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Local counterdiabatic driving (CD) provides a feasible approach for realizing approximate adiabatic or
reversible processes like quantum state preparation using only local controls and without demanding excessively
long protocol times. However, in many instances getting high accuracy of such CD protocols requires engineering
very complicated new controls or pulse sequences. In this work, we describe a systematic method for altering
the adiabatic path by adding extra local controls along which performance of local CD protocols is enhanced,
both close to and far from the adiabatic limit. We also identify an iterative procedure to improve the performance
of local counterdiabatic driving further without any knowledge of the quantum wave function. We then show
that these methods provides dramatic improvement in the preparation of nontrivial Greenberger-Horne-Zeilinger
ground states of several different spin systems with both short-range and long-range interactions.
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I. INTRODUCTION

With the rapid development of quantum technologies such
as quantum computing, as well as the demands of modern
experiments with, e.g., cold atoms [1], trapped ions [2], and
nitrogen-vacancy centers [3], precise control over quantum
states is essential. Adiabatic processes present a powerful tool
for manipulating these states, where any changes to the system
are made sufficiently slowly so that the quantum state remains
in an instantaneous eigenstate at all times, allowing for precise
control.

However, even in the finite-size systems accessible to near-
term quantum computers and modern experimental setups, the
timescales required for adiabaticity are often longer than the
system remains coherent and thus forbid its application. This
has motivated the development of so-called “shortcuts to adia-
baticity” [4] in which the adiabatic path may be approximately
or exactly followed on shorter timescales, at the expense of
demanding additional control over the system.

One such technique is known as counterdiabatic driving
(CD) or, equivalently, transitionless driving [5–11], where an
additional counterdiabatic term is added to the Hamiltonian of
the system which exactly suppresses any transitions between
states arising from a fast change of parameters. With this
modified Hamiltonian the initial quantum state, which evolves
according to the Schrödinger equation, will now follow the
instantaneous eigenstates by construction.

While this procedure is always exact, the CD term in gen-
eral requires knowledge of the full spectrum of the system and
is thus not accessible for generic many-body systems. This has
led to the development of local CD driving [12,13] in which
the CD term is restricted to only local operators at the price of
failing to completely suppress all transitions. Nonetheless, it
yields protocols which can significantly increase the fidelity
of the prepared quantum state while remaining feasible to
actually implement.
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Recently, it has been shown that, by combining approaches
from quantum optimal control [14], whereby additional con-
trol terms are added to the system, and then performing local
CD driving, quantum states may be prepared with higher
fidelity than local CD driving alone [15]. However, it is
not immediately clear what these additional control terms
should be.

The main purpose of this work is to propose a systematic
method for adding such extra local controls to the Hamiltonian
so that local CD protocols are most efficient. Schematically
the idea is sketched conceptually in Fig. 1. The horizontal
plane represents the space of adiabatically connected ground
states. By introducing extra controls we can modify the adia-
batic path connecting the initial and final states (solid lines).
The vertical line schematically represents an error (e.g., de-
viation of the fidelity from unity) resulting from the local
CD driving (dashed lines). The optimal (blue) path results in
a smaller error. Note that while we focus on quantum state
preparation this formalism can be applied to realize fast and
reversible energy transfer to facilitate various thermodynamic
processes [16,17].

This paper is organized as follows: in Sec. II we review
how quantum states may be prepared adiabatically, when this
fails, and how counterdiabatic driving may be employed to
alleviate this. In Sec. III we discuss how we may employ
local (approximate) counterdiabatic driving more efficiently
by augmenting the underlying Hamiltonian with extra control
terms. In Sec. IV we show how this may be applied beyond
the standard short-range models, especially those connected
to relevant experiments. We also identify a novel iterative
procedure for further improving the local CD driving protocol
in the absence of extra controls. Finally, we summarize in
Sec. V and discuss potentially fruitful applications of these
techniques beyond the contents of this paper.

II. COUNTERDIABATIC DRIVING

One straightforward approach to preparing quantum states
is to employ the adiabatic theorem. For a system whose energy
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FIG. 1. A sketch of the method for finding more efficient paths
connecting an initial and the target state. We seek to improve the local
CD protocol by adding extra control terms and modifying the adia-
batic paths (solid lines) connecting these states (see also Ref. [15]).
We find that in the situations we analyzed one can drastically improve
performance of the local CD protocols by following the optimal
path. This is schematically illustrated by a much smaller error for an
optimal path (blue) than the naive path (red) of the original annealing
Hamiltonian when performing local CD driving (dashed lines).

levels have a finite gap, this guarantees [18] that if the control
parameter of the Hamiltonian is changed sufficiently slowly,
the system will always remain in an instantaneous eigenstate.

Let us consider a time-dependent Hamiltonian H (λ),
where the time dependence is encoded in a control parameter
λ = λ(t ) which varies from zero to one. While this may in
general represent a vector of several control parameters, we
restrict ourselves to just one for simplicity. The adiabatic
theorem guarantees that if our system begins in the ground
state of H (λ = 0), and the parameter λ is changed sufficiently
slowly, the system will conclude the protocol in the ground
state of H (λ = 1).

One straightforward application of this is so-called quan-
tum annealing, where the Hamiltonian is designed such that
the final ground state at λ = 1 is the target state, which is
usually difficult to prepare, but the initial ground state at λ = 0
is easy to prepare. By preparing the system in the initial state
and then changing λ slowly, the target state may be obtained
with arbitrarily high fidelity. However, the condition that |λ̇|
be small can become quite restrictive as we move beyond
simple systems and the gaps between energy levels become
smaller.

Formally, the adiabatic approximation is made by writ-
ing the Schrödinger equation in the basis of instantaneous
eigenstates and then neglecting emergent rate dependent off-
diagonal terms coupling different eigenstates [7,19]. This
suggests that perfect adiabaticity may be obtained by inserting
into the Hamiltonian some compensating terms which will
exactly cancel those ignored in the adiabatic approximation.
If this is done, the adiabatic approximation becomes exact
irrespective of |λ̇|.

