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Recently, researchers have shown that nanostructured interfaces can manipulate the thermal boundary con-
ductance at the interface, but their conclusions are contradictory, and mechanisms are unclear. In this paper, we
investigate the impact of nanostructured interfaces on thermal boundary conductance by considering roughness
dependence. To achieve this goal, first, an interface model accounting for spectral specularity and spectral
specular and spectral diffuse scatterings is deduced. Next, the Monte Carlo framework of interface treatment
for spectral specularity and spectral specular and spectral diffuse scatterings at heterogeneous interfaces is
constructed. Then they are validated through comparisons with the discrete-ordinates method and experiments.
Finally, the roughness dependence for thermal transport through planar and nanostructured interfaces is studied.
Results give a nonmonotonic relationship between thermal boundary conductance and roughness for planar
interface, and the manipulation of thermal boundary conductance by nanostructured interfaces depends on
the system and interface geometries and the interface roughness. The effect of interface roughness is found
to be the dominant impact factor in films with a thickness of tens of nanometers. Further investigations for
these small-scale films show that the roughness of their horizontal and vertical interfaces impact thermal
boundary conductance differently. Thus, the nonuniform roughness for horizontal and vertical interfaces is
proposed to successfully expand the manipulation of thermal boundary conductance in films with small
size.

DOI: 10.1103/PhysRevB.110.024302

I. INTRODUCTION

Interfaces may dominate thermal transport in current
micro/nanoscale electronics and thermoelectrics [1,2]. Ma-
nipulation of interfacial phonon transport is crucial for the
efficient thermal management of electronics and the optimiza-
tion of thermoelectrics. Thermal boundary conductance, the
reciprocal of thermal boundary resistance, is a key physical
quantity measuring the ability of thermal transport across
the interface, defined as the ratio of the heat flux across the
interface over the temperature jump at the interface [3]. Small
thermal boundary conductance results in the accumulation
of thermal energy near the interface and the increase in the
temperature of electronics, possibly leading to failures [4]. On
the contrary, small thermal boundary conductance enhances
the figure of merit of thermoelectrics and thus their efficien-
cies [5]. Therefore, increasing or decreasing thermal boundary
conductance is an important means to achieve the efficient
thermal management of electronics and the optimization of
thermoelectrics.

Previous researchers have shown that nanostructured
interfaces can effectively manipulate thermal boundary con-
ductance, but their conclusions are contradictory, and mecha-
nisms are unclear [6–12]. In detail, the molecular dynamics
method was taken to simulate phonon transport through
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nanopillar interfaces, and thermal boundary conductances
were found to be enhanced by these nanostructured interfaces
[8]. An analytical relationship between thermal boundary con-
ductance and structural features of nanostructured interfaces
was developed based on the molecular dynamics method, and
it also found that nanostructured interfaces could enhance
thermal boundary conductance [9]. Some experiments and
simulations confirmed the enhancement of thermal bound-
ary conductance by nanostructured interfaces [11,13–16].
Furthermore, through combining analytical and molecular dy-
namics methods, the nanostructured interface was optimized
to further increase thermal boundary conductance [10], and
the impact of shape of nanostructured interfaces on the ther-
mal boundary conductance enhancement was discussed by
combining the phonon lattice Boltzmann method and the
molecular dynamics method [17]. All the above researchers
mainly attributed the enhancement through nanostructured in-
terfaces to the additional thermal conduction pathway caused
by the increase of contact area. On the contrary, it was found
that the nanostructured interface could reduce thermal bound-
ary conductance through Monte Carlo simulation [12]. Some
experiments also derived the negative relationship between
contact area and thermal boundary conductance by generating
rough interfaces, which should increase the contact area as
well [6,7]. Unlike the explanation of the thermal boundary
conductance enhancement by the increase of contact area,
the reduction is attributed to the increased resistive scattering.
Therefore, it is necessary to further investigate the impact of
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nanostructured interfaces on thermal boundary conductance
and reveal the underlying mechanisms to better manipulate
thermal boundary conductance using nanostructured inter-
faces.

A phonon interacting with the interface will either transmit
or be reflected, quantified by its transmissivity, defined as the
probability of phonon transmitting across the interface. There
are generally two classical models for the phonon transmissiv-
ity, namely, acoustic mismatch model (AMM) [18] and diffuse
mismatch model (DMM) [19]. AMM treated the interface as
a completely smooth plane and phonons as the plane waves
completely specularly scattered by the interface. It usually
worked well at very low temperatures where the wavelengths
of most phonons were extremely larger than the size of the
interface asperity [18]. DMM treated the interface as a com-
pletely rough plane and phonons as the particles completely
diffusely scattered by the interface. It often worked well at
higher temperatures where the wavelengths of most phonons
were comparable with or smaller than the size of the interface
asperity [19]. The mixed mismatch model (MMM) based on
the classical AMM and DMM was developed by assuming
that phonons are partially specularly and partially diffusely
scattered by the interface after introducing the specularity, de-
fined as the probability of specular scattering and related to the
interface roughness [20]. It worked well within a wider tem-
perature range than AMM and DMM. These classical models
all assumed that both specularity and phonon transmissivity
were frequency independent [18–20]. However, both experi-
ments and simulations indicated the spectral dependence of
specularity and phonon transmissivity [21–23]. Thus, various
interface models accounting for either completely spectral
diffuse scattering or completely spectral specular scattering
were developed under various assumptions and better pre-
dicted thermal boundary conductance, referred to spectral
AMMs (SAMMs) and spectral DMMs (SDMMs) [24,25]. Re-
cently, interface models considering the spectral specularity
were developed through the weighted average of AMM and
DMM or SAMMs and SDMMs, better predicting the mea-
sured phonon transmissivity [26–28]. However, on the one
hand, either both specular and diffuse scatterings or one of
them is frequency independent in these models [26–28]. On
the other hand, the weighted average of AMM and DMM or
SAMMs and SDMMs fails to satisfy the principle of detailed
balance for spectral specularity. Therefore, there is still a lack
of an interface model that considers spectral specularity and
spectral specular and spectral diffuse scatterings and satisfies
the principle of detailed balance to better understand interfa-
cial phonon transport.

Many methods have been used in the research of inter-
facial phonon transport, mainly including the microscopic
method [29–36], the mesoscopic method [37–40], and exper-
iment [41–43]. Microscopic methods contain the molecular
dynamics method [31,33,36], the Green’s function method
[30,32], the lattice dynamics method [34,35], etc. These
methods are only suitable for small systems and computation-
ally expensive for large systems. Experiments for interfacial
phonon transport are challenging and not good at analyz-
ing the detailed mechanisms. Mesoscopic methods are based
on directly solving the phonon Boltzmann transport equa-
tion and suitable for larger systems, mainly including the

deterministic method [37,38,40] and the statistical method
[39,44]. The former is difficult for high-dimensional systems
or systems with complex interfaces. The latter, also called
the Monte Carlo method, can easily treat high-dimensional
systems or systems with complex interfaces. The Monte Carlo
framework of the treatment for the heterogeneous interface
with frequency-independent phonon transmissivity was first
established to simulate the thermal conductivity of nanopar-
ticle composites [39]. Frequency-independent specularity and
phonon transmissivity at heterogeneous interfaces were then
considered in the Monte Carlo method for phonon trans-
port across superlattice or nanostructured interfaces [45,46].
The Monte Carlo framework considering spectral specularity
and spectral phonon transmissivity at homogenous interfaces
was proposed for phonon transport in polycrystalline mate-
rials [44]. Based on SDMM, the Monte Carlo framework
considering spectral phonon transmissivity at heterogeneous
interfaces was then constructed [12]. Recently, spectral specu-
larity and frequency-independent specular and spectral diffuse
scatterings at heterogeneous interfaces were considered in
the Monte Carlo method [28]. However, there is still a need
to develop a Monte Carlo framework for spectral specular-
ity and spectral specular and spectral diffuse scatterings at
heterogeneous interfaces to further study interfacial phonon
transport.

The goal of this paper is to investigate the impact of
nanostructured interfaces on thermal boundary conductance
by considering roughness dependence and giving the under-
lying mechanisms. To achieve this, an interface model and
Monte Carlo framework accounting for spectral specularity
and spectral specular and spectral diffuse scatterings at the
interface will be deduced first in Sec. II. Next, they will
be validated in Sec. III by comparisons with the discrete-
ordinates method and experiments. Then Sec. IV will give
the results and discussions, including spectral and angular-
dependent transmissivity as well as phonon transport through
planar interfaces and nanostructured interfaces with uniform
and nonuniform roughnesses. Finally, Sec. V will remark on
the conclusions.

II. THEORETICAL MODEL AND
NUMERICAL METHOD

In this section, an interface model, called the spectral
MMM (SMMM), and the Monte Carlo framework are de-
rived sequentially. The interface model accounting for spectral
specularity and spectral specular and spectral diffuse scatter-
ings is first deduced based on partially specular and partially
diffuse scattering. Then the Monte Carlo framework for spec-
tral specularity and spectral specular and spectral diffuse
scatterings at heterogeneous interfaces is developed based on
SMMM.

A. SMMM

First, the SMMM accounting for spectral specularity and
spectral specular and spectral diffuse scatterings is deduced.
Phonons scattered by an interface will either transmit across
the interface or be reflected, and according to the energy con-
servation law for interface scattering, the following equations
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hold:

αi j (θi, ω, p) = Pi(ω, p)αSpecular,i j (θi, ω, p) + [1 − Pi(ω, p)]αDiffuse,i j (ω, p), (1)

α ji(θ j, ω, p) = Pj (ω, p)αSpecular, ji(θ j, ω, p) + [1 − Pj (ω, p)]αDiffuse, ji(ω, p), (2)

where αi j and α ji denote the total phonon transmissivity from side i to j and that in the reverse direction, respectively, with side
labels i and j; αSpecular,i j and αSpecular, ji denote the phonon transmissivity for specular interface scattering from side i to j and
that in the reverse direction, respectively; αDiffuse,i j and αDiffuse, ji denote the phonon transmissivity for diffuse interface scattering
from side i to j and that in the reverse direction, respectively; P is the specularity; ω and p represent phonon angular frequency
and polarization; and θi and θ j represent the incident angles for the scattered phonons on sides i and j. The heat flux from side i
to j is given as

qi→ j = 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
αi j (θi, ω, p)h̄ω f (ω, Te,i )Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi, (3)

where Di(ω, p) and vg,i denote the density of states and group velocity of the material on side i; ωmax,p,i is the maximum angular
frequency of polarization p on side i; and f (ω, Te,i ) = 1/[exp( h̄ω

kBTe,i
) − 1] represents the Bose-Einstein distribution at the emitted

phonon temperature Te,i on side i with the reduced Plank’s constant h̄ and the Boltzmann’s constant kB. The definition for the
emitted phonon temperature will be given in Sec. III. Similarly, the heat flux from side j to i is given as

qj→i = 2π
∑

p

∫ π/2

0

∫ ωmax,p, j

0
α ji(θ j, ω, p)h̄ω f (ω, Te, j )Dj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j, (4)

where Dj (ω, p) and vg, j denote the density of states and group velocity of the material on side j; ωmax,p, j is the maximum angular
frequency of polarization p on side j; and f (ω, Te, j ) represents the Bose-Einstein distribution at the emitted phonon temperature
Te, j on side j. Thus, the total heat flux from side i to j is obtained as

q = 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
αi j (θi, ω, p)h̄ω f (ω, Te,i )Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

− 2π
∑

p

∫ π/2

0

∫ ωmax,p, j

0
α ji(θ j, ω, p)h̄ω f (ω, Te, j )Dj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j . (5)

If the system is equilibrated at equilibrium temperature Te, j , the emitted phonon temperatures on both sides equal Te, j , and
the total heat flux should be 0. Thus, the relation below is obtained:

2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
αi j (θi, ω, p)h̄ω f (ω, Te, j )Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

= 2π
∑

p

∫ π/2

0

∫ ωmax,p, j

0
α ji(θ j, ω, p)h̄ω f (ω, Te, j )Dj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j . (6)

Then Eq. (5) can be rewritten as

q = 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
αi j (θi, ω, p)h̄ω[ f (ω, Te,i ) − f (ω, Te, j )]Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi. (7)

Based on Eq. (1), Eq. (7) can be rewritten as

q = 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
{Pi(ω, p)αSpecular,i j (θi, ω, p) + [1 − Pi(ω, p)]αDiffuse,i j (ω, p)}

× h̄ω[ f (ω, Te,i ) − f (ω, Te, j )]Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

= 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
Pi(ω, p)αSpecular,i j (θi, ω, p)h̄ω[ f (ω, Te,i ) − f (ω, Te, j )]Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

+ 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
[1 − Pi(ω, p)]αDiffuse,i j (ω, p)h̄ω[ f (ω, Te,i ) − f (ω, Te, j )]Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

= qSpecular + qDiffuse, (8)
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where

qSpecular = 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
Pi(ω, p)αSpecular,i j (θi, ω, p)h̄ω[ f (ω, Te,i ) − f (ω, Te, j )]Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

and

qDiffuse = 2π
∑

p

∫ π/2

0

∫ ωmax,p,i

0
[1 − Pi(ω, p)]αDiffuse,i j (ω, p)h̄ω[ f (ω, Te,i ) − f (ω, Te, j )]Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

denote the heat fluxes induced by specular and diffuse scatterings, respectively. When the system is equilibrated at equilibrium
temperature T0, the emitted phonon temperatures on both sides should equal T0, i.e., Te,i = Te, j = T0. Then based on the relations
above, the heat fluxes induced by both specular and diffuse scatterings, qSpecular and qDiffuse, equal 0.

