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In systems undergoing localization-delocalization quantum phase transitions due to disorder or monitoring,
there is a crucial need for robust methods capable of distinguishing phases and uncovering their intrinsic
properties. In this paper, we develop a process of finding a Slater determinant representation of free-fermion
wave functions that accurately characterizes localized particles, a procedure we dub “unscrambling.” The
central idea is to minimize the overlap between envelopes of single-particle wave functions or, equivalently, to
maximize the inverse participation ratio of each orbital. This numerically efficient methodology can differentiate
between distinct types of wave functions: exponentially localized, power-law localized, and conformal critical,
also revealing the underlying physics of these states. The method is readily extendable to systems in higher
dimensions. Furthermore, we apply this approach to a more challenging problem involving disordered monitored
free fermions in one dimension, where the unscrambling process unveils the presence of a conformal critical
phase and a localized area-law quantum Zeno phase. Importantly, our method can also be extended to free
fermion systems without particle number conservation, which we demonstrate by estimating the phase diagram
of Z2-symmetric disordered monitored free fermions. Our results unlock the potential of utilizing single-particle
wave functions to gain valuable insights into the localization transition properties in systems such as monitored
free fermions and disordered models.

DOI: 10.1103/PhysRevB.110.024303

I. INTRODUCTION

In closed quantum mechanical systems, unitary evolution
often leads to thermalization, a process where information
about initial conditions becomes inaccessible in local ob-
servables [1–4]. There are, however, intriguing exceptions,
where the system instead exhibits nonequilibrium behavior,
such as retaining useful information for arbitrarily long times.
Paradigmatic examples of this are localized systems, where
the disorder is responsible for the breaking of the eigenstate
thermalization hypothesis.

Within the context of many-body systems, the transi-
tion between a many-body localized (MBL) phase and a
thermalized phase has captivated researchers and sparked
debates [5–9]. The prospect of stabilizing quantum informa-
tion using disorder is particularly relevant for experiments
involving quantum memories and quantum computation in
general. From the conceptual point of view, the transition to
the localized phase can be characterized by properties of the
energy spectrum and quantum states. In the former, one often
compares the system to the relevant random matrix theory
ensemble, examining statistics such as nearby level spac-
ings [10–12]. On the other hand, assessing the localization
properties of wave functions can be done through the inverse
participation ratio (IPR), a powerful tool in the study of MBL
systems [13–17].
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In the case of free fermion systems, IPR has proven
effective in characterizing the Anderson localization tran-
sition [18–21], where the single-particle wave functions
become exponentially localized in the insulating phase. Other
nonequilibrium processes in free fermion systems have seen
a resurgence in interest, owing largely to their tractability
through the single-particle picture. Most prominent examples
include dynamical phase transitions [22–25], time crys-
tals [26,27], quantum quenches [28–34], Floquet engineer-
ing [35–40], and monitored quantum systems [41,42]. The
last have garnered attention in the context of measurement-
induced entanglement transitions [43–48], where repeated
measurements force the system into an area-law quantum
Zeno phase. Notably, albeit the single-particle wave func-
tions serve as a valuable theoretical tool for visualizing

FIG. 1. A diagrammatic picture of the unscrambling method Q,
illustrating how the original Slater determinant matrix U transforms
into a collection of localized orbitals U ′ = UQ. U and U ′ are rep-
resented by plotting the density of the corresponding orbitals as a
function of a position. Q is approximated as a series of two-orbital
transformations (green gates).
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and understanding free-fermion physics, their precise def-
inition is somewhat ambiguous, which leaves the physics
unchanged but may hamper the theoretical interpretation. As
we will see in the course of this paper, we can resolve this
ambiguity by establishing a clear link between the proce-
dure for obtaining relevant single-particle representations and
the IPR.

Consider a free-fermion wave function |ψ〉, subject to par-
ticle number conservation. This wave function can be fully
characterized by its correlation matrix D, with elements Di j =
〈c†

i c j〉. Alternatively, we can express the wave function using
an ansatz,

|ψ〉 =
N∏

n=1

(
L∑

i=1

Uinc†
i

)
|0〉, (1)

where N represents the number of particles, L denotes the
system size, and |0〉 is the vacuum state. It is easy to see
that matrix U can be interpreted as a Slater determinant,
where each column of U corresponds to a single-particle wave
function |ψn〉 (also known as an orbital). Notably, matrix U is
an isometry, U †U = 1, and is intrinsically linked to the corre-
lation matrix, as D = UU †. However, it is essential to notice
that the matrix U is not uniquely defined, as a multiplication
U ′ = UQ by any unitary matrix Q leaves the correlation ma-
trix (and thus the physical state itself) unchanged.

Hence, we pose the central problem of this paper: Is there
a method of transforming the Slater determinant matrix U
into a set of single-particle wave functions that are endowed
with specific properties, such as localization? To answer this
question, we propose a methodology based on the average
IPR of all particle orbitals in the system. This procedure aims
to yield single-particle wave functions that reveal insights
into the presence or absence of localization (as illustrated
in Fig. 1), as well as internal model-specific characteristics.
Furthermore, we intend to validate this method by applying it
to wave functions produced through the interplay of disorder
and monitoring, where a measurement-induced entanglement
transition is present. Our objective is to demonstrate that the
proposed approach is applicable to a diverse range of systems,
extending beyond those solely localized through the disorder.