Counterdiabatic driving was first discovered by Demirplak
and Rice [5,6] in the context of population transfer between
molecular states and independently formulated by Berry [7]
and termed “transitionless driving,” although the two are en-
tirely equivalent. This involves defining the counterdiabatic

Hamiltonian HCD such that

HCD = H + λ̇Aλ, (1)

where Aλ is known as the adiabatic gauge potential (AGP).
This operator is responsible for transforming the instanta-
neous eigenstates under a change of the control parameter λ,
and it is the term which makes the adiabatic approximation
exact. There are many possible ways to encode λ as a function
of time. Following earlier work, we encode it in the following
smooth way:

λ(t ) = sin2

[
π

2
sin2

(
πt

2τ

)]
, (2)

so that λ(0) = 0 and λ(τ ) = 1. The “speed” of the process is
encoded in τ . Since λ̇ ∝ 1/τ , when τ is small, the counter-
diabatic term λ̇Aλ dominates the dynamics defined by HCD in
Eq. (1). As τ is increased, this term vanishes and the process
becomes adiabatic.

Formally, the AGP satisfies the following equation (in units
where h̄ = 1):

[∂λH + i[Aλ, H], H] = 0. (3)

Despite its apparent simplicity, this equation is in general
very difficult to solve. It can be shown [12] however that solv-
ing Eq. (3) is equivalent to minimizing the following action:

Sλ(Aλ) = Tr
[
G2

λ

]
, Gλ = ∂λH + i[Aλ, H]. (4)

We note in passing that one can replace Tr[G2
λ] →

Tr[ρ G2
λ], where ρ is an arbitrary stationary density matrix

with respect to the Hamiltonian H (λ) [12]. By using ρ =
1
Z exp −βH , we can perform a finite-temperature variational
optimization, which preferentially targets lower-energy eigen-
states and can give better performance in some instances. In
the limit β → ∞ the average with respect to ρ reduces to the
ground-state expectation value. In Sec. IV B we discuss in de-
tail how one can further improve local CD protocols using the
ground-state optimization of the AGP without requiring any
prior knowledge of the ground state. We may interpret Eq. (3),
which in this language reads [Gλ, H] = 0, as a statement that
a well-defined AGP Aλ admits the existence of a conserved
operator Gλ commuting with H .

Instead of dealing with the exact AGP, which is very
nonlocal and even ill-defined in chaotic systems [20], it is con-
venient to find an approximate local AGP, which minimizes
the action in Eq. (4) within a restricted subset of operators
Aλ. A very convenient option is to choose this subset from the
so-called Krylov space, which is obtained by a repeated action
of Liouvillian L = [H, ·] on ∂λH [13]:

A(�)
λ = i

�∑
k=1

αk [H, [H, . . . , [H︸ ︷︷ ︸
2k−1

, ∂λH]]]. (5)

Notably, only odd orders of nested commutators enter into
this ansatz. Here � controls the order (and therefore the lo-
cality) of the expansion, and αk are the variational parameters
found by minimizing the action (4). Formally this ansatz is
exact in the limit � → ∞ but in practice we want to restrict it
to small values of �. This process can by made more numer-
ically stable by using the Lanczos algorithm in the operator
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basis leading to an AGP expansion in an orthonormal set of
Krylov operators Ok (see Refs. [21–23] for details). We give
a detailed description of our Krylov space construction of the
AGP in Appendix A.

III. IMPROVING COUNTERDIABATIC DRIVING DRIVING
WITH EXTRA CONTROLS

The main goal of this section and of the whole paper
is to find a systematic approach to improving performance
of approximate CD driving via adding extra controls to the
Hamiltonian. We test these by applying them to prepare non-
trivial Greenberger-Horne-Zeilinger (GHZ) entangled states.
We begin by focusing on the infinite speed limit |λ̇| → ∞,
where although the H term in (1) is included in the simu-
lations, the evolution according to HCD is dominated by the
counterdiabatic term λ̇Aλ. In III C, we discuss the improve-
ment from the extra controls in the regime where λ̇ is finite,
when both H and Aλ play a meaningful role in the dynamics.

Before proceeding with nontrivial systems, we illustrate
the idea of extra controls using an intuitive example of
ground-state preparation in a one-dimensional Ising model
with transverse and longitudinal fields described by a standard
quantum annealing scheme [24]:

H (λ) = λH0 + (1 − λ)H1,

H0 = −
∑

i

σ z
i σ z

i+1 + hzσ
z
i + hxσ

x
i ,

H1 = −
∑

i

σ x
i , (6)

with periodic boundary conditions. We start from the situation
where there is a small but finite longitudinal field 0 < hz � 1
and finite hx < 1. The first condition breaks the Z2 symmetry
of the model such that the ferromagnetic ground state for
|hx| < 1 is polarized in the positive z direction and the sec-
ond condition implies that during the annealing protocol the
system crosses a quantum phase transition at hx = 1 [25]. At
this point the gap closes and the AGP becomes an operator
with an infinite range [19,26,27] such that local CD protocols
become very inefficient.

In this setup it should be clearly more advantageous to
choose an alternate path, which while retaining the same start
and endpoints, stays far from the critical point. This is shown
in the inset of Fig. 2. Following the general idea of Ref. [15]
the Hamiltonian corresponding to the modified path is
given by

H̃ (λ) = H (λ) + β sin (πλ)
∑

i

σ z
i , (7)

where β is some parameter which we can optimize numer-
ically. We then apply local CD driving to H̃ (λ). With an
appropriate choice of β, this gives a very strong improvement
in state preparation, as shown in Figure 2. In particular, we can
see that even just the first two terms in the expansion in Eq. (5)
are sufficient to prepare the state with high fidelity nearly
independent of system size despite the fact that hx = 0.7 is
not very small and thus the ferromagnetic state is far from
fully polarized.

