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We study the one-dimensional non-Hermitian lattices with staggered on-site modulations and nonreciprocal
hopping up to the next-nearest-neighboring (NNN) sites. Due to the NNN nonreciprocity, the non-Hermitian
skin effect (NHSE) in the system under open boundary conditions (OBC) can be energy dependent and there
will be NHSE edges in the eigenenergy spectrum, which separates the eigenstates localized at the opposite
ends of the lattice. We find that the interplay between the nonreciprocal hopping and on-site modulations can
reverse the direction of the skin effect and modify the position of the NHSE edge. Moreover, by tuning the system
parameters, some of the eigenstates under OBC will become fully extended with the corresponding eigenenergies
being imaginary under both open and periodic boundary conditions. Thus the extended states can coexist with the
NHSE in the same system. The NHSE can even be completely dissolved with all the eigenstates being extended
when the modulation is imaginary. Our work unveils the intricate interplay between on-site modulations and
nonreciprocal hopping in non-Hermitian systems.

DOI: 10.1103/PhysRevB.110.024205

I. INTRODUCTION

It is well known that in conventional quantum mechanics,
the model Hamiltonian of the system under study is required
to be Hermitian such that the reality of eigenenergies can be
guaranteed. However, in the 1990s, Bender et al. found that
Hamiltonians that are not Hermitian but PT symmetric can
also have real eigenenergies [1–3]. The existence of real spec-
trum is further extended to pseudo-Hermitian Hamiltonians
[4–9]. During the past few decades, non-Hermitian physics
has undergone rapid developments [10–14]. A plethora of
non-Hermitian Hamiltonians have been widely exploited to
effectively describe both classical [15–25] and quantum open
systems [26–37].

Apart from the exotic spectral properties, such as the ex-
ceptional points in non-Hermitian systems, another unique
phenomenon is the non-Hermitian skin effect (NHSE), where
a macroscopic number of eigenstates accumulate at the sys-
tem boundaries [38,39]. The NHSE can influence the system
significantly and there has been a recent burst of studies on it
[40–54]. For example, the band topology and the conventional
bulk-boundary correspondence principle in topological phases
might break down in systems with NHSE [38,39,55–63].
Moreover, the spectra of systems with NHSE can be very
sensitive to the change of boundary conditions [64], which
are applicable in designing new quantum sensors [65,66].
The presence of NHSE in the system under open boundary
conditions (OBCs) is closely related to the point gap in the
complex energy spectrum under periodic boundary conditions
(PBCs) [67,68].
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Generally, in systems with nonreciprocal or asymmetric
hopping, such as the paradigmatic Hatano-Nelson model with
constant nonreciprocity [69], all the eigenstates are moved
to the boundaries due to the NHSE. However, the states can
still stay inside the bulk under certain circumstances. For
example, in systems with random or quasiperiodic disorders,
the eigenstates can be localized inside the bulk due to the
Anderson localization phenomenon, where the NHSE cannot
move these states to the boundaries when the disorders are
strong enough [70–75]. Recently, it has also been found that in
systems with linearly increasing nearest-neighboring nonre-
ciprocal hopping, the eigenstates can be immune to the NHSE
and become tightly bound states inside the bulk as the nonre-
ciprocity increases [76]. It will be interesting to ask whether it
is possible to get rid of the NHSE and obtain extended states
inside the non-Hermitian lattices with nonreciprocal hopping.

To answer the above question, we study the one-
dimensional (1D) lattices with nonreciprocal hopping and
staggered on-site modulations. The nonreciprocal hoppings
are introduced both in the nearest-neighboring (NN) and NNN
hopping terms. We find that the NHSE under OBC can be
energy dependent, where NHSE edges emerge in the spectrum
and separate the eigenstates localized at the opposite ends
of the lattice. The interplay between the on-site modulations
and the nonreciprocal hopping leads to significant changes
in the spectral properties and can reverse the direction of
the NHSE. Most interestingly, some of the eigenstates will
become extended by tuning the system parameters, with the
corresponding eigenenergies being purely imaginary under
both OBC and PBC. Other eigenstates, however, are still
localized at the ends of the lattice due to the NHSE. Thus the
extended states can coexist with the NHSE in such systems.
If the modulations are imaginary, which represent the on-
site physical gain and loss, the NHSE can even be dissolved
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FIG. 1. Schematic of the 1D lattice with staggered on-site
modulations and nonreciprocal hoppings up to the next-nearest-
neighboring sites, which are represented by ±V , (t1 ± γ1), and (t2 ±
γ2), respectively. The dashed square indicates the unit cell, which is
composed of sites A and B. The on-site modulation V can be real or
imaginary.

completely. And all the eigenstates will be extended when the
modulation is stronger than a critical value. Our work unveils
the exotic properties of the non-Hermitian systems with NNN
nonreciprocal hopping and its intricate interplay with on-site
modulations.