The paper is structured as follows. In Sec. II, we propose
a methodology that approximates matrix Q needed to trans-
form the representation into localized single-particle orbitals.
We test this method in Sec. III on three models exhibiting
three distinct behaviors: exponentially localized, conformally
invariant, and power-law localized. We apply the method to a
higher-dimensional system in Sec. IV, showing its versatility
across different lattice geometries. In Sec. V, we show how
the method behaves in a monitored disordered system with
a measurement-induced phase transition between localized
and critical regimes. We also extend the applicability of this
methodology to systems without number conservation, as dis-
cussed in Sec. VI. Finally, we conclude in Sec. VII.

II. METHODOLOGY

We begin by addressing the two-particle problem and sub-
sequently extend this approach to a multiparticle solution. Our
ultimate goal is to find the inverse of matrix Q−1 = Q†, which

can be thought of as a transformation that scrambles useful
information contained in localized orbitals. Hence, we aptly
term the process of finding Q “unscrambling.”

A. The two-particle problem

When considering only two particles, a possible transfor-
mation Q takes the form of a generic 2×2 unitary matrix,

Q = eiα/2

(
eiϕ cos θ eiβ sin θ

−e−iβ sin θ e−iϕ cos θ

)
, (2)

which depends on four free parameters (α, β, ϕ, θ ). However,
one can notice that any overall phase of a single-particle
wave function does not alter its physical interpretation. Con-
sequently, we can reduce the number of free parameters to just
two:

Q(ϕ, θ ) =
(

eiϕ cos θ sin θ

− sin θ e−iϕ cos θ

)
. (3)

Now, we introduce a cost function that encompasses the
localization properties of the two particles. We propose min-
imizing the overlap between the envelopes of single-particle
wave functions. For two particles labeled 1 and 2, this cost
function is defined as

f1,2(ϕ, θ ) =
∑

i

|U ′
i1|2|U ′

i2|2. (4)

The computational advantage lies in rearranging the expres-
sion by pushing the sum inside, yielding

f1,2(ϕ, θ ) = A cos2(2θ ) + Re[Beiϕ] sin(2θ ) cos(2θ )

− Re[Ce2iϕ] sin2(2θ ) + D sin2(2θ ), (5)

with

A =
∑

i

|Ui1|2|Ui2|2, (6)

B =
∑

i

(|Ui1|2 − |Ui2|2)Ui1U
∗
i2, (7)

C = 1

2

∑
i

U 2
i1(U ∗

i2)2, (8)

D = 1

4

∑
i

(|Ui1|4 + |Ui2|4). (9)

Coefficients A, B,C, D can be calculated once before the min-
imization process. Notably, the cost function f1,2(ϕ, θ ) (see
Fig. 2 for an example) is periodic in both ϕ and θ , with periods
2π and π/2, respectively, and has one minimum in the region
ϕ ∈ [0, π ), θ ∈ [0, π/2). As a result, the computational effort
of finding the minimum of f1,2 numerically is relatively low.

B. The multiparticle problem

When dealing with a large number of particles (N), a
challenge arises in parametrizing a generic unitary matrix
Q. The complexity stems from the fact that the number of
free parameters grows as (N2 − N ). Here, the subtracted N
accounts for the inherent freedom in choosing single-particle
wave function phase factors. To circumvent this computa-
tional hurdle, we propose to approximate Q as a series of
two-particle transformations.
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FIG. 2. Example of the cost function f1,2(ϕ, θ ) showing peri-
odicity in both variables. The dashed line divides two parts which
are reflections of each other. The minima are designated by white
crosses.

To achieve our goal, we minimize each pair of particles
consecutively, until a convergence is reached for the following
cost function:

f =
∑
n<m

fn,m, (10)

which is simply a sum of all two-particle cost functions.
Crucially, this cost function never increases during any two-
particle minimization. To understand why, let us examine the
change in f when minimizing particles n and m:

δ f = f ′ − f (11)

= δ fn,m +
∑

n′ �={n,m}
δ fn,n′ +

∑
n′ �={n,m}

δ fm,n′ (12)

= δ fn,m (13)

+
∑

i

(|U ′
in|2 + |U ′

im|2 − |Uin|2 − |Uim|2)
∑

n′
|Uin′ |2

= δ fn,m, (14)

as the expression in the bracket is zero. Hence, the proposed
process is not only numerically efficient, but also ensures that
the cost function never increases, with the change δ f being
a local property. We also find numerically that the results of
the unscrambling always correspond to local minima of the
multiparticle cost function (see Appendix A).

We now show the intimate connection between the pro-
posed cost function and IPR. Note that the following
expression is constant during the minimization process:∑

i

D2
ii = const (15)

= 2
∑
n<m

fn,m +
∑

n

∑
i

|Uin|4 (16)

= 2 f +
∑

n

IPR(n), (17)

where IPR of a single-particle wave function is defined as
IPR(n) = ∑

i |Uin|4 = ∑
i |〈i|ψn〉|4. IPR serves as a measure

of localization [18–21], and can take values between 0 and 1.
When IPR is large, the orbital is localized in the given basis
(in the real space, IPR ∼ 1/ξ ∼ const for localization length
ξ ), while if IPR is approximately 1/L, the orbital is delocal-
ized (which is a necessary, but not a sufficient condition for
thermalization). This gives the physical interpretation of the
unscrambling method: By minimizing the global cost function
f , which represents sums of overlaps between single-particle
wave function envelopes, we maximize the average IPR [de-
fined as

∑
n IPR(n)/N] of the particle orbitals. Intuitively,

this approach ensures that the orbitals become as localized as
possible.