FIG. 2. A comparison between the results when performing local
CD driving on the naive original path in red, which passes close by
the critical point at (hx, hz ) = (1, 0), and the augmented path in blue,
where the critical point is avoided. The final Hamiltonian H0 is given
by Eq. (6) with hx = 0.7, hz = 0.01. The circles and squares show the
results using � = 1 and � = 2, respectively, in Eq. (5). We restrict to
β � 3 as defined in Eq. (7) to ensure that we are not finding optimal
paths by taking β large and effectively rescaling time.

A. Formulation of general problem

The example above shows the utility of adding extra con-
trols, which in that case can be intuitively found. Similar
ideas without CD driving were experimentally implemented
to prepare topological Hofstadter bands in ultracold atoms
[28]. The question we aim to address is how can we find
efficient extra controls for arbitrary Hamiltonians H0 and H1.
Formally we define an alternate path by evolving the system
according to an augmented Hamiltonian

H̃ (λ) = H (λ) + Hc(λ), Hc(λ) =
∑

n

β (n)(λ)H (n)
c (8)

where H (λ) is given by Eq. (6) and the β (n)(λ) are some
smooth functions satisfying boundary conditions β (n)(λ =
0) = β (n)(λ = 1) = 0 so that the initial and final eigenstates
of the annealing Hamiltonian are unchanged. We refer to Hc as
an extra control Hamiltonian. In the previous example, it was
just an additional global z field, i.e., Hc = ∑

i σ
z
i . We stress

that in the infinite speed limit the dynamics is determined
exclusively by the AGP, so the annealing Hamiltonian plays
a purely auxiliary role like, e.g., in Ref. [29].

We then perform local CD driving for the augmented
Hamiltonian H̃ (λ), hence evolving according to H̃CD(λ).The
goal is to choose both β (n)(λ) and H (n)

c to maximize the
fidelity of the final state. The β (n)(λ) are fixed for a given
evolution, and the variational parameters αk of the AGP are
determined locally at each time step. Finding the optimal
control functions β (n)(λ) is the subject of quantum optimal
control [30] or similar methods [31], which is not the main
focus of this work. We pick the β (n)(λ) by a very simple
optimization, following earlier work [15], writing it as a single
harmonic term

β (n)(λ) = β (n) sin (πλ) (9)
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and choosing β (n) to maximize the fidelity of the final state.
This is done by maximizing the fidelity

F (β ) = | 〈ψtarget|ψevolved(β )〉 |2, (10)

where |ψevolved(β )〉 is obtained by evolving the initial state
by the augmented CD Hamiltonian H̃CD. We note that the
fidelities can be even further improved by adding additional
couplings β

(n)
k corresponding to the kth harmonic of πλ [15].

We limit ourselves only to the first one because we want to
focus on the question of finding optimal H (n)

c .

B. Ansatz for extra controls

To proceed, let us consider a state preparation problem
similar to the previous one, but with hx = hz = 0, i.e., without
breaking the Z2 symmetry. The ferromagnetic ground state of
this model is now a GHZ state [32]. It is defined as an equal
superposition of all spins up and all spins down. This adiabatic
state preparation is encoded in the Hamiltonian

H0 = −
∑

i

σ z
i σ z

i+1, H1 = −
∑

i

σ x
i (11)

The previous choice of Hc = ∑
i σ

z
i will not work, since it

breaks the Z2 symmetry of the ground state of H0 and allows
one to prepare either the up or down polarized state, but not a
superposition of both.

To identify the form of Hc, we note that for any value of λ

the AGP ansatz in Eq. (5) is composed of odd commutators of
the operators H0 and H1 such as

i[H1, H0], i[H0, [H0, [H1, H0]]], i[H0, [H1, [H1, H0]]], . . . .

In the AGP these commutators appear with different coeffi-
cients which depend on λ. Let us observe that the different
commutator terms which are present in the full AGP [at all
orders of the expansion in Eq. (5)] will not change if we
modify the Hamiltonian H (λ) by adding arbitrary even order
commutators to it, i.e., adding terms such as

H (1)
c = [H0, [H1, H0]], H (2)

c = [H1, [H1, H0]], . . . , (12)

with the corresponding weights β (n)(λ) as in Eq. (8). By
adding such terms we clearly expand the variational manifold
allowing one to gradually increase the locality of both H̃ (λ)
and Aλ. Moreover such terms can be generated using Floquet
pulse sequences containing only H0 and H1 and is routinely
done in the NMR literature [33]. A detailed description of how
to implement a version of our protocol with Floquet pulses is
given in Appendix B. A very similar approach is described in
Ref. [13]. As we show below, for the examples we analyze
here this idea leads to the dramatic improvement of local CD
protocols.

It is easy to check that for the Ising model the new terms
(i.e., terms which are not originally present in H0) which
appear by computing the commutators in Eq. (12) are YY
and ZXZ , where we use a common short-hand notation:
YY = ∑

j σ
y
j σ

y
j+1, ZXZ = ∑

j σ
z
j σ

x
j+1σ

z
j+2. We can thus se-

lect H (1)
c = YY and H (2)

c = ZXZ . In this way the augmented
Hamiltonian (8) will cause the state to follow a genuinely
new path. The resulting improvement of the final-state fidelity
is plotted in Fig. 3. For a more detailed discussion of the
optimization procedure, see Appendix C.

FIG. 3. Improvement in the final-state fidelity when prepared
with local counterdiabatic driving. In red, we perform local CD
driving along the original path given by Eq. (6), whereas in blue it
is performed along a path where we augment Eq. (6) by H (1)

c = YY
and H (2)

c = ZXZ as in (12). The circles and squares of red and blue
lines correspond to � = 1 and � = 2, respectively, in Eq. (5).

We can see that the extra controls lead to a dramatic im-
provement of the protocol. In particular, for system sizes up to
N = 9 the second-order AGP ansatz corresponding to � = 2 in
Eq. (5) leads to nearly unit fidelity. For larger system sizes the
fidelity decays exponentially with N with a reduced slope and
thus still offering exponential enhancement over the original
CD protocol. We note that as we continue to increase the
order of the AGP expansion the size of the system we can
prepare with unit fidelity increases, as does the exponential
enhancement in fidelity over the corresponding original CD
protocol.

