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We analyze the quantum limit of sensitivity in four-dimensional scanning transmission electron microscopy
(4D-STEM), which has emerged as a favored technique for imaging the structure of a wide variety of materials,
including biological and other radiation-sensitive materials. 4D-STEM is an indirect (computational) imaging
technique, which uses a scanning beam and records the scattering distribution in momentum (diffraction)
space for each beam position. We find that, in measuring a sample’s electrostatic potential, the quantum
Fisher information from 4D-STEM can match that from real-space phase-contrast imaging. Near-optimum
quantum Fisher information is achieved using a delocalized speckled probe. However, owing to the detection
in the diffraction plane, 4D-STEM ultimately enables only about half of the quantum limit, whereas Zernike
phase-contrast imaging enables the quantum limit for all spatial frequencies admitted by the optical system.
On the other hand, 4D-STEM can yield information on spatial frequencies well beyond those accessible by
phase-contrast TEM. Our conclusions extend to analogous imaging modalities using coherent scalar visible light
and x rays.
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I. INTRODUCTION

Quests persist to develop ever-more-sensitive imaging
techniques to probe the structure of materials down to the
atomic level. Ultrahigh sensitivity becomes absolutely manda-
tory when studying samples such as quantum materials
and radiation-sensitive materials. For radiation-based imaging
techniques, dose efficiency is of primary importance, i.e., for
a given “radiation budget,” what precision can be achieved
in measuring the material’s properties of interest? All quests
for sensitivity/precision are ultimately bound by the laws
of quantum mechanics. Such limitations are most famously
known in the form of the Heisenberg uncertainty relations.
However, there now exists a considerably more general for-
malism known as quantum estimation theory, which can offer
significant insights into the limitations of a given technique
and provide reasons why certain techniques enable maximum
dose efficiency.

Here, building on recent work [1], we apply the formalism
to analyze the sensitivity of (diffraction-based) imaging in
four-dimensional scanning transmission electron microscopy
(4D-STEM) [2], which has emerged as a favored technique for
imaging the atomic structures of a wide variety of materials,
including radiation-sensitive materials. In this technique (in
fact, class of imaging modes), an electron beam is scanned
across the sample, and for each beam position the distri-
bution of scattering is captured by a pixellated detector in
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momentum (diffraction) space, producing a four-dimensional
dataset. The images are reconstructed via a computational
algorithm, which can range from simple to quite extensive,
using the dataset as input. The technique permits a range of
imaging modes, several of which are capable of deep sub-
Ångström resolution (especially in the case of ptychography)
and sensitivity to both light and heavy elements.

Our quantum estimation theory-based analysis reveals that,
when optimized, 4D-STEM can attain about half of the
available quantum Fisher information, meaning that, for a
given level of precision, it requires about twice the mini-
mum electron dose permitted by quantum mechanics. For
an arbitrary spatial frequency, we find that near-optimum
information transfer is achieved by a delocalized speckled
probe. Preclusion of the quantum limit itself is a consequence
of detection in the diffraction plane, and it applies to 4D-
STEM imaging generally, including bright-field, dark-field,
differential-phase-contrast [3], center-of-mass [4,5], matched-
illumination [6,7], symmetry-based [8], and ptychographic
[9–16] imaging.

We compare the dose efficiency of 4D-STEM with
phase-contrast transmission electron microscopy (TEM), the
standard (direct, real space) imaging modality for biolog-
ical materials and whose collection efficiency is similar
to 4D-STEM. Under the Zernike phase condition, phase-
contrast TEM provides the greatest sensitivity in that it
enables the quantum limit for all spatial frequencies admit-
ted by the optics. While 4D-STEM generally cannot attain
the quantum limit, it can yield information on spatial fre-
quencies well beyond those accessible by phase-contrast
TEM.
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FIG. 1. Electron-optical geometries for 4D-STEM (left) and
phase-contrast TEM (right). These reciprocally related geometries
have similar collection efficiencies, and we assume an equivalent
degree of aberration control up to the field angles admitted by the
objective aperture. In reality, the STEM probe is scanned using
deflector coils (omitted).

II. BACKGROUND

We will consider the 4D-STEM and TEM optical setups in
Fig. 1, where beams of ∼100 keV electrons pass through an
electron-transparent sample. In 4D-STEM, a pixellated detec-
tor captures the diffracted intensity distribution for each beam
position, and the resulting four-dimensional dataset is used
to reconstruct an image. In TEM, we assume fixed parallel
illumination at normal incidence, and a pixellated detector in
the image plane captures the image directly.

We assume that the experimental goal is to estimate, si-
multaneously, a set of P real parameters λ1, . . . , λP. In the
formalism of multiparameter quantum estimation theory, the
parameters do not require a representation in terms of an
Hermitian operator [17], and it need only be the case that
the detected quantum state depends (effectively) continuously
on them. We also assume that the initial (incident) quantum
state does not depend on the parameters. The latter assumption
enables considerable simplification of the theory, though it
does exclude the potentially very interesting possibility of
tuning the initial state to the parameters.