III. TESTING THE METHOD

In this section, we demonstrate that the introduced method-
ology is capable of distinguishing among various types of
wave functions: extended, exponentially localized, and power-
law localized. Furthermore, this approach provides insights
into the internal structures of these distinct wave function
behaviors.

A. Exponentially localized wave functions
in Anderson localized systems

We commence by applying the unscrambling procedure
to the wave functions of an Anderson-localized model on a
periodic chain. The model Hamiltonian takes the form

H =
L∑

i=1

(c†
i ci+1 + H.c.) +

L∑
i=1

hini, (18)

where hi ∈ [−W,W ] is a random disordered potential with a
uniform box distribution and disorder strength W . We initial-
ize the system in the Néel state with N = L/2 particles, which
corresponds to Uin = δi,2n. Next, we evolve the state in time,
using

U (t + dt ) = e−i dt HU (t ), (19)

where H is an L × L matrix representing the Hamiltonian,
with elements Hi j = δi, j+1 + δi, j−1 + hiδi j . We set the time
step to dt = 0.05. At long times, this evolution should lead
to a wave function, which can be represented as a Slater
determinant of exponentially localized single-particle wave
functions. We, therefore, evolve the system up to tfin = 100
and subsequently apply the unscrambling method. Note that,
alternatively, we could use the correlation matrix D and
evolve it as D(t + dt ) = exp(−i dt H)D exp(i dt H), then sub-
sequently use singular value decomposition to obtain U .
However, applying operations directly on U is numerically
much more efficient.

The resulting single-particle wave functions for an ex-
ample system size of L = 204 are plotted in Fig. 3. Each
wave function is centered so the site with the largest occu-
pation probability is at i = 0 ≡ L. Then we define the typical
average,

|ψi|2 = exp[ln(|Uin|2)], (20)
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FIG. 3. Anderson localization of single-particle wave func-
tions revealed after the unscrambling procedure. The dashed lines
are the expected behavior of ∼ exp(−|i|/ξ ), with ξ ≈ 20/W 2.
L = 204, dt = 0.05, tfin = 100.

where ∗̄ is an average over 100 disorder realizations and all
particle orbitals n. This method of averaging (i.e., centering
first, then taking the typical average) will be used throughout
the rest of this paper.

The resulting orbitals exhibit the expected exponential

localization, |ψi|2 ∼ exp(−|i|/ξ ). The behavior of the local-
ization length ξ ≈ 20/W 2 is in complete agreement with the
well-known behavior (see the dashed lines in the figure) for
Anderson localization, including the prefactor [18,49]. This
simple test shows that the unscrambling procedure works well
for exponentially localized wave functions, not only revealing
localization, but also correctly predicting the value of the
localization length.

B. Conformally invariant wave functions in the XX model

To test how the method deals with critical wave functions,
we choose to investigate the ground state of the XX model
with a transverse field, which in the fermionic language can
be described by the Hamiltonian [50–53]:

H = −
L∑

i=1

(c†
i ci+1 + H.c.) + h

L∑
i=1

ni. (21)

This Hamiltonian can be easily diagonalized through the
Jordan-Wigner transformation,

H =
∑

k


kc†
kck, (22)

where the energy associated with mode k ∈ {0, . . . , L − 1} is


k = 2 cos

(
2πk

L

)
+ h. (23)

The ground state can be described as the state where all
occupied modes have a negative energy. Let us designate the
collection of occupied modes as K ∈ [ks, L − ks], where

ks = L

2π
arccos

(
−h

2

)
. (24)

FIG. 4. Entanglement entropy S of the ground state of the XX
model as a function of the system size L and for different values
of the transverse field h. The gray lines indicate [(1/3) ln L + C]
behavior for different offsets C, signifying conformal symmetry with
central charge c = 1.

It is easy to see that the two-point correlation function of the
ground state is then described by

Di j = 1

L

∑
k∈K

cos

(
2π

L
k(i − j)

)
. (25)

The ground state of the XX model is conformally invariant
when |h| < 2. We can use the correlation matrix D to obtain
entanglement entropy for the ground state as a function of
the system size and check for conformal symmetry. The von
Neumann entropy S of region A can be calculated as

S =
∑

i

[−λi ln λi − (1 − λi) ln(1 − λi)], (26)

where λi are eigenvalues of the correlation matrix D with
indices restricted to region A.

Figure 4 shows that, in agreement with existing literature,
the entanglement entropy of the ground state scales logarith-
mically with the system size, S = 1

3 ln L + C, signifying the
conformal symmetry with central charge c = 1. This property
is true for all |h| < 2, with only the additive constant C being
nonuniversal and depending on h.