For the case where Te,i = Te, j = T0, Eq. (5) is rewritten as

q = 2π
∑

p

∫ π
2

0

∫ ωmax,p,i

0
αi j (θi, ω, p)h̄ω f (ω, T0)Di(ω, p)vg,i(ω, p) cos θi sin θidωdθi

− 2π
∑

p

∫ π
2

0

∫ ωmax,p, j

0
α ji(θ j, ω, p)h̄ω f (ω, T0)Dj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j . (9)

After introducing a referenced equilibrium temperature T ref , which is slightly lower than the equilibrium temperature T0,
Eq. (9) can be rewritten as below:

q = (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p) cos θi sin θidωdθi

− (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
α ji(θ j, ω, p)Cj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j, (10)

where C = h̄ω
d f
dT D denotes the spectral heat capacity. Based on Eqs. (1), (2), and (10), the heat fluxes induced by specular and

diffuse scatterings are given as

qSpecular = (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
Pi(ω, p)αSpecular,i j (θi, ω, p)Ci(ω, p)vg,i(ω, p) cos θi sin θidωdθi

− (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
Pj (ω, p)αSpecular, ji(θ j, ω, p)Cj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j, (11)

qDiffuse = (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
[1 − Pi(ω, p)]αDiffuse,i j (ω, p)Ci(ω, p)vg,i(ω, p) cos θi sin θidωdθi

− (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
[1 − Pj (ω, p)]αDiffuse, ji(ω, p)Cj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j . (12)

The demonstrations above indicate qSpecular = 0 and qDiffuse = 0 when Te,i = Te, j = T0, and thus, the two following relations
are obtained as

(T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
Pi(ω, p)αSpecular,i j (θi, ω, p)Ci(ω, p)vg,i(ω, p) cos θi sin θidωdθi

= (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
Pj (ω, p)αSpecular, ji

(
θ j, ω, p

)
Cj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j, (13)

(T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
[1 − Pi(ω, p)]αDiffuse,i j (ω, p)Ci(ω, p)vg,i(ω, p) cos θi sin θidωdθi

= (T0 − T ref )2π
∑

p

∫ π/2

0

∫ ωmax,p

0
[1 − Pj (ω, p)]αDiffuse, ji(ω, p)Cj (ω, p)vg, j (ω, p) cos θ j sin θ jdωdθ j . (14)
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The left and right terms in Eqs. (13) and (14) represent the heat flux from side i to j and that from side j to i induced by
specular and diffuse scattering, respectively. The inelastic scattering and polarization conversion have been demonstrated to
play significant roles in interface scattering in some cases but can be neglected in the others [20,21,47–51], so they were either
considered or not in the previous interface models [24,25]. To derive an approximate interface model, in this paper, we do
not include the impacts from inelastic scattering and polarization conversion for simplicity. Consequently, by ignoring inelastic
scattering and polarization conversion and based on the principle of detailed balance, the spectral heat fluxes for each frequency
and polarization in both directions in Eqs. (13) and (14) are equal as below:∫ 1

0
Pi(ω, p)αSpecular,i j (μi, ω, p)Ci(ω, p)vg,i(ω, p)μidμi =

∫ 1

0
Pj (ω, p)αSpecular, ji(μ j, ω, p)Cj (ω, p)vg, j (ω, p)μ jdμ j, (15)

[1 − Pi(ω, p)]αDiffuse,i j (ω, p)Ci(ω, p)vg,i(ω, p) = [1 − Pj (ω, p)]αDiffuse, ji(ω, p)Cj (ω, p)vg, j (ω, p), (16)

where μi = cos θi and μ j = cos θ j .
Refer to the treatment of AMM for the specular scattering, i.e., treating the phonons as plane waves with the incident and

transmitted angles satisfying Snell’s law, and Eq. (15) can be revised as

Pi(ω, p)αSpecular,i j (μi, ω, p)Ci(ω, p)vg,i(ω, p)μidμi = Pj (ω, p)αSpecular, ji(μ j, ω, p)Cj (ω, p)vg, j (ω, p)μ jdμ j . (17)

Snell’s law gives [18]
vg,i(ω, p)

sin θi
= vg, j (ω, p)

sin θ j
. (18)

Then Eq. (17) can be rewritten as

Pi(ω, p)αSpecular,i j (μi, ω, p)Ci(ω, p)v3
g,i(ω, p) = Pj (ω, p)αSpecular, ji(μ j, ω, p)Cj (ω, p)v3

g, j (ω, p). (19)

With elastic scattering and neglecting polarization conversion, AMM gives the transmissivity as [18]

αAMM,i j (θi, ω, p) = αAMM, ji(θ j, ω, p) =
4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 , (20)

where ρ denotes the mass density. Equation (20) holds when the spectra on both sides are identical, and in this case, the
transmissivities for specular interface scattering are maximum [20]. However, if their spectra are different, the transmissivities
should be corrected and smaller than those by Eq. (20) [20]. The principle for correcting refers to the maximum transmission
model (MTM) [20,52], the generalization for the phonon radiation limit [52], with some modifications here. The MTM assumes
that the transmissivity in one direction equals the extreme upper bound, i.e., 1, and that in the reverse direction is obtained
based on the total heat flux being 0 at the equilibrium state, which should be <1. The MTM gives the maximum possible
transmissivity under the ideal condition. Like the MTM, in this paper, we assume that the transmissivity in one direction equals
the extreme upper bound for specular interface scattering, and that in the reverse direction is obtained based on the heat flux
induced by specular scattering being 0 at the equilibrium state or Eq. (19), which should be smaller than that by Eq. (20). In detail,
when Pi(ω, p)Ci(ω, p)v3

g,i(ω, p) � Pj (ω, p)Cj (ω, p)v3
g, j (ω, p), αSpecular,i j (μi, ω, p) � αSpecular, ji(μ j, ω, p) is valid according to

Eq. (19). Thus, the transmissivity from side j to i can reach the extreme upper bound for specular interface scattering and still
be given by Eq. (20) as

αSpecular, ji(θ j, ω, p) =
4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 . (21)

Then the transmissivity from side i to j is derived based on Eq. (19) as

αSpecular,i j (θi, ω, p) = Pj (ω, p)Cj (ω, p)v3
g, j (ω, p)

Pi(ω, p)Ci(ω, p)v3
g,i(ω, p)

4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 . (22)

When Pi(ω, p)Ci(ω, p)v3
g,i(ω, p) < Pj (ω, p)Cj (ω, p)v3

g, j (ω, p), αSpecular,i j (μi, ω, p) > αSpecular, ji(μ j, ω, p) is valid according
to Eq. (19). Thus, the transmissivity from side i to j can reach the extreme upper bound for specular interface scattering and still
be given by Eq. (20) as

αSpecular,i j (θi, ω, p) =
4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 . (23)

Based on Eq. (19), transmissivity from side j to i is derived as

αSpecular, ji(θ j, ω, p) = Pi(ω, p)Ci(ω, p)v3
g,i(ω, p)

Pj (ω, p)Cj (ω, p)v3
g, j (ω, p)

4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 . (24)
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The correction above gives the maximum possible transmissivity for specular interface scattering. Through Eqs. (21)–(24),
the transmissivities for both cases can be unified as

αSpecular,i j (θi, ω, p) = min

{
1,

Pj (ω, p)Cj (ω, p)v3
g, j (ω, p)

Pi(ω, p)Ci(ω, p)v3
g,i(ω, p)

} 4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 , (25)

αSpecular, ji
(
θ j, ω, p

) = min

{
1,

Pi(ω, p)Ci(ω, p)v3
g,i(ω, p)

Pj (ω, p)Cj (ω, p)v3
g, j (ω, p)

} 4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2 . (26)

For the diffusely scattered phonons, the following relations hold [19,24]:

αDiffuse, ji(ω, p) = rDiffuse,ii(ω, p) = 1 − αDiffuse,i j (ω, p), (27)

where r denotes the reflectivity. Equation (27) indicates that the probability of a phonon transmitting across the interface from
side j to i equals that being reflected back from side i to i. Based on Eqs. (16) and (27), the following equations are obtained:

αDiffuse,i j (ω, p) = [1 − Pj (ω, p)]Cj (ω, p)vg, j (ω, p)

[1 − Pi(ω, p)]Ci(ω, p)vg,i(ω, p) + [1 − Pj (ω, p)]Cj (ω, p)vg, j (ω, p)
, (28)

αDiffuse, ji(ω, p) = [1 − Pi(ω, p)]Ci(ω, p)vg,i(ω, p)

[1 − Pi(ω, p)]Ci(ω, p)vg,i(ω, p) + [1 − Pj (ω, p)]Cj (ω, p)vg, j (ω, p)
. (29)

Considering C = h̄ω
d f
dT D = h̄ω

d f
dT

k2

2π2vg
with wave number k, Eqs. (28) and (29) can be rewritten as

αDiffuse,i j (ω, p) = [1 − Pj (ω, p)]k2
j (ω, p)

[1 − Pi(ω, p)]k2
i (ω, p) + [1 − Pj (ω, p)]k2

j (ω, p)
, (30)

αDiffuse, ji(ω, p) = [1 − Pi(ω, p)]k2
i (ω, p)

[1 − Pi(ω, p)]k2
i (ω, p) + [1 − Pj (ω, p)]k2

j (ω, p)
. (31)

Equations (30) and (31) will degenerate into one SDMM with the identical specularities on both sides [12,24].
Furthermore, the following specularity dependent on phonon wavelength is considered in this paper [53]:

P(ω, p) = exp

[
− 16π2η2

λ2(ω, p)

]
, (32)

where λ denotes phonon wavelength, obtained from λ(ω, p) = 2π
k(ω,p) ; and η is the interface roughness, also called the root mean

square roughness of the interface.
Based on Eqs. (1), (2), (25), (26), and (30)–(32), the present SMMM accounting for spectral specularity and spectral specular

and spectral diffuse scatterings is derived as

αi j (θi, ω, p) = Pi(ω, p)αSpecular,i j (θi, ω, p) + [1 − Pi(ω, p)]αDiffuse,i j (ω, p)

= exp

[
− 16π2η2

λ2
i (ω, p)

]
min

{
1,

Pj (ω, p)Cj (ω, p)v3
g, j (ω, p)

Pi(ω, p)Ci(ω, p)v3
g,i(ω, p)

} 4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2

+
{

1 − exp

[
− 16π2η2

λ2
i (ω, p)

]}
[1 − Pj (ω, p)]k2

j (ω, p)

[1 − Pi(ω, p)]k2
i (ω, p) + [1 − Pj (ω, p)]k2

j (ω, p)
, (33)

α ji(θ j, ω, p) = Pj (ω, p)αSpecular, ji(θ j, ω, p) + [1 − Pj (ω, p)]αDiffuse, ji(ω, p)

= exp

[
− 16π2η2

λ2
j (ω, p)

]
min

{
1,

Pi(ω, p)Ci(ω, p)v3
g,i(ω, p)

Pj (ω, p)Cj (ω, p)v3
g, j (ω, p)

} 4ρ jvg, j (ω,p)
ρivg,i (ω,p)

cos θ j

cos θi[ ρ jvg, j (ω,p)
ρivg,i (ω,p) + cos θ j

cos θi

]2

+
{

1 − exp

[
− 16π2η2

λ2
j (ω, p)

]}
[1 − Pi(ω, p)]k2

i (ω, p)

[1 − Pi(ω, p)]k2
i (ω, p) + [1 − Pj (ω, p)]k2

j (ω, p)
, (34)

024302-6



ROUGHNESS DEPENDENCE OF PHONON-INTERFACE … PHYSICAL REVIEW B 110, 024302 (2024)

where Pi(ω, p) = exp[− 16π2η2

λ2
i (ω,p)

] and Pj (ω, p) =
exp[− 16π2η2

λ2
j (ω,p)

]. The present SMMM indicates that the

transmissivity depends not only on the phonon spectra
and incident angle but also on the specularity; that is, changes
in specularity may lead to changes in transmissivity. This
model will degenerate into the classical MMM for gray media
with identical specularities on both sides [20]. Compared with
the recent interface models [27,28], the present SMMM can
not only capture the spectrum dependence of specularity and
specular and diffuse scatterings but also satisfy the principle
of detailed balance.

