
PHYSICAL REVIEW B 110, 024204 (2024)

Analysis of localization transitions using nonparametric unsupervised learning
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We propose a new viewpoint on the study of localization transitions in disordered quantum systems, showing
how critical properties can be seen also as a geometric transition in the data space generated by the classically
encoded configurations of the disordered quantum system. We showcase our approach to the Anderson model
on regular random graphs, known for displaying features of interacting systems, despite being a single-particle
problem. We estimate the transition point and verify the critical exponents in agreement with the best-known
results in the literature. We provide a simple and coherent explanation of our findings, discussing the applicability
of the method in real-world scenarios with a modest number of measurements.

DOI: 10.1103/PhysRevB.110.024204

I. INTRODUCTION

In the last decades, a huge effort has been devoted to under-
standing nonequilibrium phases of matter, which circumvent
the maximum-entropy constraint of thermal equilibrium [1,2].
Within this class of problems, the complete characterization
of the breakdown of ergodicity induced by disorder in quan-
tum systems represents one of the standing open quests [3].
Together with the huge theoretical effort, there has been in-
creasingly large attention to these unusual phases of matter
also in the experimental community; as a consequence of the
possibility of realizing theoretical models in the laboratory
[4–9]. However, it is often difficult to find observables that
are readily accessible and theoretically predictable.

In this work, we propose a data-science-inspired method in
the context of disordered quantum systems, and, in particular,
we show that localization transitions can also be investigated
through the behavior of the classically encoded configurations
in data space. To this end, we employ principal components
analysis (PCA), which is used to detect the most relevant di-
rections in data space and to compress (to project) the data set
toward the significant and restricted manifold [10,11]. From
the eigendecomposition of the sample covariance matrix, we
introduce the Rényi-entropy of the normalized eigenvalues
λ j’s (

∑d
j=1 λ j = 1) as

S(n)
PCA := 1

1 − n
ln

d∑

j=1

λn
j , (1)

and we show analytically that SPCA, i.e., S(n=1)
PCA , is linked to the

participation entropy, often employed for investigating disor-
dered induced transitions [12–14]. Therefore, unlike the usual
nonparametric approaches, our physically informed method is
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guaranteed to work, in the limit of sufficiently large samples.
We show that the infinite-order S∞

PCA can be employed to esti-
mate the critical point with remarkable accuracy in agreement
with recent results [12,15] and displays universal behavior
around the transition. Moreover, we employ a data set whose
dimension is smaller than the full Hilbert space, thus being
readily applicable in modern quantum simulators where large
data sets of snapshots of the state of the system are routinely
collected [16–19].

We remark here that data-science-inspired approaches
have already found several successful applications in various
fields, ranging from classical and quantum statistical physics
[20–31] to molecular science and quantum chemistry [32,33].

To prove the validity of our approach, we showcase it on a
prototypical example of disordered quantum systems display-
ing a localization transition: the Anderson model on random
regular graphs (RRGs). These graphs display Anderson local-
ization [34] with an usual scaling of expectation values with
system size [12,13,35–41], andare especially hard to tackle
numerically [12,42], thus being the ideal test bench for the
method we propose. In the Supplemental Material [43] we
provide more details on SPCA and our analysis, and present
results for a many-body disordered model that is believed
to display a localization transition, showing that the method
presented in this work is effective also for interacting systems.

The remainder of the work is structured as follows. In
Sec. II we present the method we use to sample the wave
function and the rationale behind the analysis of the data. In
Sec. III we exploit the Anderson model on RRGs, giving a
quick presentation of the system and its properties, and show-
casing the effectiveness of the approach. Finally, in Sec. IV
we give our conclusions and discuss possible outlooks.