C. Finite-time protocol performance

Up to this point, we have only considered the case where
|λ̇| → ∞ and the dynamics are controlled entirely by the AGP
Aλ in Eq. (1). There is also the trivial adiabatic limit, where
|λ̇| → 0 and the eigenstates are transported perfectly with the
AGP playing no role. But in between these, there is a regime
where both the Hamiltonian and the AGP play an important
role in the counterdiabatic dynamics.

For the same annealing problem defined in Eq. (11), we
plot the final-state fidelity when we perform CD driving with
different control schemes in Fig. 4. From this, one can see
that different extra control schemes offer improvement in the
finite time regime, in addition to the |λ̇| → ∞ (τ → 0) limit
discussed earlier. In particular, using the recipe for extra con-
trols given in Eq. (12), one can prepare states with unit fidelity
in a time reduced by nearly three orders of magnitude.

IV. PREPARING A GREENBERGER-HORNE-ZEILINGER
STATE IN A LONG-RANGE MODEL

A. Fidelity gain from augmented Hamiltonian

We now move to preparation of the GHZ state in longer-
range Ising Hamiltonians, which are relevant to cold atom
and trapped ion systems [34–36]. We define the annealing
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FIG. 4. The final-state fidelity for the annealing problem of
Eq. (11) with N = 8, for different total protocol times. The final-state
fidelity is improved not only in the “fast” limit with τ → 0, but for
any intermediate protocol duration up to the adiabatic limit. Partic-
ularly noteworthy is that even local controls are sufficient to reduce
the threshold for adiabatic evolution by several orders of magnitude.

Hamiltonian for a long-range Ising model:

H0 = −
∑
i, j

1

|i − j|α σ z
i σ z

j , H1 = −
∑

i

σ x
i , (13)

where α > 0. Note that we can interpolate between the short-
range model studied earlier and a fully connected model by
varying the exponent α.

Let us first consider a long-range case with α = 2 and then
move to the fully connected model with α = 0. In both cases
the naive path crosses a critical (gapless) point at some value
of λ which depends on the parameter α and additionally scales
with N for α � 1.

We then augment the original Hamiltonian by introducing
extra controls

β (1)(λ) = β (1) sin (πλ), β (2)(λ) = β (2) sin (πλ),

corresponding to the terms H (1)
c and H (2)

c in Eq. (12). Like in
the previous example we then use a standard CD protocol and
find the parameters β (1) and β (2) by numerically optimizing
the fidelity of the final state.

In Fig. 5, for the long-range Ising model, we find a dramatic
improvement in the GHZ state preparation along the optimally
augmented path. We notice that this improvement is not tied in
any way to the integrability (short range) or nonintegrability
(long range) of the Ising model. This is not that surprising, as
the short-range AGP (small �) cannot distinguish integrable
and nonintegrable systems [20] and extra controls generally
break integrability anyway.

Finally, let us discuss the fully connected model cor-
responding to α = 0. With an appropriate rescaling of
couplings, this model is equivalent to a single large spin
�S = 1

2

∑
j �σ j with a nonlinear interaction. The corresponding

annealing Hamiltonian is still given by Eq. (6) with

H0 = 1√
S(S + 1)

S2
z , H1 = Sx. (14)

Here we rescale the first term so that the model has a well-
defined classical or thermodynamic limit as S = N/2 → ∞.

FIG. 5. Improvement in fidelity obtained by a more efficient path
for local CD driving with the intermediate-range Ising model of
Eq. (13). As before, in red we show results for local CD driving on
the original Hamiltonian, and in blue for the Hamiltonian augmented
by extra terms of the form (12). The two sets of lines correspond to
� = 1 and � = 2 in Eq. (5).

We note in passing that this Hamiltonian is extensively em-
ployed for experimental preparation of spin squeezed states
[37–40]. Such spin-squeezed states allow for better scaling
of measurement precision in Ramsey interferometry, surpass-
ing the standard quantum limit [41,42]. The results for GHZ
state preparation with this Hamiltonian are shown in Fig. 6.
Interestingly one of the emergent extra control Hamiltonians
in Eq. (12) is S2

y , which is used in the two-axis twisting
Hamiltonian for the preparation of even better spin-squeezed
states.

As in both the short- and long-range spin models, we
observe that we can prepare states with much better fidelity
using these more efficient paths, although the improvement is
less dramatic. The performance could be enhanced further by
considering finite-energy norms for the variational optimiza-
tion of the action, as we briefly discuss next and as was done
in a different classical model [17].

FIG. 6. Restricting to only the first-order term in the expansion
of Eq. (5), we perform local CD driving on both the original (red)
spin-squeezing Hamiltonian of Eq. (14), and where it is augmented
by the extra controls ansatz (blue). We find that improvement in the
final-state fidelity using the extra control Hamiltonian (12).
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FIG. 7. For the annealing problem of Eq. (13) with N = 8, we
show the difference in final-state fidelity between the infinite tem-
perature (all eigenstates) and zero-temperature (ground state only)
optimization of the AGP. Here, � is as defined in Eq. (5). As the order
increases and the evolved state is increasingly constrained to the
ground-state manifold, the zero-temperature optimization becomes
superior.

B. Ground-state optimization

As previously mentioned, we can replace Tr[G2
λ] in Eq. (4)

by Tr[G2
λ exp(−βH )], where β is the inverse temperature. The

original action is thus equivalent to an infinite-temperature
(β = 0) optimization. By changing the temperature, higher
weight will be assigned to lower-energy eigenstates in the
optimization. As we are concerned in this paper with quantum
annealing problems involving the ground state, the natural
question to ask is what happens when we use a zero tem-
perature (β = ∞) optimization, where we only optimize over
transitions into and out of the ground state. Because the effect
of ground state vs infinite temperature optimization is separate
from finding extra controls, in this section we only focus on
the local CD driving along the original adiabatic path. One
can of course combine the two approaches together, but such
full optimization is outside the scope of this work. We note on
passing that in some situations like in classical systems one
has to deal with finite-temperature actions to get meaningful
results for the AGP [17].