In this work, we take the parameters to be the moduli and
phases of the Fourier coefficients of the sample’s projected
electrostatic potential V̂ . For materials structure determina-
tion, the phases of the Fourier coefficients are usually of
particular importance since their values often dominate the
positions of features in the sample. However, in the results
presented below, we shall mostly be able to treat the Fourier
moduli and phases on equal footing. The moduli and phases
of the Fourier coefficients form our set of P real parame-
ters λ1, . . . , λP. We assume that all other parameters, such
as those characterizing the optics, are already known with
sufficient accuracy.

III. QUANTUM AND CLASSICAL FISHER INFORMATION

The quantum Fisher information matrix (QFIM), a P × P
matrix denoted J , is a key quantity in quantum estimation
theory [18]. J is a quantum analog of the usual (classical)

Fisher information matrix (CFIM), a P × P matrix denoted I .
In the regime of asymptotic statistics, I and J are related to the
attainable variance in the (unbiased) estimation of a parameter
λμ via the inequality chain [17,19]

var[λμ] � I−1
μμ � J−1

μμ, (1)

where I−1
μμ is the μth diagonal element of the inverse matrix

I−1 and analogously for J−1
μμ . Thus, I−1

μμ gives the Cramer-Rao
lower bound which applies to any (unbiased) estimator, and
J−1
μμ provides a lower bound for I−1

μμ . If both equalities are
obtained for all parameters, i.e., var[λμ] = J−1

μμ ∀μ, then the
simultaneous quantum limit is achieved. The first equality can
be achieved using a suitable estimator, such as a maximum-
likelihood estimator. However, the second equality can be
achieved only under optimum experimental conditions.

For a pure quantum state |ψ〉, J can be defined as [18]

Jμν ≡ 4NRe 〈ψμ|Q̂|ψν〉, (2)

where

|ψμ〉 ≡ ∂|ψ〉/∂λμ, (3)

Q̂ is the projector onto the orthogonal complement of |ψ〉,
given by

Q̂ ≡ 1 − |ψ〉〈ψ |, (4)

and N is the number of independent repetitions of the experi-
ment. In our context, N is the number of beam electrons used.

To define the CFIM elements Iμν , we assume that the
detection of |ψ〉 is described by a projection-valued measure
(PVM) specified by a complete set of projectors {|ξ 〉〈ξ |}.
Each projector corresponds to a possible experimental out-
come with probability p(ξ ) = |〈ξ |ψ〉|2. In this case, Iμν can
be written in the form

Iμν = 4N
∑

ξ

Re{〈ψμ|ξ 〉〈ξ |ψ〉}Re{〈ψ |ξ 〉〈ξ |ψν〉}
〈ξ |ψ〉〈ψ |ξ 〉 . (5)

It is important to appreciate that, while J involves the state
|ψ〉, it does not involve the process of detection. By contrast,
I does also depend on the specifics of the detection process
as represented by the PVM. Loosely, we can think of J and
I as the “potential” and “actual” information, respectively.
An experiment enables the quantum limit if I = J , which is
possible if, and only if [18,20–23],

〈ψ |[Ĥμ, Ĥν]|ψ〉 = 0 ∀ μ and ν, (6a)

〈ψ |ξ 〉〈ξ |Q̂|ψμ〉 ∈ R ∀ ξ and μ. (6b)

In the commutativity condition (6a), Ĥμ is an Hermitian gen-
erator for λμ, and the generators must commute on the Hilbert
space of |ψ〉. The reality condition (6b) has a simple geomet-
ric interpretation, namely that the rays in the Argand plane
representing 〈ξ |ψ〉 and 〈ξ |Q̂|ψμ〉 are parallel, corresponding
to maximally strong interference.

In what follows, unless otherwise stated, we adopt the
weak phase-object approximation (WPOA) whereby the pro-
jected potential V̂ is regarded as small compared to unity
and expressions are retained to leading order (not necessarily
first order) in V̂ . In the case of 4D-STEM, retaining terms to
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leading order is necessary for including the dark-field contri-
butions to I and J . While the dark-field intensity is one order
in V̂ higher than the bright-field intensity, I and J , in fact,
involve changes in the scattered amplitudes with respect to
the parameter values, as opposed to the scattered intensities.
Hence, in 4D-STEM, the bright- and dark-field contributions
to I and J are of the same order in V̂ .

We emphasize that the general theory is not restricted to
the WPOA, and we refer the reader to our previous work
[1] for expressions pertaining to scattering conditions ranging
from weak to strong. On the other hand, the simplicity of
the WPOA allows analytical results which build intuition and
pave the way for future work. In the WPOA, condition (6a) is
always satisfied, since the Ĥμ’s reduce to the V̂μ’s (defined in
Sec. IV) and the latter always commute.

