electron localization, usually considered
as a result of a static randomly position-dependent potential,
qualitatively different from the isotopic disorder producing a
random field of dynamical finite frequency phonon modes.
Here, we study these effects in a one-dimensional system [4]
with isotopic disorder, where all the scattering processes can
be presented in a clear explicit form.

Various aspects of the role of lattice vibrations for quan-
tum transport have been studied for a long time (see, e.g.,
Refs. [5-9]). These approaches have been concentrated either
on the zero-point motion of impurities [5—7] or on the effects
of phonons [8,9] without taking into account the isotopic
disorder. Here, we consider the aspect of this problem related
to isotopic disorder specific for zero-point quantum motion in
localized vibrational modes.

The problem of an electron interaction with isotopic disor-
der is directly related to the quantum impurity physics, where
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the electron interaction with an internal quantum structure of
the impurity-related states strongly influences the electron ki-
netics. This interaction leads to inelastic scattering processes,
as studied, e.g., in Ref. [10]. For isotopic defects the internal
spectrum of the impurity is the localized vibrational mode.
As we show below, this quantum effect can lead to elastic
scattering eventually resulting in electron localization.

This paper is organized as follows. In Sec. II we briefly
present already known results on localized phonon modes and
electron-phonon coupling in the form required for the anal-
ysis of electron scattering by isotopic impurities. In Sec. III
we formulate the scattering problem, identify corresponding
virtual phonon process, and study elastic scattering by two
configurations of isotopic impurities. Next, we show how the
localization occurs and demonstrate its characteristic features.
Conclusions and relations to other results will be given in
Sec. IV.

II. LOCALIZED MODES AND ELECTRON-PHONON
COUPLING

A. Eigenmodes with isotopic disorder

Vibrational eigenmodes in crystals of various dimensional-
ities with isotopic disorder have been studied for a long time
and are well understood by now [11-16]. It is worth noting
that several advanced numerical approaches [17,18] for these
modes have been proposed recently to supplement mainly the
analytical calculations of Refs. [11-16].

To provide a background for the following analysis of
electron localization, we begin by presenting and analyzing
some known results for an isotopically disordered chain with
N > 1 atoms (see Fig. 1) described by the Lagrangian

L= 1@ Mi—u"Ku), (D
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FIG. 1. Chain with isotopic disorder [cf. Eq. (2)]. Here, « is
the elastic force constant, and #, 4 is the electron bond-dependent
hopping between two neighboring sites.

where u is the N component vector of atomic displacements
and the matrices given by:

M, 0 0
o MM o ..
M=1o o M .. .|
2k —k 0
N —Kk 2k -k ...
K= 0 -k 2k ... @

define the positions of isotopes with masses M, at the nth
site, and elastic force constants, respectively. For calculations
with Born—von Karman periodic boundary conditions one
has IQ], N = I%N,l = —k. The characteristic equation det[lf —
Mw?*] =0 yields the corresponding {w?, $%}, where a =
I,..., N numerates the eigenmodes with eigenvectors ¢
and statistical properties of the frequencies a)ﬁ distribution
obtained in the pioneering paper of Dyson [11]. For the iso-
topically clean system we get w*(k) = w} sin® kag/2 (wp =
24/k /M is the phonon frequency at the Brillouin zone bound-
ary, and ay is the lattice constant of the chain) with ¢;(n) =
e/ /N and 3, ¢ (n)pw (n) = 8, Where a, = nay is the
position of the nth site. The orthogonality and normalization
condition reads as (ul Mug) = 8,5.

The operator of the displacement vector in the second
quantization form is given by

h
An= —bT ba Ot’ 3
il Z e, Bo T 09 A3)

where b, bfx are the Bose annihilation and creation operators,
M = (M,) is the average mass of atoms in a chain, and nor-
malized ¢ now includes dimensionless prefactor /M /M,,. To
consider electron scattering by phonon modes one also needs
the Fourier transformation

h
fy = (¢ @)= m(bg + bo )9, )
where ¢; is obtained from eigenvectors as
* 1 —i
¢Z=(¢q‘¢a)=ﬁzn:€ amn 5)

Here, we consider a realization with identical isotope im-
purities of masses M; being smaller than the mass M of
other atoms in the chain. For a single isolated isotope there
exists one vibrational mode that splits off from the continuous
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FIG. 2. IPR distribution of phonon modes for AM/M = —0.1,
vis = 1/20ay, and the frequency of the localized mode wj,./wp =~
1.005.