II. WAVE FUNCTION SAMPLING AND ANALYSIS

The interest in nonparametric unsupervised learning meth-
ods relies on their vast range of applicability, a consequence
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FIG. 1. Sketch of the approach used in this work. Given a quan-
tum state |ψ〉, (a) we chose a basis |ψx〉 and we sample (measure)
the state according to the probability distribution |cx|2 = |〈ψx|ψ〉|2.
In this example, we consider a system with Hilbert space dimension
equal to 2L (L = 4). (b) We encode the measurement outcome as a
string of zeros and ones corresponding to the binary representation
of the integer x ∈ [0, 2L], labeling the basis state. (c) We perform
the principal components analysis (PCA) and extract the information
we are interested in by averaging over several realizations of the
disorder. In (d), we show the behavior of S∞

PCA = − ln λ1 [see Eq. (1)
and text for details] as a function of the disorder strength W , for
several sizes L.

of their agnosticism towards the problem under analysis. Such
versatility is ensured by the fact that the only required input
is a data set, which, in principle, can come from any sort
of source, and whose geometrical properties are analyzed to
extract information from the underlying physical system. In
our case, the data sets consist of matrices in which each row
corresponds to a single snapshot of a wave function, i.e., a
measurement in a given basis [see Fig. 1(b)]. However, the
method presented here may be applied to a plethora of exper-
imental and numerical situations.

In practice, let us assume to have a state described by

|ψ〉 =
N∑

x=1

cx |ψx〉 , (2)

where {|ψx〉}x=1,...,N is a suitable basis in the Hilbert space H
of dimension N = dim(H). The sampling of |ψ〉 amounts to
sample, according to the probabilities |cx|2, the corresponding
basis vectors |ψx〉. The choice of the relevant basis and the
encoding of the sampling into an actual data set is one of the
aspects to be investigated. For example, considering a chain
of qubits, one could measure a state |ψ〉 in the computational
basis and getting as an outcome a string of zeros and ones. In
this work, we label as Xi = (ni,1, . . . , ni,d ) an element of the
configuration space, where each ni,x, called “feature,” encodes
some information of the sampled state; e.g., in the previous
scenario, each feature corresponds to the measured state of
the qubit (say 0 or 1) and the total number of features d is
equal to the size of the system. The full target data set is a

collection of Nr repetitions of Xi:

X = (X1, X2, . . . , XNr )T (3)

and can be represented as a (Nr × d) matrix Xi, j .
Concretely, the method we employ is the following. We

define the centered data set Xc, whose elements are

(Xc)i, j = Xi, j − 1

Nr

∑

i

Xi, j (4)

and compute the covariance matrix C = X T
c Xc/(Nr − 1).

Then, we perform the eigendecomposition C = V T KV , where
K = diag(k1, . . . , kr ) is the diagonal matrix of the r eigenval-
ues of C ordered in descending order, and V = (v1, . . . , vr ) is
the rotation whose columns v j identify the jth relevant direc-
tions. In the new reference frame defined by V , the variance
of the data along the jth direction is given by k j , and thus
λ j ≡ k j/(

∑
i ki ) represents the percentage of encoded infor-

mation along the direction v j and is dubbed the jth explained
variance ratio (λ1 > λ2 > . . . > λr).

The motivation for our study comes from the understand-
ing that the SPCA — recently introduced as a measure of
the information content of a physical data set [25,27] —
is connected to the participation entropy. This is particu-
larly relevant since the participation entropy is the typical
quantity of interest when studying disordered systems and is
used for estimating an order parameter: the fractal dimension
[12,13,37,44–46]. The presence of such a connection between
SPCA and participation entropy is intriguing as, in the usual
scenarios when nonparametric estimators are employed, a
clear physical picture is missing. Here we show that studying
the principal components is physically meaningful as they are
connected to an order parameter and thus they are guaranteed
to store information of the physical process.