To study the effect of the ground-state action, we consider
the long-range model with α = 2 defined in Eq. (13). We note
that if we use the short-range model corresponding to α = ∞
instead then there is no effect of temperature on the action.
This fact follows from the equivalence of the short-range
model to a set of independent two-level systems, where all
operator norms are identical for the excited and ground states
[19]. In Fig. 7 we plot the fidelities for the local CD protocols
obtained using infinite- and zero-temperature actions. We see
that at sufficiently high orders of the variational ansatz where
the infinite temperature protocol already performs very well,
the ground-state optimization provides even further improve-
ment. However, at small � < 3, the ground-state optimization
tends to do slightly worse. A possible physical explanation is
that the ground-state protocol does poorly at suppressing tran-
sitions from the excited states, so if the system gets excited the
infinite temperature protocol does a better job of suppressing
further excitations.

FIG. 8. The fidelity of the final state after annealing using the
iterative optimization procedure, without any extra controls. At itera-
tion zero, the evolution happens according to the infinite-temperature
protocol. Then, this is used to construct an “ground state” protocol,
where the ground state is the state obtained from the previous evolu-
tion. This procedure is iterated until convergence. The dashed lines
show the final state fidelity when the true ground state, obtained by
exact diagonalization, is used.

In principle, unlike the T = ∞ optimization, the T = 0
optimization requires a priori knowledge of the ground state,
which would generally require a separate quantum simulator.
However, we can use instead the approximate ground state
prepared using the infinite-temperature CD protocol to further
optimize the local AGP, and then use that new local AGP to
prepare a better ground state. This procedure can be iterated,
returning the approximate ground-state AGP. We note that
this iterative scheme does not require any extra computational
resources and can be done using the same simulator (experi-
mental or computational) used to simulate time evolution of
the state.

Concretely, to implement this iterative procedure we first
evolve the initial state according to the T = ∞ protocol. Then
we use this approximate ground state along the protocol to
recompute the action and find the new variational local AGP.
Alternatively, one can perform experimental measurements
of the operators entering the action Sλ and then minimize
it with respect to the variational parameters. We note that
this local quadratic minimization can be always done on a
classical computer. Then, the same initial state can be evolved
according to this new protocol, which will produce a new
wave function leading to the new action and new variational
AGP. This procedure can be iterated and, provided that the or-
thonormal Krylov space construction of the AGP is used, the
iterative scheme generally converges. We illustrate the results
of this approximate ground-state optimization in Fig. 8. While
the converged fidelity is slightly less than that obtained using
the true ground state optimization, it still shows significant
improvement if large enough values of � are used.

In this section, we have applied this iterative procedure
to local CD driving without any extra controls, i.e., with a
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fixed ground-state path. This can also be combined with the
with the extra controls protocol that we describe in this work
for further improvement. This motivates the development of a
joint variational principle for both the variational AGP coef-
ficients αk and the extra control couplings β (n). We leave the
development of this principle to future work.

V. CONCLUSIONS AND OUTLOOK

Counterdiabatic driving can prepare quantum states adi-
abatically on timescales that are much shorter than typical
decoherence times. By restricting the locality of the CD
driving, we can obtain experimentally accessible protocols
for approximately preparing the ground states of interesting
many-body systems.

We have proposed a systematic method for finding extra
control terms for quantum annealing protocols with which to
augment a Hamiltonian, so that local CD driving prepares a
target ground state with exponentially better fidelity. Phrased
another way, our method specifies how to find the paths
through the space of possible Hamiltonian couplings along
which approximate CD driving will be more efficient. We find
these paths by restricting the additional terms to those which
preserve the commutator structure of the original CD driving
term. These terms can be effectively engineered via Floquet
protocols without needing to couple directly to any new terms.
We have tested this method on one-dimensional spin chains
with short- and long-range interactions and showed that it
allows for a large increase in fidelity when preparing GHZ
states via quantum annealing.

While this work has been principally concerned with
proposing this technique and testing it with simple models,
there are many others to which this recipe for more effi-
cient paths might be applied. Going beyond one-dimensional
systems, exploring models with frustration, or mappings to,
e.g., satisfiability problems on arbitrary graphs are all areas
where this recipe may yield improvement. Another interesting
direction is to pursue a joint variational principle for both
the variational AGP coefficients and the extra control cou-
plings. There are also more fundamental questions yet to be
answered, such as rigorously connecting this approach and
similar types of shortcuts [43], or similar methods in quantum
dynamics such as the flow equation approach [44].

The exact code used is available online [45].
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Algorithm 1. AGP Krylov space construction.

A0 ← ∂λH
b0 ← ‖A0‖
O0 ← A0/b0

A1 ← L|O0 )
b1 ← ‖A1‖
O1 ← A1/b1

for k ∈ 2 . . . 2 · � do
Ak ← L|Ok−1) − bk−1|Ok−2)
bk ← ‖Ak‖
Ok ← Ak/bk

end for

APPENDIX A: CONSTRUCTION OF ADIABATIC GAUGE
POTENTIAL IN KRYLOV SPACE

Let us provide more detail about how the approximate
AGP is constructed. In particular, we use a Krylov space
construction of the AGP which is slightly different to that
described in Ref. [13]. The main difference is that we demand
that subsequent terms in the commutator expansion be orthog-
onal to each other. In particular, we write the AGP in terms
of Krylov space operators Ok with coefficients γk (see also
Refs. [21,22]):

A(�)
λ = i

�∑
k=1

γkO2k−1. (A1)

Before we define each of these, let us introduce the follow-
ing notation for inner products and norms between operators,
where we denote the operator O by O → |O), and define the
Liouvillian superoperator L:

(A|B) = Tr(A†B)

D
,

‖A‖ =
√

(A|A),

L|O) = [H, O],

where D = 2N is the dimension of the Hilbert space, and H
is the Hamiltonian. It is critical that in order to perform the
ground-state optimization discussed in Sec. IV B correctly,
one must replace the trace inner product by the ground-state
average: (A|B) = 〈ψ0|A†B|ψ0〉. We reiterate that the iterative
procedure described in the main text can obtain these without
the use of a quantum computer. We construct the Krylov space
operators Ok according to the following algorithm:

From this, it is apparent that the choice of Lanczos coeffi-
cients bk enforces the condition that (Oi|Oj ) = δi j .

