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Quantum criticality and Kibble-Zurek scaling in the Aubry-André-Stark model
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We explore quantum criticality and Kibble-Zurek scaling (KZS) in the Aubry-André-Stark (AAS) model,
where the Stark field of strength ε is added onto the one-dimensional quasiperiodic lattice. We perform scaling
analysis and numerical calculations of the localization length, the inverse participation ratio (IPR), and the energy
gap between the ground and first excited states to characterize critical properties of the delocalization-localization
transition. Remarkably, our scaling analysis shows that, near the critical point, the localization length ξ scales
with ε as ξ ∝ ε−ν with ν ≈ 0.3, a new critical exponent for the AAS model, which is different from the
counterparts for both the pure Aubry-André (AA) model and the pure Stark model. The IPR I scales as I ∝ εs

with the critical exponent s ≈ 0.098, which is also different from both of the pure models. The energy gap �E
scales as �E ∝ ενz with the same critical exponent z ≈ 2.374 as that for the pure AA model. We further reveal
hybrid scaling functions in the overlap between the critical regions of the Anderson and Stark localizations.
Moreover, we investigate the driven dynamics of the localization transitions in the AAS model. By linearly
changing the Stark (quasiperiodic) potential, we calculate the evolution of the localization length and the IPR,
and we study their dependence on the driving rate. We find that the driven dynamics from the ground state is
well described by the KZS with the critical exponents obtained from the static scaling analysis. When both the
Stark and the quasiperiodic potentials are relevant, the KZS form includes the two scaling variables. This work
extends our understanding of critical phenomena on localization transitions and generalizes the application of
the KZS to hybrid models.
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I. INTRODUCTION

In recent years, there has been increasing interest in the
studies of Anderson localization [1–3] and localization tran-
sitions in quasiperiodic systems [4–11]. Compared to random
systems with quenched disorders, quasiperiodic systems ex-
hibit unique localization properties that have been explored
both theoretically [8–11] and experimentally [12–14]. The
one-dimensional Aubry-André (AA) model [5] serves as
an important example in this regard, where a localization
transition occurs when the strength of the quasiperiodic po-
tential exceeds the critical point determined by the self-duality
[15–17]. Furthermore, various extensions of the AA model
have been proposed to investigate the mobility edges [18,19],
topological phases [20–28], the many-body localization
[29–31], and critical phenomena [7,10,32–37]. Remarkably,
the quantum criticality and scaling functions with new critical
exponents for the localization transition in the disordered AA
model have been unearthed in Ref. [35], where the random
disorder contributes an independent relevant direction near
the AA critical point. According to the renormalization-group
theory [38–41], critical exponents in the scaling functions
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of physical observables around the critical point [42–50]
characterize the universal features of continuous quantum
(classical) phase transitions [51–55]. Thus, determining criti-
cal exponents is crucial in understanding critical phenomena
and phase transitions, including the localization transition.

On the other hand, the Kibble-Zurek mechanism [56–59]
provides a powerful framework to investigate critical dy-
namics of phase transitions ranging from cosmology to
condensed-matter systems [60–73]. Based on this framework,
driven dynamics across a critical point can be described by
the universal Kibble-Zurek scaling (KZS) and the critical
exponents associated with the phase transition can be ex-
tracted. Recently, more and more attention has been paid
to the dynamics in disorder-driven transitions [36,74–82]. In
particular, the KZS has been generalized to characterize the
driven dynamics in the disordered AA model [35], which can
include two scaling variables when both the random and the
quasiperiodic potentials are relevant directions [36]. Notably,
random and quasiperiodic disorders are not the only route
to induce localization transitions. For instance, localization
can also manifest in systems featuring a linear potential,
known as the Wannier-Stark localization in the noninteract-
ing case [83–89]. In the presence of interactions, the Stark
many-body localization has been revealed [90–95]. It has
been shown that the Stark field can induce diffusive dynamics
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under the interplay between Anderson and Stark localiza-
tions in two-dimensional random lattices [96]. Moreover, the
weak-field sensing with super-Heisenberg precision based on
the Stark localization has been proposed [97]. However, the
critical properties and related KZS near localization transi-
tions in the presence of the Stark and quasiperiodic fields
remain unexplored.