The rest of the paper is organized as follows. In Sec. II,
we will first introduce the model Hamiltonian of the 1D lat-
tices with nonreciprocal hopping and on-site modulations. In
Sec. III, we discuss the variations of the eigenenergy spectrum
and the NHSE under the influences of on-site modulations and
nonreciprocal hopping. Then we will further investigate the
emergence of extended states and its coexistence with NHSE
in such systems in Sec. IV. The influences of imaginary on-
site modulations are discussed in Sec. V. Finally in Sec. VI,
we will summarize our results.

II. MODEL HAMILTONIAN

We introduce the 1D lattice with staggered on-site
modulations and nonreciprocal hoppings up to the

next-nearest-neighboring (NNN) sites. Figure 1 shows
the schematic illustration of the lattice under OBC, which is
described by the following model Hamiltonian:

H =
N∑

j=1

(V c†
jAc jA − V c†

jBc jB)

+
N−1∑
j=1

[(t1 + γ1)(c†
jAc jB + c†

jBc j+1,A)

+ (t1 − γ1)(c†
jBc jA + c†

j+1,Ac jB)]

+
N−2∑
j=1

[(t2 + γ2)(c†
jAc j+1,A + c†

jBc j+1,B)

+ (t2 − γ2)(c†
j+1,Ac jA + c†

j+1,Bc jB)], (1)

where c jA and c jB (c†
jA and c†

jB) are the annihilation (creation)
operators of spinless fermions at the A and B site in the jth
unit cell. The forward and backward hopping between the
nearest-neighboring (NN) and NNN sites are represented by
(ts − γs) and (ts + γs) with (s = 1, 2), respectively. ts and γs

are real numbers. V is the on-site potential which can be real
or imaginary. If V = 0, then the model reduces to the one
studied in Ref. [77], where the NHSE is energy dependent and
there is an NHSE edge in the energy spectrum separating the
states localized at opposite ends of the lattice. N denotes the
number of unit cells and the lattice size is L = 2N . Through-
out this paper, we will take t1 = 1 as the energy unit. The
eigenenergies and eigenstates under OBC can be obtained by
diagonalizing the above Hamiltonian numerically.

By transforming the Hamiltonian into the momentum
space, we get

H (k) =
∑

k

[c†
kA c†

kB]

[
2(t2 cos k + iγ2 sin k) + V (t1 − γ1)e−ik + (t1 + γ1)

(t1 + γ1)eik + (t1 − γ1) 2(t2 cos k + iγ2 sin k) − V

][
ckA

ckB

]
. (2)

Then we can obtain the PBC energy spectrum as

E±(k) = 2(t2 cos k + iγ2 sin k) ±
√

4

(
t1 cos

k

2
+ iγ1 sin

k

2

)2

+ V 2

= 2(t2 cos k + iγ2 sin k) ±
√

2
(
t2
1 − γ 2

1

) + 2
(
t2
1 + γ 2

1

)
cos k + 4it1γ1 sin k + V 2.

(3)

Under OBC, the eigenstates will be shifted to the ends of
the lattice due to the NHSE. In order to distinguish the states
localized at the opposite ends, we introduce the directional
IPR (dIPR) as [54]

dIPR(�n) = P (�n)
L∑

j=1

|�n, j |4
(〈�n|�n〉)2

, (4)

with P (�n) = sgn[
∑L

j=1( j − L
2 − δ)|�n, j |]. Here δ ∈

(0, 0.5) is a constant. sgn(x) takes the sign of the argument,
which is positive (negative) for x > 0 (x < 0). The dIPR is
positive when �n is localized at the right end but is negative

when �n is localized at the left end. If dIPR → 0, then the
state is extended.