B. Interface treatment in Monte Carlo framework

Secondly, the Monte Carlo framework for spectral spec-
ularity and spectral specular and spectral diffuse scatterings
at heterogeneous interfaces is developed based on the above
SMMM. Through a random sampling technique, the Monte
Carlo method for phonon transport can give the macroscopic
information, analogous to its counterpart, the direct simula-
tion Monte Carlo method for rarefied gas flow and photon
transport [54,55]. In this paper, we adopt the steady-state
version of the kinetic Monte Carlo method, based on the lin-
earized version of deviational formulation of the energy-based
phonon Boltzmann transport equation [56,57]. The devia-
tional formulation of the energy-based phonon Boltzmann
transport equation is given as below [56]:

∂ed

∂t
+ vg(ω, p) · ∇ed = (epse − eref ) − ed

τ (ω, p,T )
, (35)

where ed = e − eref denotes the deviational energy with
the energy distribution e = h̄ω f with the phonon distribu-
tion f , and the referenced equilibrium energy distribution
eref = h̄ω f ref with the Bose-Einstein distribution f ref =
1/[exp( h̄ω

kBT ref ) − 1] at the referenced equilibrium temper-
ature T ref ; epse = h̄ω f pse is the pseudoequilibrium en-
ergy distribution with the Bose-Einstein distribution f pse =
1/[exp( h̄ω

kBT pse ) − 1] at pseudoequilibrium temperature T pse; vg

and τ are the vector of group velocity and the relaxation time,
respectively; and T represents the equilibrium temperature.
The steady-state formulation of Eq. (35) is considered for the
present Monte Carlo method as [56,57]

vg(ω, p) · ∇ed = (epse − eref ) − ed

τ (ω, p,T )
. (36)

The steady-state version of the kinetic-type Monte Carlo
method adopted in the present simulation is obtained by
further linearizing Eq. (36) at small temperature difference
[56,57].

The steady-state version of the kinetic-type Monte Carlo
method directly obtains the macroscopic information at steady
state, including the temperature distribution and heat flux,
by tracking random walks of several energy packets one by
one, more efficiently than its transient counterpart. It totally
contains five steps to run the simulation for each energy
packet, i.e., initialization, advection, scattering, sampling, and
boundary condition, with the detailed algorithm in Ref. [57].
Interface scattering will be implemented in the scattering

step when an energy packet interacts with the interface. The
present interface treatment in the Monte Carlo framework is
like Ref. [45] for gray media, but here, we consider a more
general case with spectral specularity and spectral specular
and spectral diffuse scatterings at heterogeneous interfaces.
Without loss of generality, the energy packet incident on the
interface on side i is considered. The detailed Monte Carlo
framework for interface treatment in this paper is as follows:

(a) Calculate the distances of the energy packet from its
present position to the locations of the interface, boundary,
and intrinsic scatterings, respectively. The distances for the
interface and boundary scatterings can be determined from
its trajectory. The distance for the intrinsic scattering can be
derived from the phonon relaxation time expression. If the
distance for the interface scattering is the shortest, the energy
packet will be scattered by the interface first.

(b) For the energy packet scattered by the interface first,
a random number R1 between 0 and 1 is generated and
compared with the specularity Pi(ω, p). If R1 � Pi(ω, p), this
energy packet will be specularly scattered. On the contrary, it
will be diffusely scattered. Since the spectral specularity and
the heterogeneous interface are considered, the specularity
may be different for energy packets with different frequencies
or polarizations and on both sides of the interface.

(c) When the energy packet is specularly scattered, an-
other random number R2 between 0 and 1 is generated
and compared with the spectral transmissivity for specular
scattering αSpecular,i j . If R2 � αSpecular,i j , this energy packet
will transmit across the interface. For the transmitted energy
packet, conserve its frequency and polarization but update
the group velocity and relaxation time based on the phonon
spectra on the new side, and its advection direction will be also
updated based on Snell’s law, i.e., Eq. (18). On the contrary,
this energy packet will be reflected. The reflection angle is
given by (π − θi ) with the incident angle θi. All other prop-
erties are conserved for the reflected energy packets. Since
the heterogeneous interface is considered, the properties of the
incident and transmitted energy packets are different.

(d) When the energy packet is diffusely scattered, another
random number R3 between 0 and 1 is generated and com-
pared with the spectral transmissivity for diffuse scattering
αDiffuse,i j . If R3 � αDiffuse,i j , the energy packet will transmit
across the interface. Its frequency and polarization are con-
served, but group velocity and relaxation time are updated
according to the phonon spectra on the new side. Additionally,
its advection direction is updated based on Lambert’s cosine
law [58]. On the contrary, the energy packet will be reflected
to the original side with the updated advection direction based
on Lambert’s cosine law [58]. Except for the advection di-
rection, all other properties of the reflected energy packet are
conserved. The implementation of Lambert’s cosine law in
the Monte Carlo method is as follow [58]. Generating two
random numbers between 0 and 1 as R4 and R5, the velocity
components of the transmitted energy packet in each direction
are calculated by

v1 = vg, j cos θ = vg, j
√

R4,

v2 = vg, j sin θ cos φ = vg, j

√
1 − R4 cos (2πR5), (37)

v3 = vg, j sin θ sin φ = vg, j

√
1 − R4 sin (2πR5),
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FIG. 1. The flow chart of interface treatment in Monte Carlo framework for spectral specularity and spectral specular and spectral diffuse
scatterings.

and those of the reflected energy packet are calculated by

v1 = vg,i cos (π − θ ) = −vg,i cos θ = −vg,i
√

R4,

v2 = vg,i sin (π − θ ) cos φ

= vg,i sin θ cos φ

= vg,i

√
1 − R4 cos (2πR5), (38)

v3 = vg,i sin (π − θ ) sin φ

= vg,i sin θ sin φ

= vg,i

√
1 − R4 sin (2πR5),

where v1 denotes the velocity component perpendicular to the
interface, and v2 and v3 denote the velocity components par-
allel to the interface; and θ and φ are the polar and azimuthal
angles, respectively.

Finally, the algorithm above is summarized in Fig. 1.
For partially specular and partially diffuse scattering, there

are generally two approaches to treat the interface scatter-
ing in Monte Carlo simulation. The first one is to generate
one random number to first determine whether the phonon
transmits or is reflected and then generate another random
number to determine whether the scattering is specular or
diffuse, as Ref. [44] does at the homogenous interface. The
second one is to generate one random number to first deter-
mine whether the scattering is diffuse or specular and then
generate another random number to determine whether the
phonon transmits or is reflected, as Ref. [45] does in gray
media. Here, we will demonstrate both approaches are correct

and consistent with each other. For simplicity, only the case
of the phonons incident on the interface from side i to j is
considered, with frequency ω, polarization p, and incident
angle θi. The demonstrations for other cases are similar. Based
on Eq. (1), the proportions for specularly transmitted, specu-
larly reflected, diffusely transmitted, and diffusely reflected
phonons among all phonons scattered by the interface are
Pi(ω, p)αSpecular,i j (θi, ω, p), Pi(ω, p)[1 − αSpecular,i j (θi, ω, p)],
[1 − Pi(ω, p)]αDiffuse,i j (ω, p), and [1 − Pi(ω, p)][1−αDiffuse,i j

(ω, p)], respectively. The condition to justify the cor-
rectness of the Monte Carlo framework for interface
treatment is its ability to accurately calculate these
proportions.

If following the first approach, one random number is
generated and compared with the transmissivity αi j (θi, ω, p)
to first determine whether the phonons transmit. It means that
the proportions for transmitted and reflected phonons among
all phonons scattered by the interface are αi j (θi, ω, p) and
1 − αi j (θi, ω, p). Then another random number is generated to
determine whether the scattering is specular or diffuse. From
Eq. (1), the proportions of specularly and diffusely transmitted
phonons among transmitted phonons are

Pi(ω, p)αSpecular,i j (θi, ω, p)

αi j (θi, ω, p)

and

[1 − Pi(ω, p)]αDiffuse,i j (ω, p)

αi j (θi, ω, p)
,
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i.e.,

Pi(ω, p)αSpecular,i j (θi, ω, p)

Pi(ω, p)αSpecular,i j (θi, ω, p) + [1 − Pi(ω, p)]αDiffuse,i j (ω, p)

and

[1 − Pi(ω, p)]αDiffuse,i j (ω, p)

Pi(ω, p)αSpecular,i j (θi, ω, p) + [1 − Pi(ω, p)]αDiffuse,i j (ω, p)
.

When αSpecular,i j (θi, ω, p) = αDiffuse,i j (ω, p), these two pro-
portions equal Pi(ω, p) and 1 − Pi(ω, p), as the case
in Ref. [44]. Thus, the proportions of specularly and
diffusely transmitted phonons among all phonons scat-
tered by the interface are Pi(ω, p)αSpecular,i j (θi, ω, p) and
[1 − Pi(ω, p)]αDiffuse,i j (ω, p). Similarly, the proportions of
specularly and diffusely reflected phonons among all phonons
scattered by the interface are Pi(ω, p)[1 − αSpecular,i j (θi, ω, p)]
and [1 − Pi(ω, p)][1 − αDiffuse,i j (ω, p)]. Hence, the first ap-
proach can reproduce these proportions and satisfies the
condition. If following the second approach, one random
number is generated and compared with the specularity
Pi(ω, p) to first determine whether the scattering is specular
or diffuse. It means that the proportions for specularly and
diffusely scattered phonons among all phonons scattered by
the interface are Pi(ω, p) and 1 − Pi(ω, p), respectively. Then
another random number is generated to determine whether
phonons transmit or are reflected. For specular scattering,
this random number is compared with the transmissivity
for specular scattering αSpecular,i j (θi, ω, p). It means that the
proportions of specularly transmitted and reflected phonons
among specularly scattered phonons are αSpecular,i j (θi, ω, p)
and 1 − αSpecular,i j (θi, ω, p). Thus, the proportions of specu-
larly transmitted and reflected phonons among all phonons
scattered by the interface are Pi(ω, p)αSpecular,i j (θi, ω, p)
and Pi(ω, p)[1 − αSpecular,i j (θi, ω, p)]. For diffuse scattering,
this random number is compared with the transmissivity
for diffuse scattering αDiffuse,i j (ω, p). It indicates that the
proportions of diffusely transmitted and reflected phonons
among diffusely scattered phonons are αDiffuse,i j (ω, p) and
1 − αDiffuse,i j (ω, p). Thus, the proportions of diffusely trans-
mitted and reflected phonons among all phonons scat-
tered by the interface are [1 − Pi(ω, p)]αDiffuse,i j (ω, p) and
[1 − Pi(ω, p)][1 − αDiffuse,i j (ω, p)]. Therefore, the second ap-
proach can also accurately reproduce the above proportions
and thus satisfies the condition, consistent with the first ap-
proach. In the present Monte Carlo framework, the interface
treatment follows the second approach.