In this article, we investigate the quantum criticality and
the KZS in the Aubry-André-Stark (AAS) model, where the
Stark field is imposed onto the one-dimensional quasiperiodic
lattice. We perform scaling analysis and numerical calcula-
tions of the localization length, the inverse participation ratio
(IPR), and the energy gap between the ground and first excited
states to reveal exotic critical properties of the localization
transition. Remarkably, our scaling analysis of the localization
length and the IPR near the critical point shows two new
critical exponents for the AAS model, which are different
from the counterparts for both the pure AA model and the
pure Stark model. In contrast, the scaling form of the energy
gap shares the same critical exponent as that for the pure
AA model. We further obtain hybrid scaling functions in the
overlap between the critical regions of the Anderson and Stark
localizations. Moreover, we explore the driven dynamics of
the localization transitions in the pure AA and Stark models
and the AAS model. By linearly quenching the strength of the
Stark or quasiperiodic potential, we calculate the evolution of
the localization length and the IPR under various driving rates.
We find that the driven dynamics from the ground state is well
described by the KZS with the critical exponents obtained
from the static scaling analysis. When both the Stark and
quasiperiodic potentials are relevant directions, the KZS form
contains the two scaling variables.

The rest of the paper is organized as follows. In Sec. II,
we introduce the AAS model and the method of the scaling
analysis. In Sec. III, we investigate the critical properties
of localization transitions for the pure AA model, the pure
Stark model, and the AAS model, respectively. The scaling
forms with new exponents for the AAS model are obtained.
Section IV is denoted to study the driven dynamics of the
localization transitions by using the KZS. Finally in Sec. V,
a brief conclusion is presented.

II. MODEL AND METHOD

We consider the AA model with a linear gradient field
across the lattice of L sites, which is described by the follow-
ing AAS Hamiltonian:

HAAS = − J
L−1∑

j

(c†
j c j+1 + H.c.) + ε

L−1∑
j

jc†
j c j

+ (2J + δ)
L−1∑

j

cos [2π (γ j + φ)]c†
j c j . (1)

Here c†
j (c j ) represents the creation (annihilation) operator at

site j, J is the hopping strength, and ε and 2J + δ denote
the strengths of the Stark field and the quasiperiodic lattice,
respectively. The lattice phase φ is uniformly chosen from the
interval [0,1] for averaging over the pseudorandom potentials.

FIG. 1. (a) Sketch of the localization phase diagram of the AAS
model. The blue region A denotes the critical region of localization
transition of the AAS model. The orange region B denotes the critical
region of the Stark localization transition. Near the critical point
(denoted by the red point) at δ = ε = 0, the two critical regions
overlap. When δ = −2J (denoted by the black point), the model
returns to the pure Stark model. (b) The extracted critical exponents
{ν, s, z} for the AA model, the Stark model, and the AAS model.

In the following, we set J = 1 as the energy unit, choose
the inverse golden mean α = (

√
5 − 1)/2 = lim j→∞ Fj/Fj+1

to approach an incommensurate lattice via two consecutive
Fibonacci sequences Fj and Fj+1 = L, and adopt open bound-
ary conditions in our numerical calculations with the exact
diagonalization method.

When ε = 0, this model reduces to a pure AA model with
the critical point at δ = 0. All eigenstates are extended and
localized for δ < 0 and δ > 0, respectively. When δ = −2J ,
this model returns to a pure Stark model. When L → ∞,
the Stark localization transition occurs at ε = 0 [91,96,97],
which means that all eigenstates will be localized under any
finite Stark potential ε. Thus, we can sketch the localization
phase diagram of the AAS model, as shown in Fig. 1(a). Near
the localization critical point δ = ε = 0, one has the critical
region A for the AAS model with two variables δ and ε. In
addition, for δ < 0 and infinitesimal ε, there is a critical region
B for the Stark localization. Since there is no mobility edge in
the AAS model, we focus on the localization transition of the
ground state and explore its quantum criticality and the KZS
in the following sections.