spectra of phonons to form a bound state localized nearby
[19]. For a small |[AM|/M < 1 (we restrict our consideration
below to this realistic approximation) the frequency of this
mode wyo. = wp + wg(AM/M)?/2 lies slightly above wg.
The localized mode q)},"c centered at n is described by [19]
ao

¢:loc = (—1)y"" 22 g aoln=nol/L, 0 — 2%

, 6
L, L, M ©)

Here, L, is the mode localization length. The resulting Fourier
structure of the isotope-related mode being localized and cen-
tered at the Brillouin zone boundaries ¢ = +¢gg, where gg =
7 /ap, can be presented, assuming ny = 0, in the Lorentzian
form as

loc 2 1
O = ———7
q VNag Li/z

1 1
><((q R A PR +L*2>' @
Since ¢, = ¢! is symmetric, the Fourier component ¢\ =
gbl_"(‘; is real. The Fourier distribution of the localized mode has
the width L'

To characterize spatial localization of the modes we use the
inverse participation ratio (IPR)

=3 ()", ®)
where for delocalized modes Z* = O(1/N). A single iso-
tope impurity produces a localized mode with Z'°° ~ aq/2L,.
Other N — 1 phonons are delocalized with the corresponding
I¥ K ap/L, and do not have a smooth Fourier structure. In
Fig. 2 we present the Z* for a diluted disordered system where
the mean distance between the light isotopes 1/vj; = 4L,. The
figure shows a clear distinction between localized and delo-
calized modes. It is interesting to mention that the mapping
of phonon localization [20,21] on the Anderson localization
[22] and the Green’s function analysis [23] similar to Ref. [24]
show that at a finite concentration of impurities low-frequency
phonon modes are localized, albeit with a vanishing Z“ in the
zero-energy limit (see Ref. [25] for review).
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FIG. 3. (a) The IPR and (b) the frequency of two highest-
frequency modes produced by a pair of isotopes as a function of the
distance between them, AM/M = —0.1.

Also, Fig. 2 indicates the presence of states with frequen-
cies w > wjo and larger 7%, suggesting smaller localization
lengths. These states arise from isotopes located at the dis-
tances of the order of or less than L,. Here, we consider
two identical isotope impurities and for a qualitative analysis
present the displacement as u, = (—1)"u(x) and use a contin-
ual model [19] for the envelope function u(x) with impurities
presented as § potentials at distance a,

2 // AM
(¥) = a0 =R [8(x = a/2) + 8(x + /()
= 2wp(w — wp)u(x), )

where s = wgay/2 is the speed of sound, resulting in the
equation for w,

(26 — D)é*" = 4D, (10)
with & = /2wp(w — wp)/s and D = —apwi AM /Ms>.

Equation (10) implies that at a sufficiently small dis-
tance between the isotopes (a < L,) only one (even) mode
u'¥l(—x) = u'¥(x) remains localized with @ > wg, while the
other (odd) one, u™(—x) = —ul"!(x), is pushed into the
phonon continuum and becomes delocalized. These features
are shown in Fig. 3, where we present the dependence of
%" and its 712" on the distance a between the isotopes.
The corresponding Fourier components given by Eq. (5) are
presented in Fig. 4.

B. Electron-phonon interaction

We present the electron Hamiltonian in the tight-binding
form

1 §
H = —5 Zn:tn,n-k—l(czclﬁ'l + Cn-HC”)’ an
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FIG. 4. Fourier |q)([1“J |? for odd and even modes produced by pairs
of isotope impurities, |AM/M| = 0.15, a = 10ay (solid lines), and
a = 4ay (dashed line). At a = 4ay the antisymmetric mode is delo-
calized and not shown here.

with the bond-dependent hopping (see Fig. 1) typ1 =1+
v (Upy1 — uy), with c,,,c being the electron annihilation
and creation operators (irrelevant spin degrees of freedom
are not included). In the electron momentum basis ¢, =
N=12%" e~ikanc, the phonon-independent term determines
the one-dimensional electron dispersion &y = —t cos kag. The
noninteracting part of the Hamiltonian is given by

Hy = Z excicr + Z fiwy b’ by. (12)
k a
The electron-phonon interaction part can be written as

Hep = —T ka/ kakauq, (13)

where #, is given by Eq. (4) with g = k" — k, and the form fac-
tor fi; = sink’ag — sinkay. It is also convenient to rewrite
the interaction potential in the form that directly exploits ¢,

He p = znyk/kck,ckwwb)/ ~¢g. (9

k' ko

the electron-phonon interaction constant y =
C(hwg/ps*L)"/?/2/2, where C = y'ay is the deformation
potential of the chain, p = M/a, is the mass density, and
L = Nay is the chain length.