III. VALIDATIONS

In the present section, the SMMM and the Monte Carlo
method are validated in cross-plane phonon transport across
monolayer films and cross-plane interfacial phonon transport
across bilayer films by comparisons with the discrete-
ordinates method and experiments.

A. Cross-plane phonon transport

First, in cross-plane phonon transport across monolayer
films, the present Monte Carlo method is verified for films
without interfaces by comparisons with the discrete-ordinates

FIG. 2. Monolayer film for cross-plane phonon transport and bi-
layer film for cross-plane interfacial phonon transport: (a) monolayer
film and (b) bilayer film. 1 and 2 label two materials.

method. These monolayer films are composed of Al, Si, and
Ge, shown in Fig. 2(a). The numerical implementations for
the discrete-ordinates method are well developed and referred
to in Refs. [37,40,59], solving difference equations of the
phonon Boltzmann transport equation discretized by the finite
difference method at each discrete angle with the isothermal
boundary conditions. The isotropic [100] dispersions of Al are
adopted from Ref. [60], and those for Si and Ge are taken
from Ref. [61,62], with the contributions from both acoustic
and optical polarizations, and their phonon relaxation times
are referred to in Ref. [63]. The temperature distributions and
heat fluxes along films at steady state are first obtained by the
Monte Carlo method and the discrete-ordinates method. Then
the thermal conductivities are calculated based on Fourier’s
law with the temperature distributions and heat fluxes, using
the formula κ = q/[L(TL − TR)], where q denotes the average
heat flux along the film, L being the thickness of the film, and
TL and TR representing the boundary temperatures on the left
and right sides. The numbers of energy packets are simply
selected as 150 million, and the boundary temperatures on the
left and right sides are fixed at 303 and 297 K, respectively.
Concerning too-high computational cost for large thicknesses
in both the Monte Carlo method and the discrete-ordinates
method, the maximum thicknesses for three materials are
selected as 500 nm. Figure 3 gives the temperature distribu-
tions and the thermal conductivities at various thicknesses
of films by these two methods, showing good agreement.
Although thermal conductivities in Fig. 3(d) are not converged
due to the nonnegligible boundary scattering effect, the cor-
rectness of the present Monte Carlo method is still verified
when two methods agree with each other. It means that the
present Monte Carlo method can accurately simulate phonon
transport through monolayer films, and the boundary tem-
perature jumps increase as the thickness decreases, resulting
from stronger nonequilibrium effects by increasingly frequent
boundary scattering. Additionally, the thermal conductivity
decreases with decreasing the thickness, indicating the in-
creasing thermal resistances at boundaries, also a result of
increasingly frequent boundary scattering.
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(a) (b)

(c) (d)

FIG. 3. The temperature distribution and thermal conductivity at various thicknesses of monolayer films: (a) temperature distribution of Al
film; (b) temperature distribution of Si film; (c) temperature distribution of Ge film; and (d) thermal conductivities of Al, Si, and Ge films.

B. Cross-plane interfacial phonon transport

Secondly, in cross-plane interfacial phonon transport
across bilayer films with planar interfaces, the present SMMM
and Monte Carlo framework for the interface scattering are
validated by comparisons with the discrete-ordinates method
and experiments. The implementations of the discrete-
ordinates method inside each layer are the same as those
for cross-plane phonon transport in the previous part, and
the interface treatment is adopted to bridge two layers. The
present interface treatment in the discrete-ordinates method
is like that for completely spectral diffuse scattering in
Refs. [12,40], with some improvements to account for spectral
specularity and spectral specular and spectral diffuse scatter-
ings. The detailed implementations and verifications of the
discrete-ordinates method for the interface scattering will be
provided in future work. The physical model for validations
is shown in Fig. 2(b) with two material pairs, Al(1)/Si(2)
and Ge(1)/Si(2). The dispersions and relaxation times of three
materials are also referred to in Refs. [60–63], respectively,
as the previous part does. The temperature distributions and
heat fluxes along films at steady state are first obtained by the
Monte Carlo method and the discrete-ordinates method. Then
thermal boundary conductances are calculated based on the

steady-state temperature distributions and heat fluxes using
formula G = q/
T , with the heat flux across the interface q
and the temperature jump at the interface 
T . For simplicity,
the interface roughnesses, the numbers of energy packets,
and the material volume ratios in all cases are uniformly set
to 0.15 nm, 200 million, and 1, respectively. The boundary
temperatures on the left and right sides are fixed at 303 and
297 K. The spatial steps of both the Monte Carlo method
and the discrete-ordinates method are fixed at one identical
value for the convenience of comparison. To calculate thermal
boundary conductance conveniently, the spatial step is set to a
very small value as 0.01 nm for all cases in both methods, with
the detailed reason explained later. Since the computational
cost is not sensitive to the spatial step in the present steady-
state version of the kinetic Monte Carlo method, this setting
will not cause the additional computational cost for the Monte
Carlo method. For the discrete-ordinates method, this setting
will increase the storage consumption but reduce convergence
steps so have little effect on the computational cost. Finally,
concerning the computational cost as the previous part does,
the maximum total thicknesses for both material pairs are
selected as 500 nm.

To show the temperature distribution more clearly, the
temperatures of part of the cells are selected and plotted in
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(a) (b)

(c) (d)

FIG. 4. The temperature distribution and thermal boundary conductance at various thicknesses of bilayer films: (a) temperature distribution
of Al/Si film, (b) temperature distribution of Ge/Si film, (c) thermal boundary conductance of Al/Si film, and (d) thermal boundary conductance
of Ge/Si film.

Figs. 4(a) and 4(b) at various thicknesses of films, showing
good agreement. To calculate the thermal boundary conduc-
tance, it is crucial to obtain the accurate temperature jump
which is nonlinear due to the nonequilibrium phonons at the
interface [64,65]. Due to the strongly nonequilibrium effect
near the interface, the equivalent equilibrium temperature is
adopted to define the temperature at the interface with detailed
explanations at the end of this part. This temperature is calcu-
lated by statistically summing the energy density within the
cells in the simulation. As the spatial step becomes smaller,
the cell is smaller, and the temperature of the cell closest to the
interface becomes closer to the temperature at the interface.
Due to the very small spatial step in this paper, it is inferred
that the temperature jump at the interface can be regarded as
the temperature difference between two cells closest to the
interface on both sides and thus can be directly obtained from
their equivalent equilibrium temperatures. To verify this in-
ference, the temperature distributions of all cells for Al/Si and
Ge/Si at thicknesses being 20 and 500 nm are given in Figs. 5
and 6. For the thickness being 20 nm, the temperatures of five
cells from the interface to the inner volume on the Al side by
the Monte Carlo method are 301.8384, 301.8439, 301.8432,

301.8370, and 301.8480 K, and the irregular variations are
caused by the noise error. The variations of the temperatures
of these five cells are much smaller than the overall tem-
perature difference along the present layer as 0.6573 K, and
the temperature difference between two cells closest to the
interface on both sides is 3.7305 K. For the thickness being
500 nm, these temperatures on the Al side by the Monte Carlo
method are 299.5178, 299.5159, 299.5105, 299.5144, and
299.5048 K, where the irregular variations are also the result
of the noise error. Their variations are also much smaller than
the overall temperature difference within this present layer as
3.3454 K, and the temperature difference between two cells
closest to the interface on both sides is 0.7838 K. The above
conclusions hold true for the Si side and Ge/Si.

It should be noted that the above inference has also been
verified for the various thicknesses at the interface roughness
being 0.15 nm, and the thickness being 20 and 500 nm at
the interface roughness varied from 0.02 to 0.2 nm with a
common difference 0.02 nm, and from 0.2 to 1.8 nm with a
common difference 0.2 nm, which interface roughness will be
considered in the following parts. It means that, due to the
very small spatial step, the temperatures of two cells closest
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(a) (b)

FIG. 5. The temperature distribution of all cells in the bilayer films at the total thickness as 20 nm: (a) Al/Si and (b) Ge/Si.

to the interface on both sides can be regarded as those at
the interface, and their temperature difference roughly equals
the temperature jump at the interface. Therefore, calculating
the temperature difference between two cells closest to the
interface on both sides is an effective way to determine the
temperature jump at the interface. Knowing the temperature
jumps, the thermal boundary conductances are calculated
and given in Figs. 4(c) and 4(d). The small deviations for
thermal boundary conductances result from the noise error
of the Monte Carlo method. Thus, the present Monte Carlo
method is verified in interfacial phonon transport, although
thermal boundary conductances are not converged. For the
temperature distributions, the temperature jump at the in-
terface increases with decreasing the film thickness because
of stronger nonequilibrium effects by increasingly frequent
interface scattering. Additionally, the thermal boundary con-
ductance decreases or thermal boundary resistance increases
with decreasing film thickness, also a result of increasingly
frequent interface scattering.

To further validate the present SMMM and the Monte
Carlo framework, thermal boundary conductances between

Al/Si by simulations and experiments are compared in the
bilayer film, shown in Fig. 2(b). The thickness of Al is set
to 100 nm to reproduce the situation in experiments [66], and
that of Si is set to 1000 nm to ensure that it is sufficiently
larger than its phonon mean free path and simultaneously
avoid the excessive computational cost. Due to the lack of
characterization of the interface in the experiment, it is diffi-
cult to determine the interface roughness for this comparison,
but as mentioned in Ref. [66], the thermal boundary conduc-
tance between Al/Si was measured after removing the natural
oxide at the interface, at which the interface can be regarded
as the highest-quality one. Then referring to the measured
interface roughness by transmission electron microscopy in
Ref. [22], in this paper, we just select four small interface
roughnesses as 0, 0.02, 0.04, and 0.06 nm, and a larger one
as 0.3 nm, to simulate phonon transport. The numbers of
energy packets for all simulations are fixed at 250 million.
The boundary temperatures on the left and right sides are
fixed at 303 and 297 K to obtain thermal boundary con-
ductance under 300 K. For comparisons, the results by the
Monte Carlo method based on SDMM are also given since

(a) (b)

FIG. 6. The temperature distribution of all cells in the bilayer films at the total thickness as 500 nm: (a) Al/Si and (b) Ge/Si.
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this model is currently the most appropriate theoretical model
at room temperature [24]. For this thickness, the above way
to determine the temperature jump at the interface is also
verified at the adopted interface roughnesses. The thermal
boundary conductances predicted by the present SMMM are
363, 389, 457, 542, and 552 MW/(m2 K), respectively, close
to the experiments 305–385 MW/(m2 K) [66,67], validating
the present SMMM and Monte Carlo method. Furthermore,
the predictions by the present SMMM are better than that by
SDMM as 572 MW/(m2 K) [12,24], indicating that the spec-
ular scattering contributes significantly to phonon-interface
scattering in experiments. It should be noted that thermal
boundary conductance predicted by SDMM in this paper is
different from that in Ref. [67]. The reason for this is that
the thermal boundary conductance in Ref. [67] is calculated
by Landauer formalism, based on emitted phonon tempera-
tures, but the present simulation results are obtained based
on equivalent equilibrium temperatures. Two definitions for
the temperature have different physical meanings. The pre-
vious one denotes the ideal temperature and is defined as
conjectured phonons emitted ballistically from the boundary
at this emitted phonon temperature with infinite mean free
paths. For the latter one, considering the strongly nonequi-
librium effect, the equilibrium temperature near the interface
cannot be defined using the conventional way based on the
thermal equilibrium state. Thus, the equivalent equilibrium
temperature is defined to reproduce the average energy of all
phonons near the interface [12,20] and calculated as above,
which is consistent with the experiments. Through above
comparisons, the present SMMM and Monte Carlo framework
for spectral specularity and spectral specular and spectral
diffuse scatterings at heterogeneous interfaces have been
validated.

IV. RESULTS AND DISCUSSIONS

This section will first give the transmissivities predicted by
the present SMMM and then apply the Monte Carlo method
with the SMMM to investigate the roughness dependence of
phonon-interface thermal transport across bilayer films with
planar and nanostructured interfaces. The impact of nanos-
tructured interfaces on thermal boundary conductance will be
studied in detail.