Let us link SPCA and participation entropy by considering
the sampling of a state written as in Eq. (2). For each sample
on the basis {|ψx〉}x=1,...,N , we obtain as an outcome an integer
x with probability |cx|2. Let us assume to encode this as an N -
dimensional vector with only a nonzero entry corresponding
to the index x of the sampled basis vector |ψx〉. Then, the ele-
ment of the configuration space would be vectors of the type
Xi = (0, . . . , 0, 1, 0, . . . , 0). In Ref. [43], we proved that for
a large enough number of samplings Nr � N , one gets C =
X T X/(Nr − 1) = diag(|c1|2, |c2|2, . . . , |cN |2) and the SPCA

becomes

SPCA = −
∑

j

|c j |2 ln |c j |2, (5)

which is exactly the definition of the participation entropy.
However, let us observe that the correspondence we show is
only true in the limiting case Nr � N and that the data set
contains exponentially large vectors. Therefore, one could ask
if working with different choices of encoding and at finite
sampling could provide estimates on the critical parameters
of the transition as well.

We show that this is valid by studying the behavior of
S∞

PCA = − ln λ1. The rationale behind this is that λ1 contains
all the information needed for spotting the localization tran-
sition. In fact, in the localized phase we expect a single
wave-function coefficient cx to be dominant. The sampled data
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set should be such that the first explained variance ratio λ1

is much larger than all the others, namely, there should be
a single predominant direction in the data space manifold.
On the other hand, in the ergodic regime, all wave-function
components should be of the same order, and thus the prin-
cipal components of the samplings should have all the same
importance. There should not be a preferred direction in
data space, and the explained variance ratios should vanish
with the system size (since the normalization

∑
j λ j = 1 is

enforced).
In the remainder of the article, we showcase these predic-

tions by exploiting the Anderson model on RRGs. We find
that with an appropriate analysis, it is possible to retrieve
remarkably good estimations on the position of the critical
point of the disordered induced transition and perform a clean
finite-size scaling. We do so by employing a modest number
of measurements and obtain results that are in agreement with
the literature and with statistical errors that are compatible
with state-of-the-art methods.

III. MODEL AND RESULTS

Let us consider the Anderson model for a single quantum
particle on a random regular graph (RRG). The Hamiltonian
of the model is [34]

H = −
∑

〈x,y〉
(|x〉 〈y| + |y〉 〈x|) +

∑

x

εx |x〉 〈x| , (6)

where x, y are integers that label the node of the graph. The
Hamiltonian consists of two terms. The first one is the ad-
jacency matrix of the graph (〈x, y〉 denotes nearest-neighbor
sites), in which, by construction, each node (or vertex) has
connectivity K0 (i.e., fixed vertex degree D = K0 + 1). The
second term represents a random field applied on each site,
with the parameters εi being independent and identically
distributed random variables sampled according to the box
distribution g(ε) = θ (|ε| − W/2)/W . Denoting with N the
number of vertices of the graph, we introduce a length scale
L = lnK0 N , representing the diameter of the graph, i.e., the
maximal length of the shortest paths connecting two nodes.

For K0 = 2, which will be assumed in the rest of the pa-
per, the critical value of the disorder is known to be Wc �
18.17 [12,39,42,47]. For W 	 Wc the system is ergodic, and
spectral quantities in the thermodynamic limit assume the
values predicted by random matrix theory. By increasing W
at finite system size, the model displays a crossover to the
localized regime, where Poisson statistics describes the energy
spectrum. Such a crossover becomes a phase transition in
the thermodynamic limit, with the crossover point drifting
to larger W as N is increased and reaching Wc in the N →
∞ limit [12,13,42]. To find the critical disorder for which
the whole system ceases to be ergodic, one has to focus on
eigenstates near the middle of the spectrum, i.e., around zero
energy for the model under consideration. This is because the
eigenstates in the middle of the spectrum are those that need
more disorder to localize [48,49] (on the contrary, the ground
state is always localized).