In the following, we will mainly focus on the systems with
real on-site modulations, i.e., when V is a real number. If V
is imaginary, which represents the on-site gain and loss in the
lattice, we will show that similar phenomena will also happen.

III. DIRECTION REVERSAL OF THE NHSE

Due to the presence of nonreciprocal hopping between the
NNN sites, the NHSE will become energy dependent and
NHSE edge emerges in the energy spectrum, separating the
eigenstates localized at opposite ends of the 1D lattice [77]. In
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FIG. 2. Eigenenergy spectrum for the lattices with γ1 = 0. Panels
(a) and (b) show the real and imaginary parts of the OBC spectrum
as a function of the on-site modulation V . The black line and circle
are the NHSE edge that separates the states localized at the opposite
ends. Panels (c)–(f) are the spectra under different values of V :
(c) V = 0, (d), (e) V = 0.2 (the two bands are plotted independently
for clarity), and (f) V = 0.8. The color bar indicates the dIPR val-
ues of the eigenstates under OBC and the red dots represent the
PBC spectra. The numbers ±1 represent the winding number of the
loops formed by the PBC eigenenergies. Other parameters: t1 = 1,
t2 = 0.4, γ2 = 0.2, and N = 100.

this section, we will check how the on-site modulations will
modify the behaviors of the NHSE. We start with a simple
case by setting γ1 = 0, implying that the nonreciprocity only
exists in the NNN hopping terms. Figures 2(a) and 2(b) show
the real and imaginary parts of the eigenenergy spectrum un-
der OBC as a function of V . The color bar indicates the dIPR
values of the eigenstates. For the eigenstates localized at the
left (or right) end, we have dIPR(�n) < 0 [or dIPR(�n) > 0],
which are represented by the brown (or blue) dots in the
figures. As we can see from the OBC spectrum, when there
is no on-site modulation, i.e., V = 0, there is only one band.
When V becomes nonzero, the real part will be split into two
bands by a gap, in correspondence with the staggered on-site
modulations. We label the band with larger (or smaller) real
parts by E+ (or E−). From the dIPR values, we find that
the eigenstates in the band E+ are all localized at the left
end while, for those in the band E−, some of the eigenstates
are shifted to the right end when V is small. Moreover, for
the system with V = 0, NHSE edge already shows up. As
V increases, the blue region in Fig. 2(a) shrinks, implying
that the number of eigenstates localized at the right end will
decrease. The NHSE edge can be determined by calculating
the self-intersection point in the PBC spectrum (red dots). As
V increases further, all the eigenstates localize at the left end
and there will be no NHSE edge in the spectrum.

It is well known that the NHSE under OBC is related to
the point gap in the PBC spectrum [67,68], which can be
characterized by the following winding number:

W = 1

2π i

∫ π

−π

dk
d

dk
log det [H (k) − EB], (5)

where EB is the base energy. The direction of the NHSE is
determined by the sign of the winding number. If W is positive

(negative), the corresponding eigenstates under OBC are lo-
calized at the left (right) end of the 1D lattice. The directional
reversal of the NHSE is related to the sign change of the
winding number. So, if the eigenstates of the same band are lo-
calized at opposite ends of the lattice, then the PBC spectrum
should become twisted and self-crossed. Thus the NHSE edge
can be obtained by calculating the self-intersection point in
the PBC spectrum. In Fig. 2, we have marked out the winding
number of the loops formed by the PBC spectrum, as indicated
by the ±1 in the figures. It is clear that, for the eigenstates
under OBC localized at the opposite ends of the lattice, the
sign of the winding number changes from positive to negative
or vice versa. Thus we can identify the critical energy that
separates the states localized at opposite ends by calculating
the self-intersection point in the PBC spectrum. In Figs. 2(c)–
2(f), we present both the OBC and PBC spectra for different
values of V . For V = 0, there is only one band and it is
self-crossed as shown in Fig. 2(c). When V becomes nonzero,
the spectrum splits into two separable bands. In Figs. 2(d) and
2(e), we plot the spectrum of E− and E+ for the system with
V = 0.2. There are two self-intersections in the loop enclosing
E− and there are NHSE edges. However, for the E+ band,
there is no self-intersection and the states are all localized
at the left end. When V becomes strong enough, there will
be no self-intersections for both bands and the NHSE under
OBC will be in the left direction; see Fig. 2(c). For the case
with γ1 = 0 discussed here, we can analytically determine the
NHSE edge by setting E−(k1) = E−(k2) with k1 �= k2, which
leads to

Re(ESI
− ) = − t2

1

2t2
,

Im(ESI
− ) = ±2γ2

√
1 − 4

(
V 2 + 2t2

1

)
t2
2 − t4

1

16t4
2

.