At the critical point of the localization transition, the wave
function of the ground state is neither localized nor extended.
The occurrence of quantum phase transitions can be verified
by several physical quantities. Here we use three character-
istic physical quantities to explore the quantum criticality of
the localization phase transition in the AAS model. The first
quantity is the localization length ξ given by

ξ =
√√√√

L∑
j> jc

[( j − jc)2]|ψ ( j)|2, (2)
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where ψ ( j) denotes the wave function of the ground state,
and jc ≡ ∑

j|ψ ( j)|2 represents the localization center. Near
a critical point of the delocalization-localization transition, ξ

scales with the distance to the critical point g as

ξ ∝ g−ν, (3)

where ν is the critical exponent. For the pure AA model, g = δ

and ν = νδ = 1 [78,82,98]. For the pure Stark model, g = ε

and ν = νε ≈ 0.33 [97].
The second quantity is the IPR defined as

I =
∑L

j=1 |ψ ( j)|4
∑L

j=1 |ψ ( j)|2 . (4)

For the delocalization state, I scales as I ∝ L−1 as the wave
function is homogeneously distributed in the lattice. For the
localization state, one has I ∝ L0. At the critical point of
the localization transition, I satisfies the following scaling
relation with the lattice size L:

I ∝ L−s/ν (5)

with the critical exponent s. When L → ∞, I scales with g as

I ∝ gs. (6)

Finally, we consider the energy gap between the ground
state and the first excited state �E to characterize the quantum
criticality. At the localization transition point, the energy gap
�E should scale as

�E ∝ L−z, (7)

according to the finite-size scaling, with z being the critical
exponent. For the pure AA model, z = zδ = 2.374 [78,82,98].
For the pure Stark model, z = zε = 2 [97]. When L → ∞,
�E scales with g as

�E ∝ gνz. (8)

To explore the critical properties and numerically obtain
the three critical exponents, we use the finite-size scaling, as
summarized in Fig. 1(b). The scaling analysis takes the ansatz

P(g) = Lρ/ν f (gL1/ν ), (9)

where the physical quantities P = {ξ, I,�E}, f (.) is the
scaling function, and ρ denotes a critical exponent. When
L → ∞, it recovers the scaling relation

P(g) ∝ g−ρ (10)

for the three physical quantities.

III. QUANTUM CRITICALITY

In this section, we first perform scaling analysis in the
pure AA model and the pure Stark model, and we obtain the
corresponding critical exponents {ν, s, z} = {νδ, sδ, zδ} and
{νε, sε, zε}, respectively. Then we investigate the critical prop-
erties in the AAS model and reveal new critical exponents.

A. Pure Aubry-André and Stark criticalities

When ε = 0, our model returns to the pure AA model with
the critical point at δ = 0. At this critical point, we can use

FIG. 2. Critical properties in the pure AA model with ε = 0.
Curves of ξ versus δ before (a1) and after (a2) rescaling for different
system sizes L. Curves of I versus δ before (b1) and after (b2)
rescaling for various L. Curves of �E versus δ before (c1) and
after (c2) rescaling for various L. The results are averaged over 1000
choices of φ.

the finite-size scaling to obtain the scaling functions for the
three physical quantities P = {ξ, I,�E}. For the localization
length ξ , the scaling function can be derived from Eqs. (3),
(9), and (10) with ρ = vδ . The scaling analysis of ξ should
satisfy the following form

ξ = L f1(δL1/νδ ), (11)

where fi(.) (i = 1 here) is the scaling function. To determine
the critical exponent νδ , we numerically calculate ξ versus
δ for various system sizes L up to L = 1597, as shown in
Fig. 2(a1). By rescaling ξ and δ as ξL−1 and δL1/νδ , we can
estimate νδ according to Eq. (11). As shown in Fig. 2(a2), the
curves collapse onto each other very well when we choose
νδ = 1. Similarly, the finite-size scaling of the IPR I can be
derived from Eqs. (6), (9), and (10) with ρ = −sδ . The scaling
form of I takes the form

I = L−sδ/νδ f2(δL1/νδ ). (12)

The numerical results before and after rescaling I and δ

as ILsδ/vδ and δL1/vδ are shown in Figs. 2(b1) and 2(b2),
respectively. The best fitting for all the curves is obtained
when sδ = 0.333. By combing Eqs. (8), (9), and (10) with
ρ = −zδvδ , we obtain the scaling function of the energy gap
�E as

�E = L−zδ f3(δL1/νδ ). (13)

The numerical results before and after rescaling �E and δ

as �ELzδ and δL1/νδ are shown in Figs. 2(c1) and 2(c2),
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FIG. 3. Critical properties in the pure Stark model with δ = −2J .
Curves of ξ versus ε before (a1) and after (a2) rescaling for system
sizes L. Curves of I versus ε before (b1) and after (b2) rescaling for
various L. Curves of �E versus ε before (c1) and after (c2) rescaling
for various L. The results are averaged over 1000 choices of φ.

respectively. We find that the rescaled curves collapse one
curve when zδ = 2.374. The numerically obtained critical
exponents {ν, s, z} = {νδ, sδ, zδ} for the pure AA model are
summarized in Fig. 1(b), which are consistent with those in
Refs. [78,82,98].