The numerical simulations on the model in Eq. (6) are
performed as follows. To find the eigenstates, we execute a full
exact diagonalization of its matrix for L � 14, or employ the

POLFED algorithm for larger system sizes [50]. We calculate
∼√

N eigenvectors in the middle of the spectrum. For each
one (see Fig. 1), (1) we sample, according to the probabilities
|cx|2, the corresponding basis vectors |ψx〉. Since the prob-
lem is single-particle, we consider the basis |ψx〉 = |x〉 where
the particle occupies the site x. Then, the output of a single
sampling will be the position of the particle x. (2) We encode
the information as a L-dimensional vector corresponding to
the binary representation of the integer x; (3) we perform
the analysis on the data set, and (4) average the results over
a number of realizations of the disordered Hamiltonian in
Eq. (6) ranging from O(104) for the smallest sizes to O(102)
for L = 17.

We look at the behavior of S∞
PCA as a function of the

strength of the disorder W and for different sizes of the graph,
that we distinguish via the lengthscale L [see Fig. 1(d)]. We
observe that S∞

PCA = − ln λ1 shows a crossover from the delo-
calized to the localized phase. In the limit of infinite disorder,
the wave function is fully localized and it is expected that
S∞

PCA approaches 0. On the other side, in the limiting case
W ∼ 0, there is no preferential configuration sampled. All the
nonvanishing λ j are the same, and thus λ1 ∼ 1/L. This holds
for any W < Wc in the large L limit. We show the behavior of
λ1 for W = 1 in Fig. 2(c), as a function of 1/L, observing that
it displays the expected behavior for large L.

To estimate the critical point Wc, we study the intersection
of S∞

PCA with the horizontal line S∞
PCA = 1 since the position

of the intersection point W ∗ drifts when increasing the size
of the graph, approaching eventually Wc. Different choices
of the position of the line give results compatible with the
ones shown here. We plot the behavior of W ∗ as a func-
tion of 1/L in Fig. 2(a). Here we report the results in the
case Nr = √

N (orange), Nr = N /4 (purple), and Nr = 5N
(black) and we perform a parabolic fit in 1/L to estimate
Wc. We observe that both extrapolations give a value that is
compatible with the one in the literature, also in the case
of a modest number of configurations sampled. In particular,
we find Wc(

√
N ) = 17.78 ± 0.23, Wc(N /4) = 18.04 ± 0.36

and Wc(5N ) = 18.53 ± 0.26, where the critical value of the
disorder is Wc = 18.17 ± 0.01. Let us remark here that the
critical value Wc = 18.17 ± 0.01 is obtained by solving self-
consistent equations for the propagator on the Bethe lattice
[47], thus allowing for a higher precision. Instead, state-of-
the-art numerical methods to estimate Wc on RRGs have errors
on the estimates that are compatible with the ones of our
approach [12,42].

To address the critical exponents, we perform a finite-size
scaling of S∞

PCA. We employ the scaling ansatz presented in
Ref. [12] for the average gap ratio, which in our case takes the
form

S∞
PCA = f [(W − Wc)L1/ν] + L−ω f1[(W − Wc)L1/ν], (7)

where f (x) and f1 are, respectively, the leading and sublead-
ing scaling functions and ν and ω are the critical exponents.
Here, ν governs the divergence of the correlation length at
the critical point when W → W −

c and does not depend on the
specific observable. In Ref. [12] it was found to be ν = 1.
On the other hand, ω governs the behavior of the observable
under analysis at the critical point W = Wc. In the case of the
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(a) (b) (c)

FIG. 2. (a) Plot of W ∗ versus 1/L. The extrapolation to L → ∞ gives the correct position of the critical point Wc = 18.17, denoted
with a red cross. Three different sets of points are shown: black dots obtained by sampling the eigenstates Nr = 5N times; purple points
employing Nr = N /4 samples; and orange dots using Nr = √