We now investigate the properties of the unscrambled
single-particle wave functions. To obtain U from D, one can
use singular value decomposition, where the singular values
should be either 0 or 1. Figure 5 shows the orbitals for a
few values of the transverse field h and a set system size L =
204. The number of occupied modes is N = 89 for h = 0.4,
N = 47 for h = 1.5, and N = 21 for h = 1.9. We find two
interesting features of the orbitals. First, the single-particle
wave functions show oscillations with the number of troughs
equal to (N − 1), which seems to be tightly related to the
specifics of the model itself. We leave for future research
the peculiar features of these oscillations, such as why each
oscillation has a domelike structure.

Second, the orbitals on average follow a |ψi|2 ∼
csc2(iπ/L) behavior. This can be related to the correlation
functions from Eq. (25), which are modulated by
∼ csc[(i − j)π/L]. In the infinite-volume limit, this turns
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FIG. 5. Unscrambled single-particle wave functions for the
ground state of the XX model, system size L = 204, and different
values of transverse field h. The system is in a critical phase with
conformal symmetry when h < 2. The dashed lines are the modulat-
ing behavior ∼ csc2(iπ/L).

into a ∼1/(i − j) behavior. This brings us to one of
the properties of the critical phase often used as its
signature: the connected correlation functions, defined
as C(r) = |Di,i+r |2 = 〈ni〉〈ni+r〉 − 〈nini+r〉, should decay
algebraically as ∼1/r2 in the conformal phase. Note that
although the unscrambled wave functions are critical, the
single-particle eigenstates of this model will be delocalized.

In summary, we find that the unscrambled orbitals in
the critical conformal phase follow a ∼ csc2(iπ/L) behavior,
which we will later use as a marker of criticality.

C. Power-law localization in the symplectic
Hatano-Nelson model

To find whether the unscrambling procedure works for a
model with power-law localized wave functions, we consider
the symplectic Hatano-Nelson model with spinful particles,
previously investigated in Ref. [54], given by the Hamiltonian

H = − 1

2

L∑
i=1

[�†
i+1(1 + μσz − i�σx )�i (27)

+ �
†
i (1 − μσz + i�σx )�i+1],

where �i = (ci↑, ci↓)T, often called the Nambu spinor, in-
cludes both spin-up and spin-down fermion operators. The
Hamiltonian is non-Hermitian, with the strength of non-
Hermiticity controlled by μ. Parameter � describes the
coupling between spin-up and spin-down modes. The model
exhibits a skin effect phase transition [54], where the skin
effect is present for |μ| > |�|, and absent for |μ| < |�|. At
the critical line |μ| = |�|, the states exhibit a skin effect with
power-law localized wave functions, which is why we will
focus on this case.

The state can be described by a (2L×N ) matrix U , where
each row corresponds to spatial-spin index (i, s), s ∈ {↑,↓}.
We initialize the state with N = L = 200 particles, occupying
every site, i ∈ {1, . . . , L}, and alternating between spin up and
down. We then evolve the system using Eq. (19), where H is
now a (2L×2L) matrix encoding the Hamiltonian (27). We
choose the parameters to be at the critical line, μ = � = 1, so

FIG. 6. Unscrambled single-particle wave functions of the sym-
plectic Hatano-Nelson model for L = 200, visibly showing the
signatures of the skin effect, with particles either facing right or left.
The odd sublattice is indicated in red, while the even sites are denoted

in blue. The dashed lines are fits to |ψi|2 = (a − b|i|α )2.

the power-law localization and skin effect are present. After
each time step, the wave function needs to be normalized,
which can be done by thin QR decomposition of U = QR and
setting the new normalized U ′ = Q. We stop the evolution at
tfin = 100 and unscramble the orbitals.

We plot the spin-up and spin-down parts of the unscram-
bled orbitals in Fig. 6. Each wave function either faces right
or left, i.e., its magnitude grows towards the right or towards
the left of the system. We can also see that there is a difference
between odd and even sites of the chain: one sublattice faces
right or left, while the other is either close to zero or constant.
This shows an imbalance between the right- and left-facing
modes, which is the origin of the skin effect. We also show

power-law localization by fitting an ansatz |ψi| ∼ a − b|i|α ,
where a, b, α are fitting parameters and α is the power-law
exponent. The fitting is done only to the sublattice that is not
constant. The fitted power-law exponent is consistently found
to be α ≈ 0.88 for all wave functions.

In summary, the unscrambling method yields several sig-
nificant insights into the underlying properties of the wave
functions of the symplectic Hatano-Nelson model. First,
unscrambling reveals the existence of two types of quasipar-
ticles: one traveling right, the other left. Second, it clearly
shows the difference between the even and odd sublattices
of the system. Third, the unscrambled orbitals are indeed
power-law localized, as predicted by the theory.

IV. UNSCRAMBLING IN HIGHER DIMENSIONS

One interesting advantage of the unscrambling methodol-
ogy is that the cost function is essentially independent of the
lattice geometry. Consequently, the procedure can be read-
ily extended to higher dimensional lattices. In this section,
we apply the unscrambling method to the three-dimensional
(3D) Anderson model [18,55,56]. In contrast to the one-
dimensional case from the previous section, as well as the
two-dimensional case, this model exhibits an Anderson phase
transition from a diffusive metallic phase to a localized insu-
lating phase.
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FIG. 7. Unscrambled single-particle wave functions of the 3D Anderson model, with the disorder strength of (a) W = 4 (diffusive)
and (b) W = 12 (localized). We use a lattice of 10×10×10 sites. The legend in (b) applies in (a). (c) Unscrambled orbital dependence

on the distance r = √
x2 + y2 + z2 from the localization center. The dashed line shows the exponential decay |ψi|2 ∼ exp(−r/ξ ), where

ξ = 3.457 [58] is the localization length of the infinite system for W = 12.