IV. OUR PARAMETERS

In coordinate space, the sample’s projected electrostatic
potential V̂ can be written in the form

V (x) =
∑

k

V (k)e2π ik·x, (7)

where x and k are two-dimensional vectors in the plane
transverse to the optic axis and the Fourier coefficients V (k)
obey Friedel symmetry V (k) = V̄ (−k), consistent with V (x)
being a real-valued function (see Appendix A for further
conventions).

In this work, we choose our parameters {λμ} to be (a subset
of) the Fourier moduli |V (kμ)| and phases φ(kμ) ≡ argV (kμ).
The two-dimensional spatial frequency kμ carries a subscript
μ to specify that it is associated with the parameter set. Many
of our expressions below apply to both the Fourier moduli
and phases, but when needed we will further specify whether
λμ means |V (kμ)| or φ(kμ). Owing to the Friedel symmetry,
we restrict kμ to the half space defined by, e.g., the union of
regions kx > 0 and kx = 0, ky � 0. Note that our definition
of the half space includes the zero spatial frequency kμ = 0.
However, we find that both the quantum and classical Fisher
information on V (kμ = 0) vanishes, because it corresponds to
knowledge of the overall phase of |ψ〉, which is not observ-
able. With this understood, we find it easiest to simply exclude
the case kμ = 0 in the mathematical expressions in Secs. V
and VI (even though some expressions would remain valid).

In the following sections, we will need the derivatives of V̂
with respect to each λμ. These derivatives will be denoted V̂μ,
and they have the following Fourier representations:

Vμ(k) =
{
δk,kμ

eiφ(kμ ) + δk,−kμ
e−iφ(kμ ), λμ = |V (kμ)|,

δk,kμ
iV (kμ) − δk,−kμ

iV̄ (kμ), λμ = φ(kμ),

|kμ| > 0, (8)

where k is arbitrary (and kμ is in the half space excluding the
origin).

V. PHASE-CONTRAST TEM

We let the incident state |ψ0〉 be a plane wave at normal
incidence, denoted |k0〉 with k0 = 0. We obtain

|ψ〉 = Â(1 − iV̂ )|k0〉, (9)

where Â is the nonunitary operator

Â ≡
∑
|k|�K

|k〉e−2π iχ (k)〈k|, (10)

χ (k) is the aberration phase shift, and K is the objective aper-
ture radius. The nonunitarity of Â arises because the aperture
blocks some of the scattering.

With the above expressions, we find (Appendix B) that the
QFIM for phase-contrast TEM imaging is diagonal, with

Jμμ = 8N |Vμ(kμ)|2, 0 < |kμ| � K . (11)

This expression applies to both Fourier moduli and phases,
and it is independent of the aberrations. Using (11) in (1), we
obtain for the variances

var[|V (kμ)|] � 1/8N,

var[φ(kμ)] � 1/8N |V (kμ)|2, (12)

where the equalities correspond to the quantum limit.
Both of the above variances will tend to vary inversely
with N , as expected. Also, the phase variance varies in-
versely with the modulus, and since the moduli tend to
decrease with increasing |kμ|, the phase variance will tend to
increase with increasing |kμ|, also as expected.

To determine whether phase-contrast TEM imaging per-
mits the quantum limit, we adopt for the PVM the complete
set of projectors onto coordinate space { 1

M |x〉〈x|} (M is the
number of points in the discretization of coordinate space,
see Appendix A). Alternatively to considering (6b), we can
calculate the CFIM for TEM directly (Appendix C), which
gives

Iμμ = 4N |Vμ(kμ)|2
× (1 − cos{2π [2χ (0) − χ (kμ) − χ (−kμ)]}),

0 < |kμ| � K. (13)

This expression applies to both Fourier moduli and phases,
and, unlike the expression for Jμμ, it clearly does depend on
the aberrations, as we should expect. [We note that while
(13) has the appearance of a contrast transfer function, we
emphasize that the meaning and the scale are different.]

In Fig. 2 (bottom row) we compare Jμμ and Iμμ from
TEM phase-contrast imaging for three qualitatively different
aberration conditions. [Note that the plots of Jμμ and Iμμ

in Fig. 2 are scaled such that the dependence on the factor
8N |Vμ(kμ)|2 is removed. In this way, the plots apply to both
Fourier moduli and phases, although in the case of the phases,
the natural decay of Jμμ and Iμμ with increasing |kμ|, owing
to the decay of the moduli with increasing |kμ|, is masked.]
For perfect focus χ (k) = 0, the phase-contrast TEM image
contains no information on the Fourier moduli or phases, as
we should expect. A defocused condition enables the quan-
tum limit for specific spatial frequencies. A Zernike phase
condition χ (0) = 1