N . A parabolic fit in 1/L, the easiest curve accounting for the curvature of
the points, is performed and the critical value of W is extrapolated at 1/L = 0. The fitting functions are W ∗ = 18.53 ± 0.26 + (−46.73 ±
4.66)/L + (−128.27 ± 18.57)/L2 (black), W ∗ = 18.04 ± 0.36 + (−29.31 ± 7.01)/L + (−272.44 ± 32.85)/L2 (purple), and W ∗ = 17.78 ±
0.23 + (−13.45 ± 5.40)/L + (−475.69 ± 31.19)/L2 (orange). In Ref. [43] we elaborate more on the fitting procedure. (b) Plot of the finite-
size scaling of S∞

PCA [as in Eq. (7)]. We fix ν = 1 and ω = 1/2 (according to the result shown in the inset), we use the value of Wc independently
obtained in panel (a) and only tune the parameter A to obtain the collapse. The plot of S∞

PCA = − log λ1 is reported in Fig. 1(d). Notice that
we focus on W < Wc as we are interested in the critical exponents when approaching the critical point from the delocalized side. [(b), inset]
Behavior of S∞

PCA at W = Wc as a function of L−1/2; we observe S∞
PCA ∼ L−ω with ω = 1/2. (c) Behavior of λ(W = 1) versus 1/L, both for

Nr = 5N (black) and Nr = N /4 (orange) samples. It is expected, at large sizes, that λ1 in the ergodic phase goes as 1/L, being the inverse of
the rank of the matrix C. This behavior is indeed reached at large sizes as all sets of points approach the 1/L line in blue, which is a guide for
the eye.

average gap ratio, it is found ω = 2 [12]. In our case, we find
ω = 1/2 for S∞

PCA, as it can be seen from the inset of Fig. 2(b).
Setting ν = 1 we obtain a very clean collapse in Fig. 2(b).
We approximated the subleading scaling function f1(x) with
a constant A, which is the only free parameter of our analysis,
and we set Wc = 18.17 [12,39,42,47], as we found above in
Fig. 2(a).

IV. CONCLUSION AND OUTLOOK

In this article, we introduced a nonparametric unsuper-
vised learning approach to tackle localization transitions. We
connected analytically the eigendecomposition of the sam-
ple covariance matrix to the participation entropy, physically
motivating our approach. We showcased it on the Anderson
model on a random regular graph that, even if noninteracting,
displays important features that are reminiscent of many-body
localization and presents a serious challenge both analyti-
cally and numerically. Exploiting this example we showed
that disordered quantum systems can be characterized with
data-science-inspired approaches and localization transitions
can also be seen as geometric transitions in data space.

We studied the infinite order Rényi entropy S∞
PCA of

the eigenvalues covariance matrix as a function of dis-
order strength and system size to extract an estimate of
the critical value of the disorder Wc, that is remarkably
in agreement with results in the literature — in particular,
considering the hard challenge presented by the model inves-
tigated [12,42]. As observed in Fig. 2(a), a modest number
of measurements suffices for estimating the transition point,
such that the approach described here can be considered of
practical use for nowadays quantum simulators with local
addressing.

Furthermore, we performed a finite-size scaling of S∞
PCA by

employing the scaling ansatz presented in Ref. [12] for the
average gap ratio, and we obtained results compatible with
the literature.

We observe that the method employed requires no a priori
knowledge of the physical system under investigation, being
then a powerful tool also in the study of other physical sce-
narios, in particular, many-body problems. We present results
for the “Imbrie model” [51,52], in the Supplemental Material
[43] (see also Refs. [53–55] therein). It is believed to display
many-body localization, and thus we exploit it to prove that
our method is applicable also to interacting scenarios.

We note that the same analysis could be performed to
tackle problems such as out-of-equilibrium phase transitions
or the classification of quantum phases of matter. Moreover,
one could try to understand if this kind of approach could be
used in combination with randomized measurements [56,57],
to extract relevant features of many-body quantum states pre-
pared in the laboratory.
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