(6)

Notice that here the on-site modulation satisfies the following
conditions:

t4
1

4t2
2

− 2t2
1 < V 2 <

t4
1

4t2
2

+ 4t2
2 − 2t2

1 . (7)

Otherwise, there will be no self-intersections in the band
E−(k). Thus the NHSE edge in the real part of the spectrum is
a constant, while in the imaginary part it forms an ellipse, as
shown by the black lines in Figs. 2(a) and 2(b). So, by tuning
the on-site modulation, we can change the NHSE direction
and the position of the NHSE edge.

Next, we turn to the more general cases with γ1 �= 0. Fig-
ure 3 illustrates the energy spectra for the lattice with γ = 0.1.
Since γ1 here is relatively small, the behaviors of the NHSE
are similar to the above case with γ1 = 0. There are NHSE
edges in the lower band E− though they are not constant.
The edges will also disappear when V gets strong enough. A
more interesting case emerges when γ1 gets larger, as shown
in Fig. 4. Here we set γ1 = 0.8. There is no NHSE edge in
the spectrum when V is small, as indicated by the dIPR values
in Figs. 4(a) and 4(b). And all the eigenstates are localized
at the left end of the 1D lattice. The two energy bands under
PBC are inseparable when |V | < 2γ1 and there are no self-
intersections, as shown in Fig. 4(c). When |V | = 2γ1, the two
bands become degenerated. All the eigenstates still localized
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FIG. 3. Eigenenergy spectrum for the lattices with γ1 = 0.1. Pan-
els (a) and (b) show the real and imaginary parts of the spectrum
under OBC as a function of V . (c) The spectral structures of under
PBC and OBC when V = 0.3. The color bar indicates the dIPR
values of the eigenstates under OBC and the red dots represent
the PBC spectra. Other parameters: t1 = 1, t2 = 0.3, γ2 = 0.2, and
N = 100.

at the left end by then; see Fig. 4(d). As V increases, the
NHSE edges will emerge and then disappear in the lower
band as the corresponding PBC spectrum E−(k) gets twisted
and untwisted, as shown in Figs. 4(e) and 4(f). Now, all the
eigenstates in the E− band are all localized at the right end,
while those for the upper band E+ are all localized at the
left end. Thus the directions of the NHSE for the two bands
are opposite. By further increasing the on-site modulation,
the lower band E−(k) will become self-crossed again and the
NHSE edge reappears in the spectrum; see Fig. 4(g). Finally,
when V becomes strong enough, the loop will be untwisted
and the NHSE edge disappears again. Now, the eigenstates in
both the bands are localized at the same end, i.e., the left end,
as shown in Fig. 4(h).

From the above discussions, we can see that the direction
of the NHSE can be reversed by tuning the strength of the
on-site modulations. The interplay between the on-site mod-
ulations and nonreciprocal hopping results in very interesting

phenomena in the spectral structures and the behaviors of the
NHSE.

IV. COEXISTENCE OF EXTENDED STATES AND NHSE

We have already shown that due to the interplay be-
tween on-site modulation and NNN nonreciprocal hopping,
the NHSE can be energy dependent and the direction of the
NHSE can be reversed. The eigenstate corresponding to the
NHSE edge, i.e., the critical energy that separates the eigen-
states localized at the opposite ends of the lattice, is extended,
as can be seen from the dIPR values in the above Figs. 4(a) and
4(b). It will be interesting to check whether more eigenstates,
other than the critical states, or even all the eigenstates can be
extended in this nonreciprocal lattice. Since the existence of
NHSE is closely related to the point gap in the PBC spectrum,
if we want to obtain extended eigenstates under OBC, then
the point gap in the PBC spectrum needs to be eliminated.
At least for those extended eigenstates, the corresponding
eigenenergies under PBC should not form a closed loop that
encircles the OBC spectrum. From the formula of E(k) in
Eq. (3), we can get a simple case by setting t1 = t2 = 0. Then
the PBC spectrum becomes