A. Spectral and angular-dependent transmissivity

To investigate the impact of the interface roughness on
interfacial phonon transport, the dependence of spectral spec-
ularity and spectral transmissivity on interface roughness is
studied based on the SMMM first. Two material pairs are
considered, i.e., Al/Si and Ge/Si, with the same dispersions
and relaxation times in Sec. III. Their spectral specularities are
calculated by Eq. (32), dependent on the phonon wavelength
and interface roughness. Although the transmissivities of the
optical polarizations equal 0 due to the neglect of the inelastic
scattering and polarization conversion, their contributions to
interfacial phonon transport are nonnegligible by scattering
with low-frequency phonons near the interface [68]. There-
fore, the specularities of the optical polarizations are still
calculated. Figures 7 and 8 give the spectral specularities for

two acoustic polarizations of Si, Al, and Ge and two optical
polarizations of Si and Ge at interface roughnesses being 0.02,
0.06, and 1 nm. For acoustic polarizations, as Fig. 7 shows,
due to different spectra for three materials, the wavelengths
of phonons with the same frequency should be different, and
thus, spectral specularities on each side are also different. The
specularity increases with decreasing phonon frequency and
finally approaches 1. This is because, with decreasing phonon
frequency, the wave number of the acoustic phonon decreases,
and its wavelength increases and becomes increasingly larger
than the interface roughness. Acoustic phonons with larger
wavelengths are more likely to be scattered specularly by
the interface so their specularities are larger. The acoustic
phonons with frequencies approaching 0, whose wavelengths
are close to infinity, will be nearly completely specularly
scattered, and their specularities are ∼1. However, the rela-
tionship between the specularity and phonon frequency for
the optical polarizations is different from the acoustic po-
larizations. As Fig. 8 shows, the specularity increases with
increasing phonon frequency, opposite to the acoustic polar-
izations, and finally approaches 1. The reason for this is that
the relationship between the phonon wavelength and phonon
frequency of the optical polarizations is opposite to that of
the acoustic polarizations. With increasing phonon frequency,
the wave number of the optical phonon decreases, and its
wavelength increases, and thus, the specularity increases as
well. The wavelengths of optical phonons with frequencies
approaching the maximum value are close to infinity, and
they will undergo nearly completely specular scattering with
specularities ∼1.

After obtaining the specularity, the total phonon trans-
missivity can be calculated through Eqs. (33) and (34). As
Sec. II shows, the transmissivity predicted by the SMMM
depends on both phonon frequency and incident angle. There-
fore, to first plot the relationship between the transmissivity
and the frequency, an average spectral transmissivity over the
incident angle is defined with detailed derivations as below.
The heat flux in Eq. (10) equals 0, so the equation below is
valid:

∑
p

∫ 1

0

∫ ωmax,p

0
αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p)μidωdμi

=
∑

p

∫ 1

0

∫ ωmax,p

0
α ji(θ j, ω, p)Cj (ω, p)vg, j (ω, p)μ jdωdμ j .

(39)

Based on Eqs. (15) and (16), the equation below is obtained:

∫ 1

0
αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p)μidμi

=
∫ 1

0
α ji(θ j, ω, p)Cj (ω, p)vg, j (ω, p)μ jdμ j . (40)

Equation (40) is the result of the application of the principle
of detailed balance to the total phonon transmissivity. Then
the average spectral transmissivities in different directions are
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. The spectral specularity for various acoustic polarizations of three materials at three interface roughnesses: (a) transverse acoustic
phonons on Si side, (b) longitudinal acoustic phonons on Si side, (c) transverse acoustic phonons on Al side, (d) longitudinal acoustic phonons
on Al side, (e) transverse acoustic phonons on Ge side, and (f) longitudinal acoustic phonons on Ge side. Blue dot lines, red dot dash lines, and
double dash lines represent the specularities with interface roughness being 0.02, 0.06, and 1 nm, respectively. TA and LA refer to transverse
and longitudinal acoustic polarizations, respectively.
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(a) (b)

(c) (d)

FIG. 8. The spectral specularity for various optical polarizations of three materials at three interface roughnesses: (a) transverse optical
phonons on Si side, (b) longitudinal optical phonons on Si side, (c) transverse optical phonons on Ge side, and (d) longitudinal optical phonons
on Ge side. TO and LO refer to transverse and longitudinal optical polarizations, respectively.

defined as

∫ 1

0
ᾱi j (ω, p)Ci(ω, p)vg,i(ω, p)μidμi

=
∫ 1

0
αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p)μidμi, (41)∫ 1

0
ᾱ ji(ω, p)Cj (ω, p)vg, j (ω, p)μ jdμ j

=
∫ 1

0
α ji(θ j, ω, p)Cj (ω, p)vg, j (ω, p)μ jdμ j . (42)

The average spectral transmissivities are finally given as

ᾱi j (ω, p) = 2
∫ 1

0 αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p)μidμi

Ci(ω, p)vg,i(ω, p)
, (43)

ᾱ ji(ω, p) = 2
∫ 1

0 α ji(θ j, ω, p)Cj (ω, p)vg, j (ω, p)μ jdμ j

Cj (ω, p)vg, j (ω, p)
.

(44)

Figures 9 and 10 show the average spectral transmissivities
for various polarizations of Al/Si and Ge/Si at four interface
roughnesses being 0, 0.02, 0.06, and 1 nm, varying differ-
ently with the frequency. For Al/Si, the transmissivity of
the low-frequency phonon decreases with increasing interface
roughness, but the pattern is opposite for the high-frequency
phonon. For Ge/Si, at smaller interface roughnesses, the trans-
missivity for both low- and high-frequency phonons decreases
with increasing interface roughness. However, at larger in-
terface roughnesses, the transmissivity of the low-frequency
phonon decreases with increasing interface roughness, and
the pattern is opposite for the high-frequency phonon, like
Al/Si. It is noted that the transmissivity from Si to Ge for the
phonon with frequency ∼0 ≈ 0.845, very close to the value in
Ref. [23] as 0.85.

Additionally, the relationships between the transmissivity
and incident angle at four interface roughnesses as 0, 0.02,
0.06, and 1 nm are directly obtained by Eqs. (33) and (34)
and shown in Figs. 11–14, where phonon frequencies are
fixed at 1 × 1013 and 2 × 1013 rad/s for Al/Si and 0.5 ×
1013 and 1 × 1013 rad/s for Ge/Si. The illustrations for these
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(a) (b)

(c) (d)

FIG. 9. The average spectral transmissivity for various polarizations of Al/Si in different directions at four interface roughnesses:
(a) transverse acoustic phonons from Si to Al, (b) longitudinal acoustic phonons from Si to Al, (c) transverse acoustic phonons from Al
to Si, and (d) longitudinal acoustic phonons from Al to Si.

relationships are given as follows: (a) for the interface rough-
ness being 0 nm, the specularity equals 1 throughout the entire
incident angle range, so phonons will be completely specu-
larly scattered by the interface. There are cutoff angles for
some cases, which correspond to the critical angle for the total
reflection for specular scattering. For the relationship with the
critical angle, phonons will completely specularly transmit
across the interface or be reflected and be completely spec-
ularly reflected, for the incident angle smaller and larger than
the critical angle, respectively. For the relationship without
the critical angle, phonons will completely specularly trans-
mit across the interface or be reflected. (b) For the interface
roughness being 0.02 and 0.06 nm, the transmissivity sig-
nificantly monotonically increases with decreasing incident
angle, and there are also critical angles for some cases. As
shown in Fig. 7, the specularities for these cases are <1 and
>0, and hence, the transmissivities for both specular and dif-
fuse scatterings should be >0. Accordingly, phonons will be
partially specularly and partially diffusely scattered by inter-
face. Considering the cases with the critical angles, phonons
will partially specularly and partially diffusely transmit across

the interface or be reflected below the critical angles but
will completely diffusely transmit across the interface and
be partially specularly and partially diffusely reflected upper
the critical angles. Considering the cases without the critical
angles, phonons will partially specularly and partially dif-
fusely transmit across the interface or be reflected throughout
the entire incident angle range. Due to the large specularities
shown in Fig. 7, the specular scattering dominates over the
diffuse scattering at these two interface roughnesses. (c) For
the interface roughness being 1 nm, with reducing incident
angle, the transmissivity monotonically increases by a small
amount or almost keeps constant, and the critical angles also
exist for some cases. Since the specularities for these cases
are <1 and >0, the transmissivity for both specular and dif-
fuse scatterings should also be >0. For the cases with the
critical angle, phonons will partially specularly and partially
diffusely transmit across the interface or be reflected below
the critical angle and will completely diffusely transmit across
the interface and be partially specularly and partially diffusely
reflected upper the critical angle. Phonons will partially spec-
ularly and partially diffusely transmit across the interface or
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(a) (b)

(c) (d)

FIG. 10. The average spectral transmissivity for various polarizations of Ge/Si in different directions at four interface roughnesses:
(a) transverse acoustic phonons from Si to Ge, (b) longitudinal acoustic phonons from Si to Ge, (c) transverse acoustic phonons from Ge
to Si, and (d) longitudinal acoustic phonons from Ge to Si.

be reflected throughout the entire incident angle range for the
cases without the critical angle. Since only the transmissivity
for the diffuse scattering is angular independent, phonons will
undergo nearly completely diffuse scattering at the interface
for the cases with the approximately constant transmissivity.
Owing to the small specularities shown in Fig. 7, the interface
scattering for interface roughness being 1 nm is dominated by
the diffuse scattering.

To further verify the SMMM, the present angular-
dependent transmissivity at the interface roughness as 0 nm is
compared with that by the atomistic Green’s function (AGF)
method from Ref. [47]. Two phonon frequencies from Ge to
Si are considered, i.e., 1 and 4 THz, shown in Figs. 15(a)
and 15(b), respectively. For the phonon frequency being
1 THz, the transmissivities for both transverse and longitu-
dinal acoustic polarizations by the SMMM agree well with
those by AGF, especially at the small incident angle. It means
that the present SMMM can capture the physical mechanisms
of interface scattering at low phonon frequencies. However,
for the phonon frequency being 4 THz, the transmissivity
by the SMMM significantly deviates from that by AGF. It

indicates that the present SMMM cannot accurately describe
the relationship between the transmissivity and incident an-
gle at high phonon frequencies. Above all, it is inferred that
the neglect of inelastic scattering and polarization conversion
and the consideration of isotropic dispersions in the present
SMMM are more accurate and less accurate at low and high
phonon frequencies, respectively.

B. Planar interface

The physical model in Fig. 2(b) is still adopted for the
case of the planar interface. Al/Si and Ge/Si are considered
using the same dispersions and relaxation times as in Sec. III
with volume ratios as 1. To avoid the high computational cost
of the Monte Carlo method for large-scale films, two small
total thicknesses are used, i.e., L = 40 and 60 nm, with the
total numbers of energy packets as 40 million and 60 million,
respectively. The boundary temperatures on the left and right
sides are fixed at 303 and 297 K. To reveal the roughness de-
pendence of phonon-interface thermal transport, the interface
roughnesses are varied from 0.02 to 0.2 nm with a common
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(a) (b)

(c) (d)

FIG. 11. The angular-dependent transmissivity of phonons with frequency as 1 × 1013 rad/s for various polarizations of Al/Si in different
directions at four interface roughnesses: (a) transverse acoustic phonons from Si to Al, (b) longitudinal acoustic phonons from Si to Al,
(c) transverse acoustic phonons from Al to Si, and (d) longitudinal acoustic phonons from Al to Si.

difference 0.02 nm and from 0.2 to 1.8 nm with a common dif-
ference 0.2 nm. The present setting for the interface roughness
is roughly consistent with the experiments, typically within
0.11 ± 0.04 nm [22]. The thermal conductivity and thermal
boundary conductance are calculated based on the steady-
state temperature distributions and heat fluxes, using formulas
κ = qL/(TL − TR) and G = q/
T , respectively. The temper-
ature jump at the interface is determined through the same
way as in Sec. III B, which has also been demonstrated to
be effective for these two thicknesses at the adopted interface
roughnesses. It should be noted that, as the previous section
shows, the boundary scattering effect is nonnegligible and
will influence the thermal boundary conductance at these two
thicknesses. However, this paper only concerns the roughness
dependence of the interface on the thermal conductivity and
thermal boundary conductance, which is revealed at the fixed
length and volume ratio. The nonequilibrium effects from
boundary scattering are roughly equivalent for the fixed length
and volume ratio so the size effect should not be included.
The purpose of using two total thicknesses is to investigate
whether the roughness dependences are different at different
sizes. Therefore, even though the thermal boundary conduc-

tance differs from that for bulk materials due to the boundary
scattering, its value still has reference significance for small-
scale films, and its roughness dependence and corresponding
analyses and explanations below are meaningful for other
systems. This note is also valid for the following two parts
on nanostructured interfaces.