We formally define the 3D Anderson model by the Hamil-
tonian from Eq. (18), with the hopping term applied between
each link on a cubic lattice of size L × L × L, and with peri-
odic boundary conditions. The Anderson transition happens at
the critical disorder strength of Wc ≈ 8.27 [57]. We initialize
the wave function to be half filled in a 3D checkerboard
pattern and evolve the system for time tfin = 8L. Subsequently,
we perform the unscrambling.

The unscrambled orbitals are shown in Fig. 7. The aver-
aging is done similarly to the one-dimensional case, where
we center each orbital at position (0,0,0) before averaging.
The unscrambled single-particle wave functions show a clear
change between the diffusive regime [W = 4, Fig. 7(a)],
where the orbitals are extended across the entire lattice, and
the localized phase [W = 12, Fig. 7(b)], where the orbitals are
localized. In Fig. 7(c), we show the orbitals as a function of the
distance from the localization center, r =

√
x2 + y2 + z2. In

the diffusive phase, the orbital is essentially constant, except
for r = 0, which is an artifact of the averaging procedure.
On the other hand, in the localized phase, the orbital exhibits

exponential decay |ψi|2 ∼ exp(−r/ξ ), where the localization
length ξ = 3.457 for W = 12 is taken from the literature [58].
The fit works best away from the localization center, where the
behavior is expected to be model dependent, and away from
the maximal distances, where finite-size effects are expected
to dominate.

Summarizing, the unscrambling methodology is shown
to work in the three-dimensional Anderson model, correctly
identifying the presence of the diffusive and localized phases,
and predicting the wave function decay consistent with the
literature.

V. SINGLE-PARTICLE WAVE FUNCTIONS
IN DISORDERED MONITORED FREE FERMIONS

We proceed to test the unscrambling methodology in
a more complicated scenario: a model of monitored free
fermions in a disordered field. This and similar monitored

models have been studied extensively in recent litera-
ture [41,42,59–80] in the context of measurement-induced
entanglement transitions. Long-time dynamics of the disor-
dered model was found to exhibit an entanglement transition
between a conformal critical phase, where the entanglement
grows logarithmically with the system size, and an area
law phase, where the entanglement saturates to a constant
value [75]. Specifically, the critical phase exists for small
measurement strengths and small disorder strengths [81].

In detail, the dynamics of disordered monitored free
fermions is governed by the stochastic Schrödinger equation,

d|ψ (t )〉 = − i H dt |ψ (t )〉 − γ dt

2

∑
i

(ni − 〈ni〉)2|ψ (t )〉

+
∑

i

(ni − 〈ni〉)dηt
i |ψ (t )〉, (28)

where γ is the measurement strength, dηt
i is an Itô increment

(a random number with variance γ dt), and the Hamiltonian
H is that of the Anderson model from Eq. (18). This stochastic
evolution models a continuous monitoring of particle number
occupation, which can be imagined as a series of homodyne
detectors in an experiment [42]. The dynamics can be trans-
lated into the following change in the matrix U :

U (t + dt ) = N eMe−i dt HU (t ), (29)

where M is an L × L measurement matrix with elements
Mi j = δi j (dηt

i + (2〈ni〉 − 1)γ dt ), and N is the normalization
constant needed after the measurement (normalization is im-
plemented as in Sec. III C).

We initialize the system as a half-filled Néel state and
stop the evolution after the long-time steady state is reached,
tfin = 8L for W � 1, and tfin = 8LW when W > 1. We sub-
sequently unscramble the resulting wave functions and plot
them in Fig. 8. Examples of wave functions with parameters
chosen inside the critical phase are in Fig. 8(a), and all fit

well within an ansatz |ψi|2 ∼ csc2(iπ/L) (dashed lines). This
shows that the wave functions exhibit the generic properties
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FIG. 8. Unscrambled single-particle wave functions of disor-
dered monitored free fermions for the system size of L = 204.
(a) The parameters used are within the conformally symmetric phase.
The dashed lines show the behavior ∼ csc2(iπ/L). (b) The parame-
ters used are within the conformally symmetric phase. The dashed
lines show the behavior ∼ csc2(iπ/L).

of criticality that we discussed in Sec. III B. The fit does not
work well only near the edges of the plot, which correspond to
short distances from the center of the wave function, where we
indeed do not expect generic behavior. Furthermore, Fig. 8(b)
shows parameters within the area-law phase, where the single-
particle wave functions exhibit exponential localization, as in
Sec. III A. Fitting an exponential decay (dashed lines) fails
near the (localization) center, but also near the very middle
of the plot, where large distances are impacted by finite-size
effects related to periodic boundary conditions. A similar be-
havior was seen in Sec. III A.