E±(k) = 2iγ2 sin k ±
√

V 2 − 4γ 2
1 sin2 k

2
. (8)

Obviously, if we have no on-site modulations, i.e., V = 0, the
PBC spectrum will become purely imaginary. Then all the
eigenstates under OBC are extended. The eigenenergies only
move along the imaginary axis and cannot form a loop in the
complex energy plane. Thus there is no NHSE in the system.
If 0 < |V | < 2|γ1|, some of the eigenenergies will become
complex with the others still being imaginary. We can expect
that there will be some extended states under OBC, while
the other states are localized at the ends by NHSE. Thus the
extended states could coexist with the eigenstates localized at

FIG. 4. Direction reversal of the NHSE under the influence of on-site modulations. Panels (a) and (b) show the real and imaginary parts of
the OBC spectrum. The color bar indicates the dIPR values of the eigenstates under OBC. The eigenstates for the lower band E− are localized
at the left end of the lattice when |V | is small. As |V | increases, the direction of NHSE is changed to the right direction and back to the left
direction in the end. Panels (c)–(h) exhibit the evolution of the spectral structures as the on-site modulation varies from 1 to 5. The red dots
represent the PBC spectra. The insets are the enlarged view of the band with negative real parts. The numbers ±1 in the figure are the winding
number of the PBC spectrum. Parameters: t1 = 1, t2 = 0.5, γ1 = 0.8, γ2 = 0.2, and N = 100.
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FIG. 5. Coexistence of extended states and NHSE in the 1D lat-
tice with both on-site modulation and nonreciprocal hopping. Panels
(a) and (b) are the real and imaginary parts of the OBC eigenenergies
of the system as a function of V . Panels (c)–(e) show the PBC and
OBC spectra under different on-site modulation. Notice that, in (c),
the imaginary eigenenergies under PBC and OBC are overlapped
with each other. Panel (f) shows the distributions of the extended
states and the states localized at different ends of the lattice. The
label n of the eigenstate is obtained by sorting the eigenenergies by
their real parts. Parameters: t1 = 0, t2 = 0, γ1 = 1, and γ2 = 0.2. The
number of unit cells is N = 100 and the lattice size is L = 2N = 200.

the ends of the 1D lattice by NHSE. If the on-site modulation
further increases to |V | > 2|γ1|, then the PBC spectrum would
be complex and form loops in the complex energy plane as k
varies and there will be no extended states anymore. This is
different from the system with only NN hopping [i.e., setting
γ2 = 0 in Eq. (8)], where all the eigenstates are extended when
|V | < 2|γ1| but become localized at the end when |V | > 2|γ1|.

In Fig. 5, we present the variation of the spectrum as V
varies for the case with t1 = t2 = 0, γ1 = 1, and γ2 = 0.2. The
white-shaded region in Figs. 5(a) and 5(b) indicates that the
dIPR values are very close to 0 for those eigenstates. When
V = 1.5, we can see that some eigenenergies under PBC sit
on the imaginary axis while others form loops, as shown in
Fig. 5(c). Notice that the PBC eigenenergies on the imagi-
nary axis are almost identified with their OBC eigenenergies,
while the other PBC eigenenergies encircle their correspond-
ing OBC eigenenergies. We have sorted the eigenenergies by
the real part and plotted the distribution of the eigenstates
under OBC in Fig. 5(f). Clearly, we have states localized at
the left or right end and we also have states extended over
the whole lattice. Thus the extended states coexist with NHSE
in the same nonreciprocal lattice. Notice that, since
t1 = t2 = 0, the forward NN and NNN hoppings are −γ1

and −γ2, while the backward NN and NNN hoppings are
γ1 and γ2. So the hoppings along the two directions are of
the same strength, only the signs are opposite, and there is
no NHSE in the lattice without on-site modulations. It is
interesting to show that by introducing on-site modulations,
NHSE can be induced and can coexist in the same system
with extended states. By further increasing the value of V ,
such that 0 < |V | < 2, the number of extended states will
decrease gradually. When |V | = 2, there is only one extended
state, which corresponds to the critical energy that separates

FIG. 6. Variation of the NHSE under the influences of imaginary
on-site modulations: (a) V = 0, (b) V = 1.5i, and (c) V = 2i. Param-
eters: t1 = 1, t2 = 0, γ1 = 0, γ2 = 0.2, and N = 100.

the eigenstates localized at the opposite ends; see Fig. 5(d).
Finally, all the extended states will disappear when |V > 2|,
as shown in Fig. 5(e). Thus the interplay between the nonre-
ciprocal hopping and the real on-site modulations in this case
results in the emergence of NHSE and the disappearance of
extended states.