To explicitly confirm the effect of isotopic impurities on
the quantum fluctuations of the intersite distances and cor-
responding electron hopping, we introduce the correlation
function [cf. Eq. (3)]

h
gt = At =) = 37— (B = #5)" ()

Figure 5 demonstrates the dependence of g, ; (in the units of
li/2wpM) on the lattice site n in the vicinity of the isotope for
different /. Though the localized phonon mode has a spatial
size L,, this scale is not reflected in the behavior of g, ;. The
latter is mainly determined by low-frequency phonons with
small corrections appearing due to the mass defect AM at the
isotope site. The increase in g, ; in the vicinity of the isotopic
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FIG. 5. Correlation function g, ; for different / as marked near

the plots. The isotopic defect is located at n = 500 and |AM|/M =
0.15.

defect shows that the hopping integral fluctuates correspond-
ingly and thus can influence the electron motion. However, as
we will see below, the analysis of electron scattering cannot
be reduced to using the only correlation function g, ;.

III. SCATTERING AND LOCALIZATION

A. Elastic scattering by localized modes

Aiming at an analysis of localization we focus on the
elastic electron scattering involving virtual phonon processes
with the corresponding Feynman graph in Fig. 6. This process
appears in the second order with respect to y and is due to
the finite spread of phonon momentum in the presence of iso-
topes. The effective potential for an electron interacting with
quantum vibrations in second order can be obtained following

k
> ..
\\' localized
p » mode
7
* »
-k
A E

\ 7 /1
1 7 /
_ /
/aO \ J
_;{\./

FIG. 6. A backscattering process. Solid squares correspond to
matrix elements of electron-phonon coupling. Since the localized
phonon mode has a spread in the momentum space, its virtual
emission and absorption causes elastic electron backscattering with
momentum change —2k. Notice that the main contribution to the real
scattering process is due to the virtual transition to the Brillouin zone
boundary with |p| ~ 7 /ay.

Refs. [26,27] and is given by
V = 1H.,. 81, (16)

where [,] stands for the commutator and operator S is deter-
mined from [S, Hy] = H._,. By taking the matrix elements of
this commutator with respect to the eigenstates (I, ") of Hy
(such as |k1,) = chZlO), where |0) is the vacuum state), we
obtain

Spp=—"T_ (17)

To analyze the elastic scattering we first consider the matrix
elements of V between |kO) and |k’0) phononless states. The
explicit expression for this matrix element, Vj ¢, is

1
Vi = 5 3 L (KOIHeplpla) (plulHe-p IKO)

pa

1 1
. (18
X(ek—ep—hwa—’_ek/—ep—hwa) (18)

At small electron momenta the electron velocity v, =
(dey/dk)/h = kta%/h and effective mass m with 1/m =
(d*er/dk*) /I = tal /I*. To avoid decoherence processes re-
lated to the emission of real phonons and suppressing the
electron localization, we note that the no-emission condi-
tion v, < s restricts momentum to k < ke, where ke, =
hwg /2tay. Notice that the condition #(kemap)? ~ F*w/t <
hwg prohibits the emission of real localized modes also. Using
H._, from Eq. (14) we keep in the sum of Eq. (18) only
the modes corresponding to the localized states of Eq. (7)
with frequency w, = wjoc. For a low concentration of single
isotopes with a small mass defect, the Fourier components of
other, delocalized, phonon modes with the frequencies lying
within the phonon band spectrum, do not acquire a width
sufficient to contribute to the sum of Eq. (18). Thus, we arrive
at the matrix element of the electron scattering by a single
isotope impurity:

2
Yo

[ _
Vk/,k - _T K.k

M= 2 Y fenfoatt b+
Kk~ 5 - K.pJ kP —pPp—k Ap. k) A k))

A(p, q) = 2kemag — cos pag + cos qay. (19)

The plot of log,, v« corresponding to Vk[,l,,]( presented
in Fig. 7 demonstrates that the scattering matrix element is
relatively large only in the ¢ < L' range. The resulting cal-
culated weakness of backscattering is due to two factors: a
small allowed momentum transfer with ¢ = 2k < L', arising
from the ¢,°¢ ¢, [see Eq. (7)], and small f; , at small k and
P ~ gg. By using the condition keynap < 1 and expression for
¢};’° in Eq. (7), we obtain

i P = ylap) 1 (20)
ok uLL) (k2 + L%

In the kL, < 1 limit |V,[2 k|2 behaves as (AM/M)* and de-
creases as (AM/M )8 /k* at k > 1/L,. Equations (19) and (20)
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FIG. 7. Logarithm of matrix element log,, 'y x for AM/M =
—0.15.

present the key result of this paper: Quantum isotopic impuri-
ties characterized by localized finite-frequency phonon modes
can produce elastic electron backscattering. The correspond-
ing numerically calculated |I‘[_l,1 k|2 is presented in Fig. 8.