4 , χ (k �= 0) = 0 enables the quantum limit
for the Fourier moduli and phases at all spatial frequencies
admitted by the optics [1,24]. An absolutely key point is that
the Zernike condition makes |ψ〉 real (up to overall phase),
so that |ψ〉 entails optimal interference with greatest possible
sensitivity to the parameters of V̂ . The latter statement corre-
sponds to the satisfaction of the reality condition (6b).
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FIG. 2. Quantum Jμμ and classical Iμμ Fisher information on
the Fourier moduli and phases obtained from 4D-STEM and
phase-contrast TEM. Results are presented for diverse aberration
conditions. For each aberration condition, the image shows an RGB
plot of the aberration phase shift within the objective aperture, and
graphs show scaled plots of Jμμ and Iμμ for spatial frequencies up to
2K . The lower-right graph shows TEM results for the Zernike phase
condition (ZPC). For STEM, the real part of the autocorrelation C
is also shown (refer to right axis). In all cases, and in some cases
despite appearances, the values of Iμμ and Jμμ at |kμ| = 0 are zero.
The scaled values of Iμμ and Jμμ and C at |kμ| = 2K persist at higher
spatial frequencies. A 100 keV electron beam, 20 mrad aperture
semiangle, and −100 nm defocus are assumed.

VI. 4D-STEM

We regard the 4D-STEM experiment as M independent
quantum systems, for which the total quantum state is the
tensor product

|�〉 = |ψ (x1)〉 ⊗ · · · ⊗ |ψ (xM )〉, (14)

where |ψ (x)〉 is a scattered state for which the incident beam
was positioned at x in the sample plane. We then use the fact
that J (and I) is additive with respect to independent systems
[25]. We also introduce the standard notation for the STEM
probe wave function 〈k|ψ0(x)〉 = ψ0(k)e−2π ik·x , where

ψ0(k) =
{

|ψ0(k)|e−2π iχ (k) |k| � K,

0 otherwise.
(15)

The QFIM for STEM is found (Appendix D) to be diago-
nal, with

Jμμ = 8N |Vμ(kμ)|2(1 − |C(kμ)|2), |kμ| > 0, (16)

where C(kμ) =∑k ψ0(k)ψ̄0(k + kμ) is an autocorrelation
(with C(0) = 1). Once again, this expression for Jμμ applies
to both Fourier moduli and phases. However, unlike Jμμ for
TEM, (16) does depend on the aberrations through C(kμ),
and |kμ| can be greater than K . Maximum quantum Fisher
information is obtained when |C(kμ)| is negligible compared

kx

ky

kµ

−kµ

Tunable Bright-Field

Untunable Bright-Field Dark-Field

Dark-Field

K

FIG. 3. Bright- and dark-field contributions to the classical
Fisher information for a spatial frequency |kμ| � K . Solid circle
represents the STEM objective aperture. Dashed circles represent the
aperture displaced by ±kμ. For K < |kμ| � 2K (not shown) there is
no tunable region. For |kμ| > 2K (not shown) there are only dark-
field contributions.

to unity (see discussion), and in this case the variances obey
the inequalities (12) in Sec. V (with no upper bound on |kμ|).

Notwithstanding the above remarks, we find that 4D-
STEM does not enable the quantum limit for the Fourier
modulus or phase at any spatial frequency, and typically it
can enable only half of this limit. To see why, we adopt for
the PVM the complete set of projectors onto Fourier space
{|k〉〈k|}, and we consider the reality condition (6b).

For wave vectors k in the bright field, assuming that
|C(kμ)| ≈ 0, (6b) becomes (Appendix E)

− iψ̄0(k)ψ0(k − kμ)Vμ(kμ)e+2π ikμ·x + (+kμ → −kμ)

∈ R ∀ x, |k| � K and kμ, (17)

where the notation in parentheses implies the preceding term
with +kμ replaced by −kμ. If |k − kμ| � K and |k + kμ| � K
(the “tunable region,” see Fig. 3), then the two terms in (17)
can combine to become real if the aberrations are such that
2χ (k) − χ (k − kμ) − χ (k + kμ) = n + 1

2 for some integer n
(note that the “tunable region” is where a bright-field detector
is typically placed to generate a phase-contrast STEM image).
On the other hand, if only |k − kμ| � K or |k + kμ| � K (the
“untunable region,” see Fig. 3), then only one of the terms
in (17) is in effect, and due to the phase factor involving x,
that term varies continuously between purely real and purely
imaginary, regardless of kμ or χ , with the effect being as
though (17) is satisfied for only half of the beam positions.
Since the untunable region typically comprises a significant
portion of the bright field, condition (17) cannot be satisfied
in general.

For k in the dark field, condition (6b) takes the form (Ap-
pendix E)∑

k′
ψ̄0(k − k′)V̄ (k′)Vμ(kμ)ψ0(k − kμ)e−2π i(k′−kμ )·x

+ (+kμ → −kμ) ∈ R ∀x, |k| > K and kμ, (18)
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where the notation implies another entire summation with
+kμ replaced by −kμ. For a given k, only one of these sum-
mations can be in effect, which means that we cannot balance
terms as before. Also notice that (18) is nonlinear in V̂ , which
prevents us from obtaining general results. However, when
multiple spatial frequencies k′ contribute to the summation,
as occurs when the STEM probe convergence angle is large
enough for there to be large overlap of the diffraction disks,
then, similarly to the untunable bright field, owing to the phase
factors involving x, it is again as though (18) is satisfied for
only half of the beam positions, regardless of kμ or χ .