Figure 16 gives the thermal conductivity and the thermal
boundary conductance, showing nonmonotonic relationships
with the interface roughness and different variation trends
for two material pairs but similar variation trends for two
total thicknesses. For Al/Si, the thermal conductivity and
thermal boundary conductance first increase, next decrease,
and then slightly increase with increasing interface roughness,
ultimately tending to a constant. For Ge/Si, the thermal con-
ductivity and thermal boundary conductance first decrease,
then increase with increasing interface roughness, ultimately
tending to a constant. Here, η = 0.06 nm gives the minimum
thermal boundary conductance for Ge/Si. This nonmonotonic
relationship is different from the conventional understanding
based on the frequency-independent specularity, providing
the monotonic relationship with minimum and maximum
thermal boundary conductances at completely specular and
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(a) (b)

(c) (d)

FIG. 12. The angular-dependent transmissivity of phonons with frequency as 2 × 1013 rad/s for various polarizations of Al/Si in different
directions at four interface roughnesses: (a) transverse acoustic phonons from Si to Al, (b) longitudinal acoustic phonons from Si to Al,
(c) transverse acoustic phonons from Al to Si, and (d) longitudinal acoustic phonons from Al to Si.

completely diffuse scatterings. A similar conclusion is found
in Ref. [28], but the details differ, as its specular scattering
is frequency independent. The nonmonotonic relationship is
attributed to the spectral specularity, which will be roughly
explained using Landauer formalism at first. Thermal bound-
ary conductance in Landauer formalism is dependent on the
phonon transmissivity, given as below [67]:

G = 2π
∑

p

∫ π/2

0

∫ ωmax,p

0
αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p)

× cos θi sin θidωdθi. (45)

Considering partially specular and partially diffuse scattering,
the phonon transmissivity is derived through weighted averag-
ing, with the weight being the specularity, and the following
equation is obtained:

G = 2π
∑

p

∫ π/2

0

∫ ωmax,p

0
[PiαSpecular,i j + (1 − Pi )αDiffuse,i j]

× Ci(ω, p)vg,i(ω, p) cos θi sin θidωdθi. (46)

For frequency-independent specularity, Eq. (46) can be rewrit-
ten as

G = 2πPi

∑
p

∫ π/2

0

∫ ωmax,p

0
αSpecular,i jCi(ω, p)vg,i(ω, p)

× cos θi sin θidωdθi

+ 2π (1 − Pi )
∑

p

∫ π/2

0

∫ ωmax,p

0
αDiffuse,i jCi(ω, p)vg,i(ω, p)

× cos θi sin θidωdθi. (47)

Equation (47) indicates that thermal boundary conduc-
tance varies monotonically with the specularity. Therefore,
the minimum and maximum thermal boundary conductances
are obtained at completely specular scattering and completely
diffuse scattering. However, for spectral specularity, Eq. (47)
cannot be deduced from Eq. (45), so the minimum or max-
imum thermal boundary conductance cannot be obtained at
completely specular or completely diffuse scattering.

To provide more in-depth explanations for this nonmono-
tonic roughness dependence of thermal boundary conduc-
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(a) (b)

(c) (d)

FIG. 13. The angular-dependent transmissivity of phonons with frequency as 0.5 × 1013 rad/s for various polarizations of Ge/Si in different
directions at four interface roughnesses: (a) transverse acoustic phonons from Si to Ge, (b) longitudinal acoustic phonons from Si to Ge,
(c) transverse acoustic phonons from Ge to Si, and (d) longitudinal acoustic phonons from Ge to Si.

tance, the spectral thermal boundary conductances are defined
as below based on Landauer formalism:

Gi j (ω, p) =
∫ 1

0
αi j (θi, ω, p)Ci(ω, p)vg,i(ω, p)μidμi, (48)

Gji(ω, p) =
∫ 1

0
α ji

(
θ j, ω, p

)
Cj (ω, p)vg, j (ω, p)μ jdμ j . (49)

With Eqs. (43) and (44), the spectral thermal boundary con-
ductances are rewritten as

Gi j (ω, p) = 2ᾱi j (ω, p)Ci(ω, p)vg,i(ω, p), (50)

Gji(ω, p) = 2ᾱ ji(ω, p)Cj (ω, p)vg, j (ω, p). (51)

Since the thermal boundary conductance calculated by
Landauer formalism from side i to j equals that from side j
to i at a fixed equilibrium temperature, the explanation below
is only based on Gi j (ω, p). Here, ᾱi j (ω, p) has been given
in Figs. 9 and 10, and thus, the spectral thermal boundary
conductances are obtained in Fig. 17 with i and j referring
to Al or Ge and Si, respectively. As the results in Figs. 9, 10,

and 17 show, for a fixed material pair, the interface rough-
ness strongly impacts the average spectral transmissivity and
the spectral thermal boundary conductance. With increasing
interface roughness, the average spectral transmissivity in-
creases for some frequencies but decreases for the others.
This will lead to an increase or decrease in spectral thermal
boundary conductance, resulting in the nonmonotonic rough-
ness dependence of thermal boundary conductance. Due to
different dispersions, the impact of interface roughness on
the average spectral transmissivity and the spectral thermal
boundary conductance is different for two material pairs, re-
sulting in different dependences. For Al/Si at smaller interface
roughnesses, with increasing interface roughness, the average
spectral transmissivity and spectral thermal boundary conduc-
tance decrease less for low-frequency phonons but increase
more for high-frequency phonons, which leads to an increase
in thermal boundary conductance. However, their decrease
and increase are comparable with each other at larger interface
roughnesses, resulting in slight fluctuations in thermal bound-
ary conductance. For Ge/Si at smaller interface roughnesses,
with increasing interface roughness, the average spectral
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(a) (b)

(c) (d)

FIG. 14. The angular-dependent transmissivity of phonons with frequency as 1 × 1013 rad/s for various polarizations of Ge/Si in different
directions at four interface roughnesses: (a) transverse acoustic phonons from Si to Ge, (b) longitudinal acoustic phonons from Si to Ge,
(c) transverse acoustic phonons from Ge to Si, and (d) longitudinal acoustic phonons from Ge to Si.

(a) (b)

FIG. 15. Comparisons of the angular-dependent transmissivity by the present SMMM and atomistic Green’s function (AGF) method at
the interface roughness as 0 nm: (a) the transmissivity from Ge to Si at phonon frequency 1 THz and (b) the transmissivity from Ge to Si at
phonon frequency 4 THz. The transmissivity by AGF method depicted in blue solid circles is referred to Ref. [47].
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(a) (b)

(c) (d)

FIG. 16. The thermal conductivity and thermal boundary conductance at various interface roughnesses for bilayer films with planar
interface: (a) thermal conductivity of Al/Si film, (b) thermal conductivity of Ge/Si film, (c) thermal boundary conductance of Al/Si film,
and (d) thermal boundary conductance of Ge/Si film.

transmissivity and spectral thermal boundary conductance de-
crease for phonons over a wide frequency range, leading to a
decrease in thermal boundary conductance, whereas at larger
interface roughnesses, they decrease less for low-frequency
phonons but increase more for high-frequency phonons with
increasing interface roughness, leading to an increase in
thermal boundary conductance. Totally, the nonmonotonic
roughness dependence of thermal boundary conductance is
the result of the irregular variation of spectral transmissivity
by varying the interface roughness, and the dispersions of the
material pairs strongly impact this variation and hence the
dependence.

C. Nanostructured interface with uniform roughness

After investigating the roughness dependence of phonon-
interface thermal transport through the planar interface, in
this subsection, we discuss the dependence for nanostructured
interfaces with uniform roughness. Three physical models are
considered, shown in Fig. 18, i.e., 6 × 6 nm square, 3 × 6 nm
rectangle, and 9 × 6 nm rectangle interfaces, with the fixed
interface height as 6 nm. The material pairs are made of Al/Si

and Ge/Si, with the same dispersions and relaxation times as
before. The material volume ratios in all cases are set to 1. The
total thicknesses of films are set to L = 40 and 60 nm, with the
numbers of energy packets of 40 million and 60 million. The
reason to select these two total thicknesses is the same as that
in the previous part, and the boundary temperatures on the
left and right sides are fixed at 303 and 297 K, respectively.
The periodic boundary conditions are implemented on the
upper and lower sides. The nanostructured interface consists
of two kinds of interfaces, namely, the horizontal and vertical
interfaces, parallel and perpendicular to the heat flux. Uniform
roughness means that the horizontal and vertical interfaces
have identical interface roughnesses, varied from 0.02 to 0.2
nm with a common difference 0.02 nm and from 0.2 to 1.8 nm
with a common difference 0.2 nm.

The thermal conductivities κeff are calculated by the for-
mula κeff = (L

∫ Ly

0 qxdy)/[Ly(TL − TR)] after obtaining the
temperature distributions and heat fluxes, where x and y de-
note horizontal and vertical coordinates, and Ly is the film
width in the vertical direction. Figures 19 and 20 give the
thermal conductivity of Al/Si and Ge/Si bilayer films with the
nanostructured interface at various roughnesses, with those of
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(a) (b)

(c) (d)

FIG. 17. The spectral thermal boundary conductance for various polarizations of two material pairs at three interface roughnesses:
(a) transverse acoustic phonons from Al to Si, (b) longitudinal acoustic phonons from Al to Si, (c) transverse acoustic phonons from Ge
to Si, and (d) longitudinal acoustic phonons from Ge to Si.

FIG. 18. Bilayer films with nanostructured interface: (a) 6 × 6 nm square interface, (b) 9 × 6 nm rectangle interface, and (c) 3 × 6 nm
rectangle interface.
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(a) (b)

FIG. 19. The thermal conductivity of Al/Si bilayer film with the nanostructured interface with uniform roughness: (a) total thickness as
40 nm and (b) total thickness as 60 nm. R. and S. represent rectangle and square interfaces, respectively.

planar interfaces for comparisons. The results show that the
thermal conductivities of nanostructured interfaces are larger
and smaller than those of planar interfaces at smaller and
larger interface roughnesses, respectively. Due to the same
total thickness and volume ratio as well as the same interface
roughness, the difference in thermal conductivity between pla-
nar and nanostructured interfaces only comes from their dif-
ferent interface geometries. It means that, by introducing the
nanostructured interface, interfacial phonon transport is en-
hanced and suppressed at smaller and larger interface rough-
nesses, respectively. The thermal boundary conductance is
calculated to further investigate the impact of nanostructured
interfaces. Since the interface height is small, the lateral heat
transport can be ignored, and thermal transport through the
nanostructured interface can be regarded as one dimensional.
Thus, the one-dimensional model is introduced as below, con-
sidering the series relation for thermal resistance [12,69]:

L

κeff
= R0 + 1

Geff
, (52)

where R0 denotes the sum of thermal resistances excluding
thermal boundary resistance, including boundary and intrinsic
resistances; and Geff is the thermal boundary conductance.
Owing to the small interface height, the boundary and
intrinsic resistances are roughly equivalent for the films
with planar and nanostructured interfaces at the same total
thickness and volume ratio and the same interface roughness.
Hence, different interface geometries only lead to the different
thermal boundary conductances and thermal conductivities at
each total thickness, volume ratio, and interface roughness.
The thermal boundary conductances of the film with planar in-
terfaces at each interface roughness can be directly calculated
through G = q/
T , and knowing the thermal conductivity,
the sum of its boundary and intrinsic resistances R0 at each in-
terface roughness can be obtained through Eq. (52). Based on
the analyses above, the sum of the boundary and intrinsic re-
sistances of the film with nanostructured interfaces also equals
R0 at the same total thickness and volume ratio and the same
interface roughness. Finally, based on their thermal conduc-
tivities calculated before, the thermal boundary conductances

(a) (b)

FIG. 20. The thermal conductivity of Ge/Si bilayer film with the nanostructured interface with uniform roughness: (a) total thickness as
40 nm and (b) total thickness as 60 nm.
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(a) (b)

FIG. 21. The thermal boundary conductance of Al/Si bilayer film with the nanostructured interface with uniform roughness: (a) total
thickness as 40 nm and (b) total thickness as 60 nm.

of the films with nanostructured interfaces can be obtained
at various interface roughnesses. It should be noted that the
thermal boundary conductance of nanostructured interfaces
at a fixed interface roughness is calculated with R0 of planar
interfaces with the same interface roughness. Therefore, since
the way for obtaining the thermal boundary conductance of
planar interfaces has been verified in Sec. III B, the calculation
of the thermal boundary conductance of nanostructured inter-
faces is on the same level of accuracy for all nanostructured
interfaces at each interface roughness. Figures 21 and 22
give the thermal boundary conductance, with the analogous
variation trend to that of the thermal conductivity. At smaller
interface roughnesses, the thermal boundary conductance
of nanostructured interfaces is larger than that of planar
interfaces, but at larger interface roughnesses, it is smaller
than that of planar interfaces. As noted before, due to the small
interface height, the boundary and intrinsic scattering effects
are roughly equivalent at the fixed total length, volume ratio,
and interface roughness. Therefore, the difference in thermal
boundary conductance between planar and nanostructured

interfaces also results from the different interface geometries.
Whether to enhance or reduce thermal boundary conductance
by nanostructured interfaces strongly depends on the interface
roughness. In detail, the small and large interface roughnesses
lead to the enhancement and reduction of thermal boundary
conductance, respectively, which explains the conclusion in
Ref. [12] corresponding to the large interface roughness.