V. INFLUENCES OF IMAGINARY MODULATIONS

In the previous sections, we have investigated the behaviors
of the eigenenergy spectrum and the NHSE under the influ-
ences of real on-site modulations. If V becomes imaginary,
which represents the physical gain and loss on the lattice site,
we can also check the variations in the spectrum and eigen-
states using a similar method. The behaviors of the NHSE and
the appearance of extended states can also be observed. Most
interestingly, we can dissolve the NHSE completely by tuning
the strength of the physical gain and loss. In Fig. 6, we plot the
PBC and OBC spectra of the system with different imaginary
V values. Other parameters are set as t1 = 1, t2 = 0, γ1 = 0,
and γ2 = 0.2. Now the variation of the PBC spectrum can be
analyzed by the following equation:

E±(k) = 2iγ2 sin k ±
√

−V 2 + 4t2
1 cos2 k

2
. (9)

When V = 0, the PBC spectrum can be complex and form
a closed loop in the complex energy plane, meaning there
will be a point gap in the spectrum. Different from the case
in Fig. 5, here the NHSE still shows up when V = 0, even
though the strengths along the forward and backward NNN
hopping are the same, as shown in Fig. 6(a). As V increases,
the loops formed by the PBC spectrum will shrink. More and
more eigenenergies become imaginary, which are overlapped
with those under OBC. The eigenstates corresponding to the
imaginary energies are extended states, while those with real
eigenenergies under OBC localize at the ends of the lattice;
see Fig. 6(b). When |V | � 2, all the eigenenergies are imagi-
nary and all the states are extended, as shown in Fig. 6(c). The
NHSE thus is completely dissolved by increasing the strength
of physical gain and loss. The role played by the imaginary
on-site modulations is quite different from the real on-site
modulations discussed in Sec. IV, where the increasing of V
will eliminate the extended states. Here, on the contrary, we
find more and more extended eigenstates when the imaginary
modulation grows and all the states become extended in the
end. These results illustrate the different influences of the
real modulations and physical gain/loss in the nonreciprocal
systems. The disappearance of NHSE has also been reported
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in a recent work [78], where a two-orbital non-Hermitian 1D
chain with nonreciprocal hopping is considered.

Comparing with the case shown in Fig. 2 with only sev-
eral extended states showing up, which correspond to the
self-intersecting points in the PBC spectrum, here by setting
t2 = γ1 = 0 (or by setting t1 = t2 = 0 as in Sec. IV), we can
obtain a large number of extended states as we tune the real or
imaginary on-site modulations.

VI. SUMMARY

In summary, we have investigated the spectral properties
and the behaviors of the NHSE in the 1D lattices with stag-
gered on-site modulations and nonreciprocal hoppings. We
find that the interplay between the on-site modulation and the
nonreciprocity in the nearest- and next-nearest-neighboring
hopping leads to a variety of the exotic properties in such
non-Hermitian systems, which cannot be observed in systems
without on-site modulations or with only nearest-neighboring

nonreciprocal hopping. The variation of the on-site mod-
ulation could modify the direction of the NHSE and the
position of the NHSE edge in the system. Moreover, we
find that extended states can coexist with NHSE in the same
system and the NHSE can be dissolved completely if the
on-site modulations are imaginary. As to the systems with
longer-range nonreciprocal hopping, it has been shown that
NHSE edges also exist [77]. Similar to the model with next-
nearest-neighboring hopping discussed in this work, we can
also expect the emergence of a large number of extended
states which coexist with the NHSE by further introducing
on-site modulations. Our work unveils the intricate interplay
between on-site modulations and nonreciprocal hopping in
non-Hermitian systems.
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