Interestingly, the localized single-particle wave functions
show almost no difference in behavior between two regimes:
a disorder-dominant regime (where W is large), and a
measurement-dominant regime (where γ is large instead).
Such a difference was hinted at by Ref. [75], where the
orbitals in the disorder-dominant regime appeared to fol-
low power-law localization. However, once unscrambled, the
power-law-like behavior transforms into an exponential de-
cay. This accentuates the importance of proper unscrambling
in unraveling the underlying properties of the quantum state.
Despite this, note that the two regimes remain discernible
through distinct decay behaviors of the autocorrelation func-
tions [75]. This echoes similar observations in the interacting
case [82].

In conclusion, the unscrambling process provides cru-
cial insights. The unscrambled single-particle wave functions

effectively distinguish between conformal and localized
phases arising from the interplay of continuous measure-
ments and disorder. This, in turn, suggests the existence of a
measurement-induced transition within the phase diagram of
this model. By unscrambling, we gain access to the expected
properties of the wave functions, shedding light on the under-
lying physics.

While the unscrambling methodology has been shown to
effectively illuminate the intrinsic properties of single-particle
orbitals, it is essential to recognize that all the models con-
sidered thus far shared a common feature: particle number
conservation. We address this issue in the next section.

VI. UNSCRAMBLING WITHOUT PARTICLE
NUMBER CONSERVATION

In models lacking particle number conservation, such as
those coupled to a superconductor [83–85], free-fermionic
systems can still be fully described by their two-point correla-
tion functions. In this context, we require particle-conserving
elements Di j = 〈c†

i c j〉 and particle-nonconserving elements
Fi j = 〈cic j〉 to comprehensively define these correlations.
Moreover, within this framework, there exists an ansatz for
any Gaussian state [85],

|ψ〉 = N exp

⎛
⎝−1

2

∑
i j

((U †)−1V †)i jc
†
i c†

j

⎞
⎠|0〉, (30)

where N = √| det U | is the normalization constant. Matrices
U and V , both of size (L × L), describe a Bogoliubov rotation
necessary for transforming between standard fermion opera-
tors c†

i and Bogoliubov fermions:

γ †
n =

∑
i

(Uinc†
i + Vinci ). (31)

Notably, Bogoliubov fermions are quasiparticles composed of
particles and holes. The fermion commutation relations im-
pose certain properties on U and V . Also, correlation matrices
can be expressed as D = UU † and F = UV †.

Interestingly, one can easily see that the wave function
ansatz in Eq. (30) and correlation matrices D and F are in-
variant under the transformation

U �→ UQ, V �→ V Q, (32)

where Q is any unitary matrix. This is similar to the freedom in
transforming the matrix U in the particle-conserving problem
of Eq. (1). One can form a matrix

U =
(

U
V

)
(33)

of size 2L × L, where each column defines the coefficients
of a Bogoliubov fermion. Similarly to the particle-conserving
problem, we can define the inverse participation ratio of an
orbital n as

IPR(n) =
∑

i

|Uin|4 =
∑

i

(|Uin|4 + |Vin|4). (34)

IPR is very clearly representation dependent and, in general,
changes when the transformation from Eq. (32) is applied.
This is usually not an issue, as U and V often appear directly
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after the diagonalization of the Hamiltonian in its Bogoliubov-
de-Gennes form, i.e., the columns of U and V correspond to its
eigenvectors and are well-defined. However, if one considers
an evolution of the wave function from Eq. (30), U and V may
no longer be uniquely defined. A paradigmatic example of this
is taking a quantum measurement, where both U and V need
to be renormalized, losing uniqueness [65].

We can again tackle this issue by unscrambling the Bogoli-
ubov quasiparticles. We propose the following cost function
directly associated with the definition of IPR [86]:

fn,m =
∑

i

|Uin|2|Uim|2

=
∑

i

(|Uin|2|Uim|2 + |Vin|2|Vim|2), (35)

where again minimizing f = ∑
n<m fn,m is equivalent to max-

imizing average IPR. Next, we would like to test the proposed
cost function in a realistic model.

Disordered monitored free fermions
without particle number conservation

We choose the model of monitored fermions without parti-
cle number conservation similar to those in Refs. [65–68] but
with an additional disordered field. Similarly to Sec. V, this
allows us to test the viability of the method not only in moni-
tored quantum circuits but also in the presence of the disorder.
Comments parallel to Sec. V will be applicable here—we
expect that for low values of both measurement strength and
disorder strength, the model will show a critical entanglement
behavior, while in other parts of the phase diagram the area
law will be present. The model in question is governed by the
modified Anderson Hamiltonian,

H =
L∑

i=1

(c†
i ci+1 + κc†

i c†
i+1 + H.c.) +

L∑
i=1

hini, (36)

where κ is the strength of the particle number violating term
(the anisotropy in the spin language). The disordered field hi is
again chosen uniformly on hi ∈ [−W,W ]. This Hamiltonian
breaks the U (1) symmetry of particle number conservation
and instead is endowed with the Z2 symmetry of fermion
parity.

The stochastic Schrödinger equation from Eq. (28) is now
equivalent to the following evolution:

U(t + dt ) = N e2Me−2i dt HU(t ), (37)

where the elements of H are defined through H = �†H� with
the Nambu spinor � = (c1, ..., cL, c†

1, ..., c†
L )T ; similarly for

the elements of M. Note the appearance of the factors of 2 in
comparison to Eq. (29) [85]. We initialize the system in the
vacuum state |0〉, which is equivalent to U = 1 and V = 0,
and evolve the state until the steady state is reached, with tfin =
16L when W � 1 and tfin = 16LW for W > 1. The anisotropy
is set to κ = 0.7. The matrix U is subsequently unscrambled
using the cost function of Eq. (35).