There are exceptions to the behavior of the dark field just
described: If the term k′ = kμ dominates the summation, as it
can when the convergence angle is small and there is neg-
ligible overlap of the diffraction disks, then (18) is always
satisfied for λμ = |V (kμ)|, i.e., full modulus information, and
never satisfied for λμ = φ(kμ), i.e., no phase information.
The situation just described is the classic “phase problem”
in parallel-beam diffraction. As the convergence angle is in-
creased, such that the overlap increases from negligible to
large, we can infer that the behavior interpolates between “full
modulus information and no phase information” and “half
modulus information and half phase information.”

For definiteness, we will assume that the overlap of diffrac-
tion disks in the 4D-STEM experiment is large, such that
multiple spatial frequencies contribute in (18) and the phase
information is maximized. In this case, we find (Appendix F)
that the complete CFIM for 4D-STEM is approximately diag-
onal, with diagonal elements given by

Iμμ ≈ 4N |Vμ(kμ)|2

×
(

1 −
∑

k

|ψ0(k − kμ)||ψ0(k + kμ)|

× cos{2π [2χ (k) − χ (k − kμ) − χ (k + kμ)]}
)

,

|kμ| > 0. (19)

This expression applies to both Fourier moduli and phases.
The terms inside the summation are the tunable bright-field
contributions, which can range from fully additive (for the
previously stated condition on χ ) to fully subtractive (e.g.,
when χ = 0).

In Fig. 2 (middle row), we compare Jμμ and Iμμ from
4D-STEM for different aberration conditions. Perfect fo-
cus results in minimum Jμμ (since |C| is maximized) and
minimum Iμμ (since the tunable contributions are fully sub-
tractive). A defocused condition dramatically improves Jμμ

and improves Iμμ at specific spatial frequencies though
not others. For an arbitrary spatial frequency kμ, a near-
optimum χ is one that is “random” on [0, 2π ), giving Jμμ ≈
8N |Vμ(kμ)|2 and Iμμ ≈ 1

2 Jμμ. The latter case corresponds to a
delocalized speckled probe.

VII. DISCUSSION AND CONCLUSIONS

Let us first review the meaning of the inequality chain (1).
The QFIM J can be regarded as the potential information in
the scattered quantum state before detection, and the CFIM
I regarded as the actual information contained in the detected

scattering. Optimum experimental conditions, as embodied by
(6), result in I = J [second equality in (1)]. Finally, extraction
of all information I on the parameters [first equality in (1)]
requires suitable estimators (e.g., maximum-likelihood). In
phase-contrast TEM, Fourier analysis of the image intensity
provides suitable estimators of the Fourier coefficients (un-
der the WPOA). In 4D-STEM, the estimators comprise a
computational algorithm that generate values of the Fourier
coefficients from the scattering data. In this work, we do not
consider the latter estimators in any detail, so our comments
apply to 4D-STEM techniques generally.

In the calculations in Sec. VI, we have assumed that the
4D-STEM detector captures the entire scattering distribution
and found that the CFIM is approximately half of the QFIM.
Thus, 4D-STEM, with its detector positioned in the diffraction
plane, precludes the quantum limit in the simultaneous esti-
mation of the Fourier moduli and phases. The latter statement
is independent of the way in which the scattering data are
processed and thus applies to any 4D-STEM technique. In
fact, this conclusion applies even more broadly to similar
techniques using other forms of coherent scalar radiation, such
as visible light and x rays. The CFIM will be further reduced
by a less-capable detector, such as one that does not resolve
any fine features in the scattering distribution or one that does
not capture the entire distribution.

In 4D-STEM, the aberration dependence of Jμμ can reduce
the quantum information for |kμ| � 2K . For kμ arbitrary, Jμμ

is near-maximized by a “random” χ , producing a delocalized
speckled probe with expected autocorrelation 〈|C(kμ)|2〉 �
1/MK (MK is the number of plane waves inside the aper-
ture) and Iμμ ≈ 1

2 Jμμ. This provides theoretical grounding
for previous empirical observations made in the context of
4D-STEM ptychography [26], as well as light and x-ray
classical-imaging settings [27–31]. Low-autocorrelation se-
quences [32] provide scope for minor further optimization
of Jμμ. The χ developed in the work of Ophus et al. [6] for
information transfer in the bright field is slightly less optimum
than random. A defocused χ is most practical using current
STEMs, though, as shown in Fig. 2, the CFIM is nonuniform
across the spatial frequencies. Owing to the additivity of I
(and J), the CFIM in the defocused case can be made sig-
nificantly more uniform by acquiring and processing data at
multiple defoci.