When δ = −2J , our model returns to the pure Stark model
with the critical point at ε = 0 when L → ∞. Similarly, we
perform the finite-size scaling of the three physical quantities
P = {ξ, I,�E}. For the localization length ξ , the scaling
form can be derived as

ξ = L f4(εL1/νε ). (14)

The numerical results of ξ versus the Stark field strength ε

for various L are shown in Fig. 3(a1). One can see that an
initial flat region of ε exists due to the delocalization nature
of the wave function for finite L, which tends to be smaller
(vanishing) as ε is increased. The localization length becomes
independent on the system size beyond a small threshold,
which indicates the presence of the Stark localization. By
rescaling ξ and ε as ξL−1 and εL1/νε in Fig. 3(a2), we find
the best collapse for νε = 0.33. Similarly, the IPR I in the
pure Stark model satisfies the scaling form

I = L−sε/νε f5(εL1/νε ). (15)

Figure 3(b1) shows the numerical results of I versus ε for
various L. The values of I in a region of small ε are flat with
an approximate value of L−1 for the delocalization state, while
they become independent of L for the localization state be-
yond this region. To determine the critical exponent sε in this

case, we rescale I and ε as ILsε/vε and εL1/νε , and we obtain
the best collapse for sε = 0.33 in Fig. 3(b2). The energy gap
�E in the pure Stark model satisfies the scaling form

�E = L−zε f6(εL1/νε ). (16)

Figure 3(c1) shows �E versus ε for different lattice sizes. A
flat region is also exhibited with a small energy gap for the
delocalization state. In the localization region, �E becomes
independent of L and larger as ε is increased. The critical ex-
ponent zε is determined through the data collapse in Fig. 3(c2),
which yields zε = 2. The numerically obtained critical ex-
ponents {ν, s, z} = {νε, sε, zε} for the pure Stark model are
summarized in Fig. 1(b), which are consistent with those in
Ref. [97].

B. Aubry-André-Stark criticality

We now investigate the critical properties in the AAS
model through analyzing the effect of the Stark field on the
AA critical point. We first examine the physical quantities
P = {ξ, I,�E} versus g = ε at the critical point δ = 0. At
this point, the finite-size scaling forms of each physical quan-
tity for different scales are obtained as

ξ = L f7(εL1/ν ), (17)

I = L−s/ν f8(εL1/ν ), (18)

�E = L−z f9(εL1/ν ), (19)

where {ν, s, z} denote the critical exponents for the AAS
model and can be numerically determined from the data col-
lapse.

The numerical results of the localization length ξ versus the
Stark field strength ε for different system sizes are shown in
Fig. 4(a1). By rescaling ξ and ε as ξL−1 and εL1/ν according
to Eq. (17), we find that all curves collapse into one curve
when ν = 0.3, as shown in Fig. 4(a2). Apparently, ν = 0.3
appears to be a new critical exponent in the AAS model, which
is different from both νδ = 1 for the pure AA model and νε =
0.33 for the pure Stark model. This indicates that the Stark
field contributes a new relevant direction at the AA critical
point. Additionally, ν < νδ indicates that the Stark field is less
relevant than the quasiperiodic potential. An explanation is
that the Stark potential exhibits short-range correlation, while
the quasiperiodic potential displays long-range correlation.

Figure 4(b1) shows the IPR I as a function of ε for various
system sizes. According to Eq. (18), we rescale I and ε as
ILs/ν and εL1/ν in Fig. 4(b2), which suggests that the best
collapse of the curves is using s = 0.098 for the AAS model.
This critical exponent is again different from both sδ = 0.333
for the pure AA model and sε = 0.33 for the pure Stark model.
However, the ratio s/ν ≈ 0.33 ≈ sδ/νδ indicates that, at the
critical point, the scaling of I with the system size given by
Eq. (5) is the same for the pure AA model and the AAS model.
Finally, the energy gap �E versus ε for different system sizes
is shown in Fig. 4(c1), and the rescaled curves are plotted in
Fig. 4(c2). We determine the scaling exponent z from the data
collapse as z = 2.374 = zδ , which is also the same as that in
the pure AA model.
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FIG. 4. Critical properties in the AAS model at δ = 0. Curves of
ξ versus ε before (a1) and after (a2) rescaling for different system
sizes L. Curves of I versus ε before (b1) and after (b2) rescaling for
various L. Curves of �E versus ε before (c1) and after (c2) rescaling
for various L. The results are averaged over 1000 choices of φ.