We present the unscrambled single-particle wave func-

tions for particles |ψ•
i |2 (columns of matrix U ) for L = 200

in Fig. 9, where panel (a) shows example parameters for

FIG. 9. Unscrambled single-particle wave functions of disor-
dered monitored free fermions without particle number conservation
for the system size of L = 200. (a) The parameters used are within
the conformally symmetric phase. The dashed lines show the behav-
ior ∼ csc2(iπ/L). (b) The parameters used are within the conformally
symmetric phase. The dashed lines show the behavior ∼ csc2(iπ/L).

which conformal symmetry is present and panel (b) show-
cases the area-law phase. The corresponding wave functions

for holes |ψ◦
i |2 (columns of matrix V ) are nearly identical

to those of particles, and are therefore not shown in the fig-
ures. Surprisingly, the results do not differ significantly from
our observations in the particle-conserving case. Specifically,
we observe both conformally symmetric wave functions in

Fig. 9(a) [with clear signatures of |ψ•
i |2 ∼ csc2(iπ/L) behav-

ior], and exponentially localized orbitals in Fig. 9(b). Our
findings strongly imply that even without particle number
conservation, disordered monitored free fermions continue to
exhibit a measurement-induced phase transition between an
area law and a critical phase with logarithmic entanglement.
Indeed, we anticipate that the resulting phase diagram will
closely resemble that reported in Ref. [75]. We have approx-
imated how such a phase diagram might appear in Fig. 10,
where the unscrambled orbitals for L = 200 were assessed
to either fit conformal or localized behavior (see Appendix C
for details). It is important to stress that a rigorous finite-size
scaling analysis is necessary to pinpoint the exact location
of the transition line. However, this crude estimation em-
phasizes two important features of this model: the existence
of an entanglement transition and the nonmonotonicity of
the transition line. In previous literature [75,87] this non-
monotonic behavior has been associated with a mechanism,
where a small amount of disorder could facilitate entangle-
ment spreading, stabilizing the critical phase. Our results thus

024303-8



UNSCRAMBLING OF SINGLE-PARTICLE WAVE … PHYSICAL REVIEW B 110, 024303 (2024)

FIG. 10. Phase diagram of the disordered monitored free
fermions without particle number conservation. The estimate of the
transition line (green) is done by estimating whether the behavior
of the unscrambled single-particle wave functions is localized (blue
circles) or conformal (orange squares). Undecided behavior is desig-
nated by green diamonds.

suggest that this mechanism is still present in the model with-
out the U (1) symmetry.

In summary, the unscrambling process effectively extends
to free fermions without the conservation of the number
of particles. The resulting orbitals serve as powerful indi-
cators of distinct phases and underscore the existence of a
measurement-induced transition.

VII. DISCUSSION AND OUTLOOK

In this paper, we have investigated the problem of single-
particle representations of free-fermion wave functions.
Specifically, our focus was revealing the underlying physics
of free-fermion systems with localization. We have developed
a method to find a representation in the most localized
basis, where the proposed cost function is always decreasing
and has a physical interpretation of maximizing the inverse
participation ratio of each single-particle orbital. The method
works well on paradigmatic examples of (1) conformally
symmetric, (2) exponentially localized, and (3) power-law
localized systems, and can be extended to encompass systems
without particle number conservation. This methodology
was shown to be important in understanding the localization
transition properties and give insights into the internal
structure of free-fermion wave functions. Specifically, the
method informs about the properties of the entanglement
transition in monitored free-fermion models, and in models
with a disorder, where the system exhibits Anderson
localization.

Several interesting avenues emerge for further exploration
of this work. First, while we have successfully identified clear
signatures deep within distinct phases, pinpointing the phase
transition line based solely on single-particle wave functions
remains a challenge. Therefore, the need for proper finite-
size scaling analysis arises. The scaling could, for example,

be performed using the IPR of the unscrambled orbitals or
some other associated property. It would be fascinating to
investigate whether such an analysis can unveil universal
properties of the transition, such as critical exponents. Sec-
ond, the method is readily extendable to free fermions in two
and higher dimensions, where monitoring also forces a phase
transition, albeit of a different nature [63,79,80].

Third, the question remains whether it is possible to expand
the unscrambling methodology to systems beyond nonin-
teracting fermions. Bethe-ansatz solvable integrable models,
characterized by states in the Slater determinant form (such as
in Ref. [88]), present an obvious choice for such exploration.
Furthermore, while most states cannot be precisely expressed
as Slater determinants, many can be approximated as such.
It would be intriguing to explore the implications of the un-
scrambling process for these approximations, and whether
this would provide us with any further physical insights. In
the context of many-body quantum systems, the one-particle
density matrix (OPDM) description [17,89–91] has proven
useful for understanding many-body localization. Perhaps the
unscrambling method could be applied to the natural orbitals
(OPDM eigenvectors), although this may necessitate adapting
the cost function to incorporate the information about orbital
occupations (OPDM eigenvalues). Moreover, the interpreta-
tion of this procedure would require further consideration,
albeit naively, the unscrambling should yield the maximally
localized set of orbitals. As we venture into the topic of
interacting many-body models, the need for physical insights
becomes increasingly pronounced, together with the need for
novel methods that allow us to unravel the intricate dynamics
of complex quantum systems.