Note that χ must be effectively known to extract infor-
mation Iμμ from the scattering data. If additional parameters,
such as those characterizing the optics, are not already known
with sufficient accuracy, then they should be included in the
set of parameters to be estimated. This will potentially de-
crease the precision achievable for the Fourier coefficients. In
such cases, our results for Iμμ and Jμμ should be regarded as
upper bounds.

We have compared 4D-STEM with Zernike phase-contrast
TEM, which does enable the quantum limit for all spatial
frequencies admitted by the objective aperture. Therefore, in
principle, for the spatial frequencies that it can access, Zernike
phase contrast can match the precision of 4D-STEM using
about half of the electron dose. However, the realization of
robust Zernike phase plate for electrons is highly nontrivial
[33–41]. A phase plate is not necessary for “conventional”
4D-STEM, though one is necessary for a speckled probe.
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The results presented in the main text of this work assumed
perfect coherence for simplicity. Taking into account partial
spatial coherence (Appendix G) does change some details, but
it does not change our broad conclusions: In phase-contrast
TEM, partial spatial coherence reduces J at very low spatial
frequencies and reduces I also at spatial frequencies where the
aberration is varying, but a Zernike condition still enables the
quantum limit. In 4D-STEM, partial spatial coherence reduces
J at spatial frequencies |kμ| � 2K and reduces the elements
of I that refer to the phases at all spatial frequencies, but
detection in the diffraction plane still precludes the quantum
limit. We have not yet made a mathematical analysis of the
effect of partial temporal coherence. However, we anticipate
that the most significant change will be that, in phase-contrast
TEM, it will not affect J but it will reduce I at higher spatial
frequencies, meaning that a Zernike condition will no longer
enable the quantum limit at those higher spatial frequencies
(anticipation of this effect was, in fact, our reason for intro-
ducing an objective aperture in the TEM setup).

While it does not enable the quantum limit at any spatial
frequency, 4D-STEM is able to provide information for spatial
frequencies well beyond those accessible by phase-contrast
imaging (for the same degree of aberration control). 4D-
STEM also provides more flexibility, since a broad range of
image types can be derived. Thus, regarding a choice between
the two forms of imaging, based on the present analysis,
Zernike phase-contrast TEM should provide greatest sensi-
tivity for resolutions up to about 1 Å, whereas 4D-STEM

should be used when larger datasets can be tolerated, flexi-
bility is beneficial, and information is desired at deep-sub-Å
resolutions. We also mention that ptychographical techniques
based on 4D-STEM can enable estimates of the sample’s elec-
trostatic potential under strong scattering conditions [42–44],
which is another significant advantage.

Last, we remark that the trade-off between dose efficiency
and spatial resolution in TEM and STEM has been discussed
for decades [45–47]. However, what is different about the
formalism used here is its generality. This is apparent from
the fact that our analyses required no assumptions about
how the experimental data are processed. Moreover, the con-
sideration of electron dose is an integral part of the formalism
rather than having to be inferred from additional calculations.
Finally, the present formalism readily exhibits the ultimate
limits of precision as allowed by the laws of quantum me-
chanics, and it allows some deeper, significant insights. For
example, in the case of Zernike phase-contrast imaging, that
the optical setup renders the detected quantum state real is
the deeper reason why the quantum limit can be attained.
For 4D-STEM, with its indirect image formation via Fourier
space, the detected quantum state is inherently complex, and
the quantum limit is precluded.
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APPENDIX A: CONVENTIONS

We use the following conventions:

1 =
∑

k

|k〉〈k| = 1

M

∑
x

|x〉〈x|, (A1)

where M is the number of points in the discretized 2D coordinate or Fourier space. Also 〈x|x′〉 = Mδxx′ , 〈k|k′〉 = δkk′ , and
〈x|k〉 = e2π ik·x . These produce for the discrete Fourier transform of ψ (x) = 〈x|ψ〉 and its inverse

ψ (k) = 〈k|ψ〉 = 1

M

∑
x

〈k|x〉〈x|ψ〉 = 1

M

∑
x

e−2π ik·xψ (x), (A2)

and

ψ (x) = 〈x|ψ〉 =
∑

k

〈x|k〉〈k|ψ〉 =
∑

k

e2π ik·xψ (k). (A3)

Normalization of the wave functions is given by

1 = 〈ψ |ψ〉 =
∑

k

|ψ (k)|2 = 1

M

∑
x

|ψ (x)|2. (A4)

The Fourier and coordinate representations of V̂ are given by

V̂ =
∑
kk′

|k〉〈k|V̂ |k′〉〈k′| =
∑
kk′

|k〉V (k − k′)〈k′| = 1

M2

∑
xx′

|x〉〈x|V̂ |x′〉〈x′| = 1

M2

∑
xx′

|x〉V (x)Mδxx′ 〈x′| = 1

M

∑
x

|x〉V (x)〈x|.