All the above studies are for films with a thickness of tens
of nanometers, and further studies in films with larger size are
implemented particularly for comparisons with experiments
[11,13–15]. The physical model for films with larger size is
shown in Fig. 23, and referring to that in Ref. [11], its total
size is taken as (87 nm + Ls) × (87 nm + Ls) × 1100
nm with pillar spacing Ls as 15, 57, 104, and 148 nm. For
simplicity, the truncated cone in Ref. [11] is approximated
as the cuboid with the same volume. The size of the cuboid
is derived as 65 nm × 65 nm × Lh with pillar height Lh

as 30, 50, and 64 nm. The upper and lower boundaries in
the y direction are fixed at 303 and 297 K, respectively,

(a) (b)

FIG. 22. The thermal boundary conductance of Ge/Si bilayer film with the nanostructured interface with uniform roughness: (a) total
thickness as 40 nm and (b) total thickness as 60 nm.

024302-25



XIN RAN AND BINGYANG CAO PHYSICAL REVIEW B 110, 024302 (2024)

FIG. 23. Three-dimensional physical model for the bilayer film
with the nanostructured interface of a cuboid shaped nanopillar.

and periodic boundary conditions are applied along x and
z directions. Al/Si is first considered as the material pair
for comparisons with experiment with the volume ratio as
1(Al) : 10(Si) for both planar and nanostructured interfaces,
and their dispersions and relaxation times are the same as
before. Three interface roughnesses are considered, i.e., 0 nm,
0.3 nm, and infinity, referring to completely specular, partially
specular and partially diffuse, and completely diffuse scat-
terings, respectively. The total numbers of energy packets in
all simulations are taken as 120 million. Based on Fourier’s
law, the thermal conductivity is calculated through the
formula κeff = (Ly

∫ Lz

0

∫ Lx

0 qydxdz)/[LxLz(TL − TR)], where
Ly = 1100 nm denotes the total thickness of the film in the y
direction, and Lx = Lz = (87 nm + Ls ) represent the sizes of
the physical model in x and z directions. To obtain the thermal
boundary conductance, referring to the approach in Ref. [11],
the above physical model is treated as a one-dimensional
model. For simplicity, the boundary and intrinsic resistances
are assumed to be the same for films with planar and nanos-
tructured interfaces at the same total thickness and volume
ratio and the same interface roughness, as done in Eq. (52).
Thus, the thermal boundary conductance for nanostructured
interfaces can be derived as before.

Figures 24 gives the thermal conductivities and thermal
boundary conductances obtained by the present simulation
for Al/Si at interface roughnesses being 0 nm and infinity.
Those for interface roughness being 0.3 nm are shown in
Figs. 25(a) and 25(c), with comparisons with experiment [11].
For the experiment, only thermal boundary conductance was
provided in the original data [11]. Its thermal conductivities
for planar and nanostructured interfaces are approximately
calculated based on the one-dimensional model for thermal
resistance in this paper as Eq. (52). The R0 in Eq. (52) equals
(LAl/κAl + LSi/κSi) with the thicknesses of Al and Si being
LAl = 100 nm and LSi = 1000 nm, and the bulk thermal con-
ductivities of Al and Si, κAl and κSi, calculated based on the
above dispersions and relaxation times. The bulk thermal con-
ductivity of Al is selected as its lattice thermal conductivity
since only phonon transport is considered in the present sim-
ulation. The Geff in Eq. (52) for each film with the planar or

nanostructured interface is taken as the average value of its er-
ror bar from the experiment [11]. This one-dimensional model
for thermal resistance is roughly consistent with that in the
experiment since, in the experiment, the bulk thermal conduc-
tivities of Al and Si were also used to fit to obtain the thermal
boundary conductance [11]. For interface roughness being
0.3 nm and infinity, only the thermal boundary conductances
with pillar spacings as 104 and 148 nm are shown due to
the remaining thermal boundary conductances being negative.
The negative thermal boundary conductance is caused by the
inappropriateness of two assumptions, i.e., one-dimensional
thermal transport, and identical boundary and intrinsic re-
sistances for planar and nanostructured interfaces. Given the
enhancement of the thermal conductivity, despite the inappro-
priateness of the assumptions, it can still be concluded that the
nanostructured interface can enhance interfacial phonon trans-
port and the thermal boundary conductance. Figures 25(b) and
25(d) give the enhancement ratios by the nanostructured in-
terface, calculated through (κeff,nano − κeff,planar )/κeff,planar and
(Geff,nano − Geff,planar )/Geff,planar, where κeff,planar and κeff,nano

denote the thermal conductivities of the planar and nanostruc-
tured interfaces, and Geff,planar and Geff,nano are their thermal
boundary conductances. The enhancements of both thermal
conductivity and thermal boundary conductance by nanos-
tructured interfaces are found from the results compared with
the planar interface.

To further verify the above conclusion, Ge/Si is simu-
lated in the above physical model with the volume ratio as
1(Ge) : 10(Si), whose dispersions and relaxation times are
adopted as before. Figure 26 shows the results for the thermal
conductivity and thermal boundary conductance at three inter-
face roughnesses as 0 nm, 0.3 nm, and infinity. Similarly, both
thermal conductivity and thermal boundary conductance are
enhanced by nanostructured interfaces at all interface rough-
nesses. Therefore, it is concluded that the nanostructured
interface always promotes thermal transport at each interface
roughness in films with large size, which can be attributed
to the additional thermal conduction pathway by increasing
the contact area, as explained in Refs. [11,13–15]. Thus, the
additional thermal conduction pathway by nanostructured in-
terfaces is the dominant impact factor in large systems.

Totally, the above investigations indicate that the previous
contradictory conclusions for the impact of nanostructured
interfaces on the thermal boundary conductance or interfacial
phonon transport were caused by the combined effect of the
interface roughness and the additional thermal conduction
pathway. In large systems, the additional thermal conduction
pathway by the nanostructured interface dominates over the
interface roughness. Thus, the thermal boundary conductance
or interfacial phonon transport is always enhanced, like the
macroscale fin arrays for the enhancement of heat transfer be-
tween solid surfaces and fluids. In small systems, the effect of
interface roughness prevails over that of the additional thermal
conduction pathway, and the interface roughness determines
whether the nanostructured interface can enhance or re-
duce the thermal boundary conductance or interfacial phonon
transport. At small and large interface roughnesses, the nanos-
tructured interface will enhance and reduce the thermal
boundary conductance or interfacial phonon transport, respec-
tively. Further underlying mechanisms for the impact of the
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(c) (d)

(a) (b)

FIG. 24. The comparisons of the thermal conductivity and thermal boundary conductance of Al/Si with various nanostructured interfaces
and the planar interface at two interface roughnesses: (a) thermal conductivity at the interface roughness as 0 nm, (b) thermal boundary
conductance at the interface roughness as 0 nm, (c) thermal conductivity at the interface roughness as infinity, and (d) thermal boundary
conductance at the interface roughness as infinity.

interface roughness in small systems will be analyzed in the
following subsection. Particularly Figs. 21 and 22 indicate that
the maximum and minimum thermal boundary conductances
are still obtained by planar interfaces over the entire range
of interface roughness. Combined with the underlying mech-
anisms, the next subsection will finally propose an effective
way to break through these maximum and minimum values
using nanostructured interfaces in small systems.

D. Nanostructured interface with nonuniform roughness

The nanostructured interface consists of two kinds of inter-
faces, i.e., the horizontal and vertical interfaces, parallel and
perpendicular to the direction of the heat flux. In this sub-
section, we investigate the impact of roughness dependence
of these two kinds of interfaces on phonon-interface thermal
transport in small systems. Based on this impact, an effective
way will be provided to expand the manipulation of the ther-
mal boundary conductance through nanostructured interfaces
for small systems. Three types of nanostructured interfaces
are simulated as well, shown in Fig. 18. The interfaces are
also formed by Al/Si and Ge/Si with the same dispersions

and relaxation times as before and volume ratios as 1. With
the same reason in the previous part, two total thicknesses
of films are set to L = 40 and 60 nm with the numbers of
energy packets being 40 million and 60 million. The boundary
temperatures on the left and right sides are kept at TL = 303 K
and TR = 297 K. To investigate the impact, the roughness of
one interface is fixed, and that of the other is varied; that is,
the roughness of the nanostructured interface is nonuniform.
For one case, the roughnesses of the horizontal interfaces are
fixed at 0.14 nm, and those of the vertical interfaces are varied
from 0.02 to 0.2 nm with a common difference 0.02 nm and
from 0.2 to 1.8 nm with a common difference 0.2 nm. For the
other case, the roughnesses of the vertical interfaces are fixed
at 0.14 nm, and those of the horizontal interfaces are varied
from 0.02 to 0.2 nm with a common difference 0.02 nm and
from 0.2 to 1.8 nm with a common difference 0.2 nm.

Figures 27 and 28 give the thermal conductivities of
Al/Si and Ge/Si bilayer films with nanostructured interfaces
at various roughnesses of horizontal and vertical interfaces.
The thermal conductivities of planar interfaces with the
same roughness as the vertical interface are also given for
comparisons. The results indicate that the thermal conduc-
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(c) (d)

(a) (b)

FIG. 25. The comparisons of the thermal conductivity and thermal boundary conductance of Al/Si with various nanostructured interfaces
and the planar interface at the interface roughness as 0.3 nm: (a) thermal conductivity, (b) enhancement ratio of thermal conductivity,
(c) thermal boundary conductance, and (d) enhancement ratio of thermal boundary conductance. Exp. refers to the data by experiments.

tivity varies differently with the roughness of horizontal and
vertical interfaces. To focus on the impact of nanostructured
interfaces, the thermal boundary conductances are calculated
based on the one-dimensional model, i.e., Eq. (52). Here,
R0 of nanostructured interfaces are taken as R0 of planar
interfaces with the same roughness as their vertical interfaces.
Figures 29 and 30 show the results with an analogous con-
clusion for the thermal conductivity, namely, that different
variation trends are found for horizontal and vertical inter-
faces. In detail, for Al/Si, when fixing the roughness of the
horizontal interface and increasing that of the vertical inter-
face, the thermal boundary conductance first increases, next
decreases, and then increases, ultimately tending to a constant.
This trend is analogous to that of planar interfaces for Al/Si,
whereas when fixing the roughness of the vertical interface
and increasing that of the horizontal interface, the thermal
boundary conductance first decreases and ultimately tends
to a constant. For Ge/Si, when fixing the roughness of the
horizontal interface and increasing that of the vertical inter-
face, the thermal boundary conductance first decreases, then
increases, ultimately tending to a constant. This trend is also
analogous to that of planar interfaces for Ge/Si. When fixing

the roughness of the vertical interface and increasing that of
the horizontal interface, the thermal boundary conductance
first decreases and tends to a constant for 6 × 6 nm square
and 3 × 6 nm rectangle interfaces. However, for the 9 ×
6 nm rectangle interface, the thermal boundary conductance
first decreases, then slightly increases, and ultimately tends to
a constant, different from other two types of nanostructured
interfaces, which is caused by different geometries. Totally,
for these two material pairs, when varying the roughness of
the vertical interface, the maximum and minimum thermal
boundary conductances are obtained at larger and smaller in-
terface roughnesses, respectively. However, when varying the
roughness of the horizontal interface, the maximum and min-
imum thermal boundary conductances are obtained at smaller
and larger interface roughnesses, respectively.