All relevant data present in this publication can be accessed
at [92].
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APPENDIX A: UNSCRAMBLING METHOD AND LOCAL
MINIMA OF THE MULTIPARTICLE COST FUNCTION

In this Appendix, we demonstrate numerically that the
unscrambling procedure yields a local minimum of the mul-
tiparticle cost function from Eq. (10). To achieve this, we
must apply a transformation that goes beyond the two-particle
unscrambling, since we already know that a converged result
of the unscrambling process is a simultaneous minimum of
all two-particle cost functions. Specifically, consider a unitary
matrix,

Q = exp(iβG), (A1)
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FIG. 11. Difference ε of cost functions between transformed
single-particle orbitals U ′ = exp(iβG) and the original U . (a) Ex-
ample of the unscrambling when the result has not converged. ε

may be negative for some random matrices G for low enough β,
signifying that the result is not a minimum. (b) Converged result is
numerically a local minimum, with ε always positive. All panels use
results for the disordered monitored free fermions without particle
number conservation (see Sec. VI) for γ = 0.05,W = 4.5, and show
100 random realizations of G.

where G is a Hermitian random matrix from the Gaussian
unitary ensemble, and β is a parameter controlling the close-
ness of Q to the identity matrix. Applying Q to the matrix
of single-particle wave functions U takes us away from the
unscrambling result in a random direction, U ′ = UQ. We then
compare the difference ε between the cost function for U ′
and that for U . If this difference is always positive for any
choice of G and β, it confirms that the unscrambling outcome
corresponds to a local minimum.

To illustrate how an unscrambling result would fail this
test, we stop the unscrambling before the convergence is
reached, with the corresponding plot shown in Fig. 11(a).
For sufficiently small β, the values of ε may be negative,
indicating that the unconverged result is not a minimum. In
contrast, Fig. 11(b) showcases an example of a converged
result, where ε consistently remains positive (except when the
difference is smaller than the numerical precision of ∼10−14),
suggesting a local minimum. We have rigorously examined
samples from all models considered in this paper, and they all
fall in the latter category. Thus, we are reasonably confident
that the result of the unscrambling process always corresponds
to a local minimum of the cost function.

FIG. 12. Unscrambled orbitals (solid lines) of the
one-dimensional Anderson model on a periodic chain of size
L = 204, compared with the averaged single-particle eigenfunctions
in the middle 10% (dashed lines) and edge 5% (dotted lines) of the
spectrum.

APPENDIX B: SINGLE-PARTICLE EIGENVECTORS
OF THE ANDERSON MODEL

In this Appendix, we compare the behavior of single-
particle eigenvectors of the 1D Anderson model with the
unscrambled orbitals of Sec. III A. The eigenvectors can be
obtained by diagonalizing the Hamiltonian matrix H of size
L × L, defined below Eq. (19). Conceptually, the evolution of
the orbitals from Sec. III A explores the bulk of the Hilbert
space, hence we expect the behavior to be representative of
the system near E ≈ 0 (middle of the spectrum). However,
the single-particle eigenvectors of the Anderson Hamiltonian
are quite special points of the Hilbert space, hence it is hard
to make a direct comparison. Figure 12 shows that the single-

FIG. 13. Density plot of the function g that measures the
difference between the results and the conformal behavior
for the disordered monitored free fermions without particle
number conservation. The transition line (in white) estimates
the transition point between the conformal behavior and the
area law.
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particle eigenfunctions generically decay more rapidly than
the unscrambled orbitals. Single-particle eigenvectors at the
edge of the spectrum exhibit a more rapid decay than those
near the middle of the spectrum (E ≈ 0).

APPENDIX C: PHASE DIAGRAM OF THE DISORDERED
MONITORED FREE FERMIONS WITHOUT PARTICLE

NUMBER CONSERVATION

Here we show in detail how the localized, conformal, and
intermediate behaviors were determined in Fig. 10. To de-
cide whether the conformal behavior is present, we fix the
coefficient A of the function ψ = A csc2(iπ/L) by choosing
it to fit exactly to the data at the point i = L/4. The choice
is so we ignore the nonuniversal behavior near the orbital
center (i = 0) and the finite-size effect near i = L/2. Then,
a function g(γ ,W ) measures the difference between the data

and the expected behavior on a log scale,

g(γ ,W ) =
∑
i∈L

| ln(|ψ•
i |2) − ln[A csc2(iπ/L)]|, (C1)

where L encompasses the middle 80% of the sites. We then
perform this calculation for a grid W ∈ {0.0, 0.5, 1.5, 3.0,
4.5, 6.0, 7.5, 9.0}, γ ∈ {0.05, 0.5, 1.5, 2.0, 3.0, 4.0} at
the system size of L = 200. We do not consider the line
γ = 0 corresponding to an Anderson-localized model, since it
most likely follows a separate behavior mimicking Ref. [75],
where there is an abrupt change as soon as any monitoring is
introduced.

The result is shown in Fig. 13. The points in the red region
are chosen as being close to critical, the green region is local-
ized, and the blue region points are designated as intermediate.
The transition line is then estimated as the boundary between
the red and green regions.
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