Now, we use the 2� Krylov operators Ok and Lanczos
coefficients bk to construct the �th-order approximate AGP.
To do this, we observe that the action Sλ of Eq. (4), using the
form of the AGP from Eq. (A1):

Sλ = 1 + 2γ1b0b1 +
�∑

k=1

(
γk

(
b2

2k + b2
2k−1

)
+ 2b2kb2k+1γkγk+1

)
,
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which we can optimize by taking ∇γk Sλ = 0, giving the fol-
lowing equations:

0 = γkAk + γk+1Bk + γk−1Bk−1 + b0b1δk,1,

Ak = b2
2k−1 + b2

2k,

Bk = b2kb2k+1.

These equations can be solved recursively. The solutions are
given by

γ1 = −b0b1

A1 − r1B1
,

γk+1 = −rkγk,

rk−1 = Bk−1

Ak − rkBk
,

r�−1 = B�−1

A�

.

In summary, at each discrete time step while solving the
Schrödinger equation, we compute 2� Lanczos coefficients bk

and Krylov operators Ok , then compute Bk for k ∈ [1, � − 1]
and Ak for k ∈ [1, �] using the bk . Then, we compute rk re-
cursively, starting with r�−1 and terminating with r1. Then, we
can compute γk and combining this with the previously obtain
Krylov operators Ok , we have the approximate AGP given by
Eq. (A1).

APPENDIX B: DETAILED CONSTRUCTION OF
ADIABATIC GAUGE POTENTIAL WITH EXTRA

CONTROLS USING FLOQUET PULSES

In Ref. [13], an implementation of the AGP and hence
of the CD protocol via Floquet engineering is given. This
is done by periodically driving both the Hamiltonian H and
the deformation ∂λH at some high frequency ω and its odd
multiples at 3ω, 5ω, . . . . The driving amplitudes of each har-
monic are then fine tuned such that the Magnus expansion of
the corresponding Floquet Hamiltonian match the desired CD
protocol. This Floquet protocol was, for example, recently re-
alized in the IBM quantum simulator [48]. One can extend that
approach to also engineer extra even commutators entering the
augmented CD Hamiltonian. Rather than doing so, here we
consider an alternative approach, where instead of utilizing
higher-order harmonics of the Floquet protocol we design an
appropriate pulse sequence within the Floquet period. Then
by utilizing pulse strengths as degrees of freedom we require
that the emerging Floquet Hamiltonian matches the desired
driving protocol. Such an approach was pioneered in the NMR
literature. It is now widely used in Floquet engineering on
various platforms [49–51]. In Fig. 9 we illustrate a particular
example of such a pulse sequence.

As an illustration of this method, we show here how
one can engineer the pulse sequence to generate the Floquet
Hamiltonian containing the desired commutators, which ap-
pear at second order in the Magnus expansion (see below).
It is conceptually straightforward to generalize this proce-
dure to higher orders or protocols with more pulses. The
Magnus expansion is controlled by the Floquet period T , or

FIG. 9. A cartoon illustration of the kinds of a pulse sequence
required for implementation of the augmented protocol. This echo-
type sequence is designed in a way that different pulses almost cancel
each other such that the terms appearing in different order of the
Magnus expansion are of the same order.

equivalently the Trotterization time step, which should be
sufficiently short. The other timescale if the protocol time
τ � T controls the rate of change of the coupling λ̇.

We choose the strength of the pulses so that we get the
terms we want in the Magnus expansion at first and second
order, and as long as the expansion is written in terms of these
small parameters the higher-order terms in the expansion may
be neglected. Then the main goal of the protocol design is to
choose the pulse strengths such that the low-order terms match
those in the desired CD Hamiltonian. Lower-order commuta-
tor terms are parametrically larger than higher-order terms in
the driving period T . To make them of the same order, one
needs to design echo-type pulses as is routinely done in the
NMR literature.

Within each period of the Floquet drive we have a sequence
of alternating pulses of H0 and H1, where the ith pulse has
strength εi. We want all of the pulses to be the same size, i.e.,
εi = εηi where ηi ≈ O(1) as T → 0. Since we are targeting
the Floquet Hamiltonian HF to second order with coefficients
proportional to T , and the coefficients of second-order terms
in the Magnus expansion have three powers of the εi, we take
ε = T 1/3.

Here we consider here a particular six-pulse sequence,
with terms {ε1H0, ε2H1, ε3H0, ε4H1, ε5H0, ε6H1}. Computing
the Magnus expansion [52] up to O(T ) gives

HF T = f0H0 + f1H1 − i f10[H1, H0]

+ f010[H0, [H1, H0]] + f110[H1, [H1, H0]].

The coefficients fi(λ) are determined by Magnus expansion,
and have been worked out in full for an arbitrary number of
pulses and higher-order terms [53]. The first few terms are

f0 = ε1 + ε3 + ε5, f1 = ε2 + ε4 + ε6,

f01 = ε2
ε1 + ε3 + ε5

2
+ ε4

ε1 + ε3 − ε5

2
+ ε6

ε1 − ε3 − ε5

2
,

... .
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We now match this expansion with H̃CDT . We assume
that λ changes sufficiently slowly so that it is nearly constant
within a Floquet period. The CD Hamiltonian that want to
match is

H̃CD = λH0 + (1 − λ)H1 − iλ̇α1[H1, H0]

+ β (1)[H0, [H1, H0]] + β (2)[H1, [H1, H0]],

so that the corresponding terms in the Magnus expansion are

f0 = λ, f1 = (1 − λ), f01 = λ̇α1(λ),

f010 = β (1)(λ), f110 = β (2)(λ).