We proceed to perform the scaling analysis in the critical
region A with δ �= 0, as shown in Fig. 1(a). In the region
A, the criticality of the AAS model is dependent on both
δ and ε, such that the previous scaling forms for δ = 0
should be generalized. Concretely, we illustrate that the scal-
ing behaviors of the characteristic quantities P = {ξ, I,�E}
introduced in Sec. II can be described by the scaling forms
with δ and ε as the scaling variables. In the critical re-
gion, we obtain the general finite-size scaling form of each
quantity as

ξ = L f10(δL1/νδ , εL1/ν ), (20)

I = L−s/ν f11(δL1/νδ , εL1/ν ), (21)

�E = L−z f12(δL1/νδ , εL1/ν ). (22)

Based on the above general scaling forms, we can derive the
same critical exponent z = zδ and ratio s/ν = sδ/νδ for the
AAS model and the pure AA model, which are only numerical
results in previous sections. To do this, we first consider I in
Eq. (21) for ε = 0 and L → ∞, which yields the scaling form
I ∝ δsνδ/ν . Comparing with Eq. (6), one obtains s/ν = sδ/νδ .
We then consider �E in Eq. (22) for ε = 0 and L → ∞, and
we obtain the scaling form �E ∝ δνδz. Comparing with �E ∝
δνδzδ for the pure AA critical point, one has z = zδ for the AAS
model. To further validate the scaling forms in Eqs. (20), (21),
and (22), we numerically calculate the scaling properties of
P = {ξ, I,�E} in the AA critical region for fixed δL1/νδ = 1
(δ > 0) in Fig. 5 and δL1/νδ = −1 (δ < 0) in Fig. 6, respec-
tively. In both cases, we find the perfect collapse of rescaled

FIG. 5. Critical properties in the AAS model with fixed δL1/νδ =
1. Curves of ξ versus ε before (a1) and after (a2) rescaling for
different system sizes L. Curves of I versus ε before (b1) and after
(b2) rescaling for various L. Curves of �E versus ε before (c1) and
after (c2) rescaling for various L. The results are averaged over 1000
choices of φ.

FIG. 6. Critical properties in the AAS model with fixed δL1/νδ =
−1. Curves of ξ versus ε before (a1) and after (a2) rescaling for
different system sizes L. Curves of I versus ε before (b1) and after
(b2) rescaling for various L. Curves of �E versus ε before (c1) and
after (c2) rescaling for various L. The results are averaged over 1000
choices of φ.
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FIG. 7. Critical properties in the AAS model with fixed δ =
−0.1. Curves of ξ versus ε before (a1) and after (a2) rescaling for
different system sizes L. Curves of I versus ε before (b1) and after
(b2) rescaling for various L. The curves of �E versus ε before (c1)
and after (c2) rescaling for various L. (d1) Curves of ξL−1 versus
εL1/v for different values of δ with fixed L = 987, and (d2) curves
of ξL−1 versus εL1/v (δL1/νδ )κ . The results are averaged over 1000
choices of φ.

curves according to Eqs. (20), (21), and (22), when we choose
the same critical exponents {ν, s, z} = {0.3, 0.098, 2.374} as
those for δ = 0 in Fig. 4.

Moreover, when δ < 0, there is an overlapping region be-
tween the critical region A for the AAS model and the critical
region B for the pure Stark model, as shown in Fig. 1(a). As a
result, one should impose a constraint on the scaling functions,
which gives a hybrid scaling form [35]. To demonstrate this
point, we fix δ = −0.1, which is far away from the AA critical
point. In Fig. 7(a1), we compute ξ versus ε for different
system sizes. After rescaling ξ and ε as ξL−1 and εL1/ν , we
find that the rescaled curves collapse well by setting the same
critical exponent νε = 0.33 as that for the Stark localization
transition, as shown in Fig. 7(a2). Similarly, we numerically
calculate I and �E versus ε in Figs. 7(b1) and 7(c1), re-
spectively. Apparently, the rescaled curves in Figs. 7(b2) and
7(b2) collapse well if we choose the same critical exponents
sε = 0.33 and zε = 2 as those for the pure Stark model. This
indicates that the scaling forms in Eqs. (14), (15), and (16)
are still valid in the overlapping critical region. Thus, in this
region, the scaling behaviors can be simultaneously described
by the scaling forms of the AAS model and the pure Stark
model. In particular, the localization length ξ satisfies both

the scaling forms in Eqs. (14) and (20). This yields a hybrid
scaling form of ξ as