(A5)

The discrete Fourier transform and inverse transform of V̂ are given by

V (k − k′) = 〈k|V̂ |k′〉 = 1

M2

∑
xx′

〈k|x〉〈x|V̂ |x′〉〈x′|k′〉 = 1

M

∑
x

e−2π i(k−k′ )·xV (x), (A6)
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and

V (x) = 1

M
〈x|V̂ |x〉 = 1

M

∑
kk′

〈x|k + k′〉〈k + k′|V̂ |k′〉〈k′|x〉 =
∑

k

e2π ik·xV (k). (A7)

By V̂ , we mean the projected electrostatic interaction energy times 1/h̄v, where v is the beam electron speed and V (x) is negative
for a beam electron interacting with an atom. Analogous expressions hold for V̂μ.

APPENDIX B: CALCULATION OF Jμν FOR PHASE-CONTRAST TEM

For phase-contrast TEM, the detected state in the WPOA is given by

|ψ〉 = Â(1 − iV̂ )|k0〉. (B1)

To leading order in V̂ , we obtain for the QFIM

Jμν = 4NRe 〈ψμ|Q̂|ψν〉 = 4NRe 〈k0|V̂μÂ†(1 − |k0〉〈k0|)ÂV̂ν |k0〉. (B2)

Using the expansion

Â =
{∑

k |k〉e−2π iχ (k)〈k|, |k| � K,

0 otherwise,
(B3)

we get

Jμν = 4N

⎛
⎝∑

|k|�K

Re 〈k0|V̂μ|k〉〈k|V̂ν |k0〉 − 〈k0|V̂μ|k0〉〈k0|V̂ν |k0〉
⎞
⎠ = 4N

⎡
⎣∑

|k|�K

Re V̄μ(k)Vν (k) − Vμ(0)Vν (0)

⎤
⎦. (B4)

This vanishes unless kμ = kν and 0 < |kμ| � K , in which case we obtain

Jμν = 4N[V̄μ(kμ)Vν (kμ) + Vμ(kμ)V̄ν (kμ)], 0 < |kμ| � K . (B5)

This also vanishes unless μ and ν refer to the same modulus or same phase, that is, Jμν is diagonal. The diagonal elements are
given by

Jμμ = 8N |Vμ(kμ)|2, 0 < |kμ| � K, (B6)

which is Eq. (11).

APPENDIX C: CALCULATION OF Iμν FOR PHASE-CONTRAST TEM

We appropriately choose as the PVM the projectors onto coordinate space { 1
M |x〉〈x|}. The CFIM becomes, to leading order

in V̂ ,

Iμν = N
∑

x

pμ(x)pν (x)

p(x)
= 4N

M

∑
x

Re{〈k0|V̂μÂ†(i)|x〉〈x|Â|k0〉}Re{〈k0|Â†|x〉〈x|(−i)ÂV̂ν |k0〉}
〈x|Â|k0〉〈k0|Â†|x〉 . (C1)

Using the expansion of Â given above, we obtain, for |kν | � K ,

〈k0|Â†|x〉〈x|ÂV̂ν |k0〉 = e2π iχ (0)
[
e2π ikν ·x−2π iχ (kν )Vν (kν ) + e−2π ikν ·x−2π iχ (−kν )V̄ν (kν )

]
= 2|Vν (kν )|e2π iχ (0)−π iχ (kν )−π iχ (−kν ) cos[2πkν · x − πχ (kν ) + πχ (−kν ) + φν (kν )]. (C2)

The relevant real part is

Re{〈k0|Â†|x〉〈x|(−i)ÂV̂ν |k0〉} = 2|Vν (kν )| sin[2πχ (0) − πχ (kν ) − πχ (−kν )] cos[2πkν · x − πχ (kν ) + πχ (−kν ) + φν (kν )].
(C3)

Multiplying by the analogous factor for μ, and summing over x, we obtain that a nonzero result demands kμ = kν , and then
further that μ = ν, that is, Iμν is diagonal. The diagonal elements can be cast into the form

Iμμ = 4N |Vμ(kμ)|2(1 − cos{2π [2χ (0) − χ (kμ) − χ (−kμ)]}), (C4)

where |kμ| � K . This is Eq. (13).
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APPENDIX D: CALCULATION OF Jμν FOR 4D-STEM

We regard the STEM experiment as consisting of M independent quantum systems, one system for each position of the
electron beam:

|�〉 = |ψ (x1)〉 ⊗ · · · ⊗ |ψ (xM )〉, (D1)

where |ψ (x)〉 is a pure scattered state for which the incident beam was positioned at x in the sample plane and ⊗ denotes a tensor
product. Since J (and I) is additive with respect to independent systems, we obtain

Jμν = 4N

M

∑
x

Re 〈ψμ(x)|Q̂(x)|ψν (x)〉, (D2)

where Q̂(x) ≡ 1 − |ψ (x)〉〈ψ (x)|, |ψμ(x)〉 ≡ ∂|ψ (x)〉/∂λμ, and M is the number of “pixels” in a discretization of the two-
dimensional space. With this normalization, N corresponds, as in our analysis of TEM, to the total number of electrons.