Writing the pulse strengths as εi = T 1/3ηi, the following
protocol can be used:

η1 = −β
2/3
1

β
1/3
2

+
√

αβ1

3β2
λ̇1/2T 1/6 + 1

3
(1 − λ)T 2/3,

η2 = β
2/3
2

β
1/3
1

+
√

3αβ2

β1
λ̇1/2T 1/6 + 1

3
λT 2/3,

η3 = 2
β

2/3
1

β
1/3
2

+
√

αβ1

3β2
λ̇1/2T 1/6 + 1

3
(1 − λ)T 2/3,

η4 = β
2/3
2

β
1/3
1

+ 1

3
λT 2/3,

η5 = −β
2/3
1

β
1/3
2

− 2

√
αβ1

3β2
λ̇1/2T 1/6 + 1

3
(1 − λ)T,

η6 = −2
β

2/3
2

β
1/3
1

−
√

3αβ2

β1
λ̇1/2T 1/6 + 1

3
λT 2/3,

This choice of the protocol guarantees that HF and H̃CD

coincide up to the terms scaling as higher powers of T , which
can be made arbitrary small by taking the limit T → 0.

APPENDIX C: PERFORMANCE OF YY VS ZXZ
CONTROLS IN SHORT-RANGE MODEL

In the main text, we consider the preparation of GHZ states
in the short-range model using two extra control Hamiltoni-
ans: H (1)

c = YY and H (2)
c = ZXZ . Here we briefly analyze the

optimal directions in this extra control space. We have the
following annealing problem:

H̃ (λ) = λH0 + (1 − λ)H1 + Hc(λ),

H0 = −ZZ, H1 = −X,

Hc(λ) = βYY sin (πλ)YY + βZXZ sin (πλ)ZXZ.

In Fig. 10, we show a contour plot of the final fidelity
for different combinations of βYY and βZXZ using local CD
driving with � = 1 and � = 2 as defined in Eq. (5) for the
Hamiltonian above with N = 10. We find that for � = 1
the optimal protocol is very close to one where only one of the
controls is used, i.e., where either βYY = 0 or βZXZ = 0. The

FIG. 10. The fidelity obtained by augmenting the short-range
GHZ state preparation for N = 10 by either YY or ZXZ controls.
The origin represents the fidelity of state preparation without any
extra controls. The top shows � = 1 and the bottom shows � =
2. The x and y axis show the coefficient for the YY and ZXZ
controls, respectively. From the symmetry of this plot, it is clear
that neither the YY or ZXZ term has an advantage over the other.
Starting at � = 2, using both simultaneously provides a significant
advantage.

situation reverses for � = 2, where the optimal performance is
achieved for βZXZ ≈ −βYY . Figure 3 in the main text shows
the protocol performance along the corresponding optimal
directions.

APPENDIX D: DETAILED STEPS TO IMPLEMENT
THE METHOD

In this section, we describe in detail the step-by-step pro-
cess by which we find these improved paths for local CD
driving (see also Ref. [15]). The first step is to determine the
Hamiltonian for the physical system of interest and represent
it as a matrix. Furthermore, it is useful to leverage any symme-
tries present in the system and so construct the Hamiltonian in
the relevant symmetry sector, which can be done easily with
QuSpin or an equivalent software package. This will make the

024304-9



STEWART MORAWETZ AND ANATOLI POLKOVNIKOV PHYSICAL REVIEW B 110, 024304 (2024)

local CD driving more efficient by reducing the number of
transitions it tries to suppress. In the language of Eq. (6), this
means determining in H0 or H1 and then forming

H (λ) = λH0 + (1 − λ)H1.

This corresponds to the red path in Fig. 1. The next step is to
“augment” this Hamiltonian by adding to it two extra control
Hamiltonians, taking:

H̃ (λ) = H (λ) + β (1) sin (πλ)H (1)
c + β (2) sin (πλ)H (2)

c ,

where H (1)
c and H (2)

c are defined as in Eq. (12). We highlight
that this is only the simplest possible choice such that the
extra control Hamiltonians have no effect at the beginning
(λ = 0) and end (λ = 1) of the protocol, and that we can even
further improve the state-preparation fidelity by taking fur-
ther harmonics, i.e., taking β (i) sin(πλ) → ∑

k β
(i)
k sin(kπλ)

at the price of introducing more variational parameters. More
sophisticated methods such as quantum optimal control might
also be employed for even further improvement.

The next step is perform local counterdiabatic driving.
Using the “augmented” Hamiltonian H̃ in the Liouvillian
L = [H̃ , ·], we construct the approximate AGP Ã(�)

λ using the
procedure outlined in Appendix A. We add this operator to
form

H̃CD(λ) = H̃ (λ) + λ̇Ã(�)
λ .

With this local CD protocol H̃CD(λ), one can used stan-
dard numerical algorithms to solve the time-dependent
Schrödinger equation to find the final state |ψevolved(�β )〉. By
�β we mean that the final state will depend on the variational β

parameters of the extra controls Hamiltonians.
We then compute the fidelity using Eq. (10). We employ

the Powell minimization algorithm [54] to choose the values
of β (1) and β (2) which maximize the fidelity. Practically, we
limit the values the coefficients can take to |β (i)| < 3. This
concludes the steps to implementing our protocol. In Fig. 11
we apply this procedure to the short-range model Hamiltonian
of Eq. (11). This is the same as Fig. 3 except using the H (1)

c
and H (2)

c of Eq. (12) instead of YY and ZXZ .
We note that this algorithm finds local, not global, minima.

So while it works well for a single harmonic per extra con-
trol term, the optimization becomes more difficult for further
harmonics, and a global minimizer may be required. This
could be due to glassiness in the landscape of possible control
protocols [55].