ξ = L f13[εL
1
ν (δL

1
νδ )κ ], (23)

where κ = νδ/νε − νδ/ν = −0.303. We show the numerical
results of ξL−1 as a function of εL1/ν for various δ and fixed
L = 987 in Fig. 7(d1). By using the collapse plot of ξL−1 ver-
sus the hybrid quantity εL1/ν (δL1/νδ )κ in Fig. 7(d2), we find all
curves collapse onto one curve by setting κ = −0.303. This
confirms the hybrid scaling form of the localization length in
Eq. (23).

IV. KZS OF DRIVEN DYNAMICS

We turn to investigate the KZS of the driven dynamics
in the AAS model, which is closely related to the quantum
criticality of phase transitions [63,64]. We consider the system
is initially in the localization state and then is driven to pass
through the critical point by linearly varying the distance g in
time t with the speed R. The time evolution of g is given by

g(t ) = g0 − Rt, (24)

where g can be δ or ε depending on the model considered, and
g0 > 0 represents the initial distance from the critical point
at t = 0. According to the KZS, when |g| > R1/rν with the
scaling exponent r = z + 1/ν, the system has enough time to
adjust the change of the Hamiltonian to preserve the adiabatic
evolution; while when |g| < R1/rν , the change rate of the sys-
tem itself is less than that of the external parameter, which
implies the system is entering the impulse region. Below, we
choose the system size L = 1597, which is sufficiently large
to ignore the finite-size effect in real-time simulations. We set
the initial state as the ground state of the system with fixed
φ = 0.2 and g0 = 1.5.

We first study the KZS in the pure AA model with ε =
0, g = δ, and critical exponents {νδ, zδ} = {1, 2.374}. In this
limit and when the system size is sufficiently large, the KZS
form of the localization length ξ near the critical point is
given by

ξ (δ, R) = R−1/rδ f14(δR−1/rδνδ ), (25)

where rδ = zδ + 1/νδ is denoted for the pure AA model. The
numerical result of ξ versus δ for different driving rates R is
shown in Fig. 8(a1). We find that when δ > R1/rδνδ , ξ is inde-
pendent of R, such that the curves under different R coincide.
This implies the adiabatic evolution of the system at this time.
When δ < R1/rδνδ , the system enters the impulse region and
the curves under different R are separated from each other.
By rescaling ξ and δ as ξR1/rδ and δR−1/rδνδ in Fig. 8(a2),
we find that the curves of different R collapse well near the
critical point, which confirms the KZS form given by Eq. (25).
Similarly, the IPR I satisfies the KZS form

I (δ, R) = Rsδ/rδνδ f15(δR−1/rδνδ ). (26)

As shown in Fig. 8(b1), when δ > R1/rδνδ (δ < R1/rδνδ near the
critical point) for the adiabatic (impulse) region, the curves of
I for different driving rates R coincide (are separated from
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FIG. 8. KZS of driven dynamics in the AA model with ε = 0.
Curves of ξ versus δ before (a1) and after (a2) rescaling for different
driving rates R. Curves of I versus δ before (b1) and after (b2) rescal-
ing for different R. The black arrows denote the quench direction.

each other). By rescaling I and δ as IR−sδ/rδνδ and δR−1/rδνδ

in Fig. 8(b2), we find that the curves collapse according to
Eq. (26).

We then study the KZS in the pure Stark model with δ =
−2J and g = ε. In this case, the KZS forms of ξ and I are
given by

ξ (ε, R) = R−1/rε f16(εR−1/rενε ), (27)

I (ε, R) = Rsε/rενε f17(εR−1/rενε ), (28)

respectively. The numerical results of ξ and I versus ε for
different driving rates R are shown in Figs. 9(a1) and 9(b1),
respectively. The initial evolutions of ξ and I are independent
of R when ε > R1/rενε . Near the critical point with ε < R1/rενε ,
the system enters the impulse region, and the curves of ξ and
I for different driving rates R are separated from each other.
By using the collapse plot of ξR1/rε (IR−sε/rενε ) and εR−1/rενε

(εR−1/rενε ) in Fig. 9(a2) [Fig. 9(b2)], we confirm the KZS of
ξ (I) in Eq. (27) [Eq. (28)] for the pure Stark model with the
critical exponents νε = 0.33 and zε = 2.