Therefore, in small systems, the smaller the roughness of
the horizontal interface and the larger the roughness of the
vertical interface, the more favorable for thermal transport.
Since the effect of interface roughness prevails over that of
the additional thermal conduction pathway for small systems,
this contrary impact can be explained by the physical figures
for specularly and diffusely scattering with two kinds of inter-
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(c) (d)

(e) (f)

(a) (b)

FIG. 26. The thermal conductivity and thermal boundary conductance of Ge/Si with various nanostructured interfaces and the planar
interface at three interface roughnesses: (a) thermal conductivity at the interface roughness as 0 nm, (b) thermal boundary conductance at the
interface roughness as 0 nm, (c) thermal conductivity at the interface roughness as 0.3 nm, (d) thermal boundary conductance at the interface
roughness as 0.3 nm, (e) thermal conductivity at the interface roughness as infinity, and (f) thermal boundary conductance at the interface
roughness as infinity.

faces, shown in Fig. 31. When a phonon is specularly scattered
by the horizontal interface, as Fig. 31(a) shows, the reflected
or transmitted phonon will conserve the momentum along the
direction of the heat flux. Thus, specularly scattering with the

horizontal interface does not pose the thermal resistance in the
direction of the heat flux. When a phonon is diffusely scattered
by the horizontal interface, as Fig. 31(c) shows, the momen-
tum of the reflected or transmitted phonon along the direction
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(c) (d)

(a) (b)

FIG. 27. The thermal conductivity of Al/Si bilayer film with the nanostructured interface with nonuniform roughness: (a) total thickness as
40 nm, fixing the roughnesses of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; (b) total thickness as 40 nm, fixing
the roughnesses of vertical interfaces at 0.14 nm and varying those of horizontal interfaces; (c) total thickness as 60 nm, fixing the roughnesses
of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; and (d) total thickness as 60 nm, fixing the roughnesses of vertical
interfaces at 0.14 nm and varying those of horizontal interfaces.

of heat flux possibly changes. Thus, diffusely scattering with
the horizontal interface poses the thermal resistance in the
direction of the heat flux because of the resistive scattering. It
is inferred that the thermal resistance posed by the horizontal
interface decreases with decreasing proportion of the diffuse
scattering and thus decreasing interface roughness, whereas
for the vertical interface, both specular and diffuse scatterings
do not conserve the momentum along the heat flux, shown
in Figs. 31(b) and 31(d), consequently contributing to the
thermal resistance. The influence of its roughness on thermal
transport is like that of planar interfaces in Sec. IV B, namely,
a larger interface roughness is more conducive to thermal
transport, and it strongly depends on the dispersions of the
material pairs. Totally, the contrary impacts of the interface
roughness on thermal transport are caused by contrary impacts
of specularly and diffusely scattering on thermal resistances
with these two kinds of interfaces. Based on this, the impact of
the interface roughness in small systems mentioned at the end
of the previous subsection is explained as follows: Compared
with the planar interface, the nanostructured interface has

not only vertical interfaces but also horizontal interfaces. At
small interface roughnesses, the horizontal interface poses the
small thermal resistance but results in the additional thermal
conduction pathway for phonon transport. Hence, in this case,
the nanostructured interface enhances the thermal boundary
conductance and promotes thermal transport, whereas at large
interface roughnesses, the horizontal interface results in both
large thermal resistance and additional thermal conduction
pathway. In small systems, the impact of this large thermal
resistance prevails over that of the additional thermal conduc-
tion pathway, and thus, the nanostructured interface reduces
the thermal boundary conductance and deteriorates thermal
transport at large interface roughnesses.

Based on the results and analyses above, nonuniform
roughness of the horizontal and vertical interfaces is pro-
posed to break through the maximum and minimum thermal
boundary conductances by planar interfaces, mentioned at
the end of the previous subsection. To confirm this pro-
posal, the interface roughnesses are set as follows in the
simulations: (a) to break through the maximum thermal
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(c) (d)

(a) (b)

FIG. 28. The thermal conductivity of Ge/Si bilayer films with the nanostructured interface with nonuniform roughness: (a) total thickness
as 40 nm, fixing the roughnesses of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; (b) total thickness as 40 nm, fixing
the roughnesses of vertical interfaces at 0.14 nm and varying those of horizontal interfaces; (c) total thickness as 60 nm, fixing the roughnesses
of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; and (d) total thickness as 60 nm, fixing the roughnesses of vertical
interfaces at 0.14 nm and varying those of horizontal interfaces.

boundary conductance, the horizontal and vertical interfaces
are considered as completely specular scattering and com-
pletely diffuse scattering, respectively, for both Al/Si and
Ge/Si; (b) to break through the minimum thermal bound-
ary conductance, the horizontal and vertical interfaces for
Al/Si are considered as completely diffuse scattering and
completely specular scattering, respectively, but those for
Ge/Si are considered as completely diffuse scattering and
partially specular and partially diffuse scattering with η =
0.06 nm, respectively. Table I presents the results of the
maximum and minimum thermal boundary conductances
of nanostructured interfaces with nonuniform roughness,
where as a comparison, the results of planar interfaces and
nanostructured interfaces with uniform roughness are also
given. For nanostructured interfaces with nonuniform rough-
ness, the thermal boundary conductances are expanded to a
wider range. They can not only be larger than the maxi-
mum values of planar interfaces but also smaller than their
minimum values. Although nanostructured interfaces with
uniform roughness can either increase or decrease the ther-

mal boundary conductance in small systems, the maximum
or minimum value still cannot be broken through. There-
fore, the nanostructured interface with nonuniform roughness
is a more effective way to manipulate the thermal bound-
ary conductance than that with uniform roughness for small
systems.

Even though the interface heights are the same, the results
for three types of nanostructured interfaces are different from
each other, suggesting the geometry as another factor affecting
the thermal boundary conductance. Hence, it is inferred that
the thermal boundary conductances for nonuniform roughness
in Table I are not the maximum and minimum values that can
be achieved by the nanostructured interface. By optimizing
the geometry or other roughness combinations for horizontal
and vertical interfaces, the manipulation of thermal bound-
ary conductance can be further expanded. The impact of the
geometry of nanostructured interfaces on thermal boundary
conductance at various roughnesses and corresponding opti-
mization measures are not the primary focus in this paper, so
it is not discussed in detail.
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(c) (d)

(a) (b)

FIG. 29. The thermal boundary conductance of Al/Si bilayer film with the nanostructured interface with nonuniform roughness: (a) total
thickness as 40 nm, fixing the roughnesses of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; (b) total thickness as
40 nm, fixing the roughnesses of vertical interfaces at 0.14 nm and varying those of horizontal interfaces; (c) total thickness as 60 nm, fixing the
roughnesses of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; and (d) total thickness as 60 nm, fixing the roughnesses
of vertical interfaces at 0.14 nm and varying those of horizontal interfaces.

TABLE I. The comparison of thermal boundary conductances of nanostructured interfaces with nonuniform and uniform roughnesses and
planar interfaces. The abbreviations Max., Min., Nonuni., and Uni. refer to maximum, minimum, nonuniform, and uniform, respectively. The
unit for thermal boundary conductance is MW/(m2 K).

Planar 3 × 6 nm rectangle 6 × 6 nm square 9 × 6 nm rectangle

Max./Min. Nonuni. Uni. and Max./Min. Nonuni. Uni. and Max./Min. Nonuni. Uni. and Max./Min.

Al/Si
406.74 444.66 360.23 439.50 393.13 434.32 405.24

40 nm
232.80 239.83 254.53 265.99 251.05 270.95 249.01
425.39 467.87 379.04 461.96 416.34 456.48 426.72

60 nm
242.51 244.01 264.51 272.43 261.18 278.57 258.75

Ge/Si
84.48 88.16 72.47 87.89 79.95 87.48 82.43

40 nm
54.09 52.90 63.82 53.25 62.59 51.16 61.29
85.43 89.06 73.07 88.88 80.66 88.41 83.27

60 nm
54.63 53.23 64.36 53.66 63.10 51.60 61.83
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(c) (d)

(a) (b)

FIG. 30. The thermal boundary conductance of Ge/Si bilayer film with the nanostructured interface with nonuniform roughness: (a) total
thickness as 40 nm, fixing the roughnesses of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; (b) total thickness as
40 nm, fixing the roughnesses of vertical interfaces at 0.14 nm and varying those of horizontal interfaces; (c) total thickness as 60 nm, fixing the
roughnesses of horizontal interfaces at 0.14 nm and varying those of vertical interfaces; and (d) total thickness as 60 nm, fixing the roughnesses
of vertical interfaces at 0.14 nm and varying those of horizontal interfaces.

V. CONCLUSIONS

In summary, in this paper, we have investigated the
impact of nanostructured interfaces on thermal boundary con-
ductance via considering roughness dependence. First, an
interface model accounting for spectral specularity and spec-
tral specular and spectral diffuse scatterings is deduced based
on partially specular and partially diffuse scattering, called
the SMMM. Next, the Monte Carlo framework of interface
treatment for spectral specularity and spectral specular and
spectral diffuse scatterings is developed based on SMMM.
Then they are validated by comparisons with the discrete-
ordinates method and experiments. Finally, implementing this
interface model and the Monte Carlo method, interfacial
phonon transport across the planar and nanostructured inter-
faces are sequentially studied. The results mainly show:

(a) Thermal boundary conductance of planar interfaces
varies nonmonotonically with roughness, different from
the conventional understanding based on the frequency-
independent specularity. The maximum and minimum
values are obtained at partially specular and partially diffuse

scattering, rather than completely specular or completely
diffuse scattering. The nonmonotonic dependence of thermal
boundary conductance on interface roughness results from the
irregular variation of the spectral transmissivity with varying
interface roughness, and the dispersions of the material
pairs strongly impact this variation and consequently the
dependence.

(b) The system and interface geometries and the interface
roughness impact the manipulation of thermal boundary
conductance by nanostructured interfaces. For large systems,
the additional thermal conduction pathway by the nanos-
tructured interface dominates over the interface roughness,
and thermal boundary conductance is always enhanced, and
thermal transport is always promoted compared with the
planar interface, whereas for small systems, the enhancement
and reduction of thermal boundary conductance are derived at
small and large roughnesses, respectively. This manipulation
can be explained by the combined effect of different thermal
resistances and additional thermal conduction pathways
caused by the horizontal interface under different interface
roughnesses. However, the maximum and minimum thermal
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FIG. 31. The physical figure for specularly and diffusely scattering with the horizontal and vertical interfaces: (a) specularly scattering
with the horizontal interface, (b) specularly scattering with the vertical interface, (c) diffusely scattering with the horizontal interface, and
(d) diffusely scattering with the vertical interface.

boundary conductances are still obtained by planar interfaces
rather than nanostructured interfaces.

(c) In small systems, the interface roughnesses of hor-
izontal and vertical interfaces impact thermal boundary
conductance of nanostructured interfaces differently. Overall,
the smaller the roughness of the horizontal interface and the
larger the roughness of the vertical interface, the larger the
thermal boundary conductance. Contrary impacts of spec-
ularly and diffusely scattering on thermal resistances with
the horizontal and vertical interfaces result in this contrary
roughness dependence of thermal boundary conductance.
Therefore, for small systems, the nonuniform roughness of
horizontal and vertical interfaces is proposed, and the max-
imum and minimum thermal boundary conductances for

planar interfaces are successfully broken through, hence ex-
panding the manipulation of thermal boundary conductance.

In this paper, we not only enrich the research means
and reveal the fundamental knowledge of interfacial phonon
transport, particularly for nanostructured interfaces, but also
propose an effective measure to optimize the thermal proper-
ties of nanostructured interfaces.
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