APPENDIX E: EXPLANATION OF DIFFERENT REGIMES
OF FIDELITY IMPROVEMENT

As remarked upon in the main text, in Figs. 3, 5, 11, we see
two types of behavior for the fidelity of the final state prepared
with extra control Hamiltonians. The first regime is a plateau
where we can prepare the final state with near unit fidelity
up to a certain system size, whereas the second regime has
less than unit fidelity but is still exponentially improved when
compared with the “naive” path.

To try to understand these, we refer to Ref. [13], where the
variational optimization of the commutator ansatz for the AGP

FIG. 11. Improvement in the final-state fidelity obtained by
using the extra control ansatz H (1)

c = [H0, [H1, H0]] and H (2)
c =

[H1, [H1, H0]] to prepare a GHZ state by annealing the short-range
Hamiltonian of Eq. (11). This can be compared with Fig. 3 where
we use H (1)

c = YY and H (2)
c = ZXZ for the same protocol. Note that

they are extremely similar because the corresponding extra controls
are linear combinations of each other up to a rescaling of ZZ and X
in the original Hamiltonian. As before, red points indicate following
the naive original path, whereas blue indicates following an “aug-
mented” path.

[Eq. (5) in this work] can be understood as simple polynomial
fitting. We summarize it here:

The exact matrix elements of the AGP in the instantaneous
energy eigenbasis satisfy

〈m|Aλ|n〉 = −i
1

ωmn
〈m|∂λH |n〉 ,

where we denote ωmn = Em − En. We can write the matrix
elements of the approximate AGP A(�)

λ of Eq. (5) as

〈m|A(�)
λ |n〉 = i

�∑
k=1

αk 〈m| [H, [H, . . . , [H︸ ︷︷ ︸
2k−1

, ∂λH]]]|n〉

= i
�∑

k=1

αkω
2k−1
mn 〈m|∂λH |n〉 .

Defining f (ω) = −∑�
k=1 αkω

2k−1 and trying to equate the
matrix elements of the exact and approximate AGP gives

f (ωmn) = i〈m|A(�)
λ |n〉/ 〈m|∂λH |n〉 ,

⇒ ωmn f (ωmn) = 〈m|A(�)
λ |n〉/ 〈m|Aλ|n〉 .

Therefore, if the matrix elements exactly coincide then we
have that f (ωmn) = 1/ωmn, i.e., we have fit ωmn by f (ωmn)
for all ωmn present in the system. In other words, finding
the approximate AGP can be thought of as finding the best
approximation to 1/ω by a fixed number (�) of odd poly-
nomials. This fitting procedure is nicely illustrated in Fig. 1
of Ref. [13]. While this might seem at first glance to be a
system-independent problem, it depends strongly on the range
of excitation frequencies ωmn which are present in the system.

We can imagine that in a system with very few independent
excitation frequencies, the approximate AGP converges very
quickly due to needing to fit 1/ω at only a small number of
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FIG. 12. A snapshot of the variational optimization in terms of
fitting excitation frequencies, for the short-range model with N = 6.
On top is the naive path of the original Hamiltonian, and on the
bottom is the augmented path. Although this is just one snapshot,
it is apparent from this that the extra control Hamiltonian Hc = YY
makes local CD driving more efficient by bringing multiple excita-
tion frequencies together.

points. This is exactly what happens for small system sizes,
corresponding to the unit fidelity plateaus.

This fitting procedure happens for every point in the proto-
col. As an illustration we analyze here the point corresponding
to λ = 0.5, where the short-range model has a phase transition
in the thermodynamic limit. In Fig. 12, we show the poly-
nomial f (ω) obtained for the short-range model with N = 6
using the variational procedure together with the exact result
1/ω using Hc = YY . Crucially, we plot only the transition
frequencies corresponding to the excitations from the ground
state, which we denote by ωm0, which have nonzero matrix
element 〈m|∂λH |0〉. This significantly reduces the number of
relevant frequencies compared with the Hilbert space size.
The number of points is further reduced because there are
many nearly degenerate transition frequencies. As a result the
AGP is only required to suppress a small number of indepen-
dent frequencies, which can be fit by a lower-order polynomial
perfectly.

FIG. 13. A snapshot of the variational optimization in terms of
fitting excitation frequencies, for the short-range model with N = 12.
The top figure is the naive path, and the bottom is the augmented
path. As before, this is just one snapshot when using extra control
Hamiltonian Hc = YY . In this instance, it makes the local CD driving
more effective by shifting the excitation frequencies to larger values
(increasing the gap), making them much easier to fit.

It is apparent that the extra control Hamiltonian fulfills
two tasks: (i) it increases the gap in the system and (ii) it
leads to clustering of states such that there are fewer different
frequencies ωnm and thus it is easier to fit 1/ω with low-order
polynomials. For larger system sizes, the extra control Hamil-
tonian cannot group the independent excitation frequencies
into just two “clumps,” so instead it pushes them to larger
values, which is much easier to fit. This is shown in the case
of N = 12 in Fig. 13, again with Hc = YY .

The short-range Hamiltonian with the YY control is in-
tegrable and one might wonder if this fact allows for such
efficiency of the polynomial fitting. This is, however, not the
case and a very similar picture holds for nonintegrable models
as well. In Fig. 14 we show the long-range model with α = 2.
Although there are now far more excited states which are
connected to the ground state directly by H , qualitatively, the
effect of the extra control Hamiltonian is similar: it pushes
frequencies to higher values and clusters them together.
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FIG. 14. The variational optimization in terms of fitting excitation frequencies, for the long-range model of Eq. (13), with α = 2 and
N = 6. The long-range interactions break integrability, so the ground state is connected to far more excited states at first order in H . The naive
path is on top, whereas the path augmented by extra controls is on the bottom. The effect of the extra controls is qualitatively similar to the
integrable short-range case; they cause the frequencies to “bunch up” and increase the gap. Note the logarithmic scale for the augmented path.
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