Having demonstrated possible elastic scattering by a single
isotopic impurity, we can study how this general approach
can be applied for two closely related impurities, where the
interference of scatterings by odd and even vibrational modes
plays a qualitative role, and see the characteristic features
of this scattering. The matrix element of backscattering by
two-isotope states, corresponding to Figs. 3 and 4, has the
form

2
(2] VA2
ka,k = _Trfk,lda’
[2] _ ls] [s]
ke =226 k)fkpfpm @D

psls]

and shows interference of the scattering processes. The cor-
responding probabilities are presented in Fig. 9. It is worth
mentioning an increase in the scattering probability when two

———

= 0.012 4 s

‘2
k.k

(1]
/

0.008 1

0.004 4

matrix element |T

0.000

0.00 0.05 0.10 0.15 0.20
wavevector [kag)

FIG. 8. |F[_1,1’ k |2 for AM/M shown near the curves. Fit according

to Eq. (20) is not shown since it almost coincides with the numerical

curves. The parameter ke,ap = 0.2.

0.020 1

0 015 ~

0.010 1

0.005 1

; 2 2
matrix element |F_k ,{‘a|

0.000 +— T . ; .
0.00 0.05 0.10 0.15 0.20

wavevector [kag)

FIG. 9. Backscattering probability by two-isotope phonon states.
Here, AM/M = —0.15, k.mao = 0.2. The distance between isotopes:
a = 2ay (blue), a = 10ay (red), a = 20a, (green). The dashed line
corresponds to a single isotope.

isotopes are located at a < 4L,, indicating a stronger scatter-
ing.

B. Low density of impurities: Possible single-impurity
localization and free path

As we demonstrated in the previous section, at small
isotopic defects concentrations, a disordered chain can be
presented as a randomly spaced ensemble of elastic scatterers,
corresponding to scattering by a single and pairs of isotopic
impurities. We assume a sufficiently small concentration of
isotope impurities v, < |AM|/May such that they behave as
independent single scatterers located at uncorrelated points x;.
The resulting small concentration of isotope pairs of the order
of v; L <« vjs does not modify the localization-related results.

We begin with the quantum mechanical analysis of the
electron free path in this system, where the finite free path
indicates localization behavior and assuming that the main
effect is due to single scatterers. In this analysis we use the
one-dimensional free-space electron Green’s function in the
form

G (x,x') = £ exp(Lik|x — x']) (22)
) 7 )
where E = i*k*/2m. Using the Green’s function from
Eq. (22) we obtain in the first Born approximation for scat-
tering by a single isotope impurity located at a point x;,

¥ = eik(x—x,-) + r(k)e—ik(x—xi)

(23)

where x < x;, |x —x;| > L., V[Ek = LV[Ek, and one ex-
pects |r(k)] < 1 as the approximation validity condition.
The sign of 1% "4 1s negative corresponding to an at-
tractive potential of the width L,, depth of the order of
tx (hwg /Ms?)x(ay/Ly)?, and the binding energy e€p,. of
the order of t(hwg/Ms*)*(ag/L,)*. Here, we used relations
Ms* = ka3 to scale the energy in dimensionless units and
t ~ C = y'ag by assuming that the intersite hopping integral
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is sufficiently modified at the modulation in the interatomic
distance of the order of ay [cf. Eq. (14)].

In the positive energy domain, the mean free path
due to backscattering by isotopes can be estimated as
Lk) = vigl [r(k)| 72 > vig', corresponding to the Anderson
localization at the spatial scale of the order of £(k). Indeed,
|r(k)| is very small almost in the entire interval of k < ke
at the energies & +1 > 1072(TY) )2(R?/Mad)(t/Ms?). At
smaller energies, |r(k)| approaches 1 and more detailed scat-
tering approaches [24,28] have to be applied. To characterize
the scattering, one can introduce dimensionless parameters
kemLy ~ (howp/t)(M/|AM|) and wgt ~ M/|AM|, where, due
to the condition v, < s, the parameter T = L, /s represents
the upper limit of the scattering time. Although k., L, can be
either smaller or greater than 1, the product wgt is always
much larger than 1. This implies that scattering by isotopic
impurities is an adiabatic process with low probability due to
averaging of the intersite hopping during the scattering lead-
ing to the adiabatic limit for the binding energy €, <K fiws.