Finally, we explore the KZS in the general AAS model.
Apparently, there are two adjustable variables δ and ε in
the model. In this case, the full KZS forms of the physical
quantities P = {ξ, I} can be written as

ξ (ε, δ, R) = R−1/r f18(εR−1/rν, δR−1/rνδ ), (29)

I (ε, δ, R) = Rs/rν f19(εR−1/rν, δR−1/rνδ ), (30)

where r = z + 1/ν with ν = 0.3 and z = 2.374 for the AAS
model. When δ = 0, Eqs. (29) and (30) return to the simplified
forms

ξ (ε, R) = R−1/r f20(εR−1/rν ), (31)

I (ε, R) = Rs/rν f21(εR−1/rν ). (32)

FIG. 9. KZS of driven dynamics in the Stark model with δ =
−2J . Curves of ξ versus ε before (a1) and after (a2) rescaling for
different driving rates R. Curves of I versus ε before (b1) and after
(b2) rescaling for different R. The black arrows denote the quench
direction.

The numerical results of ξ and I versus ε for various driving
rates R are shown in Figs. 10(a1) and 10(b1), respectively.
One can observe that the curves under different R separated
from each other near the critical point. After rescaling the
curves with the critical exponents in the AAS model, we find
the rescaled curves collapse with each other near the critical
point, as shown in Figs. 10(a2) and 10(b2). For δ �= 0, we can

FIG. 10. KZS of driven dynamics in the AAS model with fixed
δ = 0. Curves of ξ versus ε before (a1) and after (a2) rescaling for
different driving rates R. Curves of I versus ε before (b1) and after
(b2) rescaling for different R. The black arrows denote the quench
direction.
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FIG. 11. KZS of driven dynamics in the AAS model with fixed
δR−1/rνδ = 0.3. Curves of ξ versus ε before (a1) and after (a2) rescal-
ing for different driving rates R. Curves of I versus ε before (b1)
and after (b2) rescaling for different R. The black arrows denote the
quench direction.

fix the value of δR−1/rνδ to verify the KZS forms of ξ and I, as
shown in Fig. 11. Here we set δR−1/rνδ = 0.3 and numerically
calculate the time evolutions of ξ and I for various driving
rates R, with results shown in Figs. 11(a1) and 11(b1). After
rescaling of the physical quantities according to Eqs. (31) and
(32), one can see that the curves under different R collapse
together near the critical point in Figs. 11(a2) and 11(b2). This
demonstrates the KZS near the AAS critical point. We also
numerically confirm the KZS for the AAS model with fixed
δR−1/rνδ = −0.3.

V. CONCLUSION

In summary, we have systematically investigated the crit-
ical properties and the KZS in the AAS model. We have
numerically calculated the localization length, the IPR, and
the energy gap, and we have performed the scaling analy-
sis to characterize the quantum criticality of the localization
transition. We have obtained the scaling forms of these char-
acteristic physical quantities for the pure AA model, the pure
Stark model, and the AAS model with new critical exponents
that are different from the counterparts for both of the former
models. We have also revealed rich critical phenomena in the
critical region spanned by the quasiperiodic and the Stark
potentials, and we have obtained a hybrid scaling form in
the overlapping critical regions of the Anderson and Stark
localizations. Furthermore, we have explored the driven dy-
namics of the localization transitions in the AAS model. By
linearly changing the strength of the Stark (or quasiperiodic)
potential, we have calculated the evolution of the localization
length and the IPR, and we have studied their dependence on
the driving rate. We have found that the KZS describes well
the driven dynamics from the ground state with the critical
exponents obtained from the static scaling analysis, which
can include two scaling variables when both the Stark and the
quasiperiodic potentials are relevant.

Note added. Recently, we noticed a preprint on quantum
criticality in the AAS model [99], where similar critical ex-
ponents were obtained. In our present work, we furthermore
study the KZS of driven dynamics in the AAS model.
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