C. Electron localization

Here, we concentrate on electron localization by using the
result of previous sections on mapping of isotopic impurities
in chains on weak scatterers of electrons. As it was shown in
Ref. [29], one-dimensional arrays of random scatterers lead to
the localization of light waves with the same approach valid
for the localization of electron waves.

Several approaches including the Lyapunov exponent anal-
ysis (e.g., Ref. [30]) and random matrix theory (e.g., Ref. [31])
can be used for studies of wave localization in random
potentials. We will use a direct numerical calculation prov-
ing electron localization by producing a random potential
corresponding to isotopic scatterers and calculating electron
eigenstates in this potential. To study the localization, we
consider a normalized electron wave function on an N > 1
site one-dimensional lattice, where ¥;(n) (n = 1, ..., N) enu-
merates the lattice sites and i enumerates the electron states
with the energies ;. The probability density distribution for
the state i is characterized by the corresponding inverse par-
ticipation ratio,

SEDI O (24)

The results for log;,& presented in Fig. 10 demonstrate the
formation of two groups of localized states. The first group
corresponds to the impurity band formed below the bottom of
the conduction band with ¢; < —2¢ [16]. The second group
corresponds to the Anderson localization of the states in-
side the conduction band with g; > —2¢. We notice that, as
expected, the states become delocalized at the energies corre-
sponding to k > 1/L,, where the backscattering probability is
strongly suppressed, according to Egs. (23) and (20), where
Vh!, behaves as 1/(k> + L;?), rapidly decreasing with the
electron energy. Further, in Fig. 11 we present several typical
wave functions v;(n) demonstrating that the Anderson local-
ization occurs on a spatial scale much larger than the distance
between the isotopic impurities.

Finally, we emphasize that our approach is qualitatively
different from that proposed in Refs. [32-35]. The analysis

—1.998 —1.992 —1.98  —1.980

electron energy [t]

—92.004

FIG. 10. The log,,& of the inverse participation ratio for two
low-density distributions of isotopic impurities. The concentration
of impurities v;; = 0.002 (blue circles) and vi; = 0.009 (red circles).
The impurity width L, = Saq corresponding to AM/M = —0.1 and
the effective potential amplitude is V = —0.01. The hopping integral
t=1.

in these papers is based on the fact that the electron self-
energy due to electron-phonon coupling, producing band-gap
renormalization, is proportional to the dependence on the
atomic masses’ mean inverse phonon frequency [27]. Thus,
clusters of isotopic impurities with sufficiently large size and
concentration, renormalizing locally the electron band gap,
can produce effective “potentials” able to localize sufficiently
heavy carriers. Our approach is unrelated to the band-gap
renormalization and electron localization occurs due to elastic
scattering by randomly distributed localized phonon modes.

IV. CONCLUSIONS AND OUTLOOK

We studied the localization of electrons due to a weak
isotopic disorder producing randomly spatially distributed lo-
calized phonon modes in one-dimensional systems described

0.100
0.075 - €3} 2
0.050 -
0.025 1

0.000 +

wave function ;(n)

—0.025 1

~0.050 €1 i e ,
1500 3000 4500
site index [n]

o4

FIG. 11. Electron wave functions in different states with ener-
gies presented near the plots. Dashed lines: states in the impurity
band with 4, + 2 = —5 x 10~% and &5 + 2 = —1.4 x 1073¢. Solid
lines: states in the conduction band described by the Anderson local-
ization with &, + 2t = 2.4 x 107* and &5 + 2t = 3.4 x 107*¢.
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by a tight-binding model. Elastic electron scattering involv-
ing nonlocal processes of virtual emission and absorption of
these modes is presented in the form of scattering by a weak
potential with a strongly energy-dependent reflection proba-
bility. This randomness, related to the virtual phonon emission
and absorption processes, leads to the Anderson localization
with the localization length dependent on the electron energy.
Investigations of more complex realizations including the for-
mation of random weak-coupling polarons due to a strong
isotopic disorder and possible effects of lattice nonlinearity
(see, e.g., Ref. [36]) are of interest and will be a topic of future
research.

To conclude the discussion of the effect of isotopic mass
on the electron position in systems with different isotopes that
emphasizes its general character, we mention that this effect

is related to the puzzling dipole moment of the HD molecule
[37], where different amplitudes of zero-point vibrations of
hydrogen and deuterium ions lead to a shift of the electron
probability density between these atoms resulting in the for-
mation of a small dipole moment [37,38].
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