Using the POA (not WPOA), we obtain

Jμν = 4N

M

∑
x

Re 〈ψ0(x)|e+iV̂ V̂μ[1 − e−iV̂ |ψ0(x)〉〈ψ0(x)|e+iV̂ ]V̂νe−iV̂ |ψ0(x)〉

= 4N

M

∑
x

Re 〈ψ0(x)|V̂μ[1 − |ψ0(x)〉〈ψ0(x)|]V̂ν |ψ0(x)〉. (D3)

For the first term (containing the identity), we obtain

4N

M
Re

∑
x,k,k′,k′′

ψ̄0(k − k′)e−2π ik′ ·xV̄μ(k′)Vν (k′′)ψ0(k − k′′)e2π ik′′ ·x

= 4NRe
∑
k,k′

ψ̄0(k − k′)V̄μ(k′)Vν (k′)ψ0(k − k′)

= 4N
∑
k,k′

|ψ0(k − k′)|2Re V̄μ(k′)Vν (k′)

= 4N[V̄μ(kμ)Vν (kμ) + Vμ(kμ)V̄ν (kμ)], (D4)

where kμ is in the half space (defined by, e.g., kx > 0), and we have used
∑

k |ψ0(k)|2 = 1. From the forms of Vμ given in the
main text, μ and ν must both refer to the modulus or both refer to the phase; otherwise the expression in the last line vanishes.
Hence the first term in Jμν equals 8N |Vμ(kμ)|2δμν .

The second term in Jμν is

− 4N

M
Re

∑
x,k,k′,k′′,k′′′

ψ̄0(k)e+2π ik·xVμ(k − k′)ψ0(k′)e−2π ik′ ·xψ̄0(k′′)e+2π ik′′ ·xVν (k′′ − k′′′)ψ0(k′′′)e−2π ik′′′ ·x

= −4NRe
∑

k,k′,k′′
ψ̄0(k)Vμ(k − k′)ψ0(k′)ψ̄0(k′′)V̄ν (k − k′)ψ0(k − k′ + k′′)

= −4NRe
∑

k,k′,k′′
ψ̄0(k)Vμ(k′)ψ0(k − k′)ψ̄0(k′′)V̄ν (k′)ψ0(k′ + k′′)

= −4N[V̄μ(kμ)Vν (kμ) + Vμ(kμ)V̄ν (kμ)]
∣∣∣∑

k

ψ̄0(k)ψ0(k − kμ)
∣∣∣2, (D5)

where, once again, the last line is nonzero only when μ = ν. Putting the two terms together, we have, for the diagonal elements

Jμμ = 8N |Vμ(kμ)|2
[

1 −
∣∣∣∑

k

ψ̄0(k)ψ0(k − kμ)
∣∣∣2
]

= 8N |Vμ(kμ)|2[1 − |C(kμ)|2], (D6)

which is Eq. (16). Jμμ vanishes for kμ = 0 (as it does for phase-contrast TEM). If we regard kμ as nonzero but otherwise arbitrary,
then Jμμ is maximized by a single plane wave. If we further stipulate a finite aperture size K , then Jμμ is near-maximized by
“random” aberrations, corresponding to a delocalized speckled probe.

We also supply the following derivation using a coordinate representation. In this space, the derivatives of the potential have
the forms

Vμ(x) =
{

2 cos[2πkμ · x + φ(kμ)] for λμ = |V (kμ)|,
2|V (kμ)| sin[2πkμ · x + φ(kμ)] for λμ = argV (kμ).

(D7)
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In light of the above, we can set μ = ν at the outset and obtain

Jμμ = 4N

M

∑
x

Re 〈ψμ(x)|e+iV̂ V̂μ(1 − e−iV̂ |ψ0(x)〉〈ψ0(x)|e+iV̂ )V̂μe−iV̂ |ψ0(x)〉

= 4N

M2

∑
x,x′

V 2
μ (x′)|ψ0(x′ − x)|2 − 4N

M3

∑
x

[∑
x′

Vμ(x′)|ψ0(x′ − x)|2
]2

= 4N

M

∑
x′

V 2
μ (x′) − 4N

M

∑
x

{
1

M

∑
x′

Vμ(x′)[|ψ0(x′ − x)|2 − 1]

}2

. (D8)

The second summation in the last line is a sum of squares. Therefore, if the spatial frequency kμ of Vμ(x) is nonzero but otherwise
arbitrary, then Jμμ is maximized by a STEM probe whose intensity in coordinate space has minimal correlation with any such
Vμ(x). Apart from a plane wave (which has zero correlation with Vμ(x) so that the entire summation in question vanishes), for a
finite aperture, a delocalized speckled intensity distribution has near-minimal correlation and will near-maximize Jμμ.

APPENDIX E: QUANTUM-LIMIT CONDITIONS FOR 4D-STEM

Starting with the conditions (6), we incorporate the beam position, and we appropriately adopt for the PVM the complete set
of projectors onto Fourier space {|k〉〈k|} to obtain

〈ψ (x)|[Ĥμ, Ĥν]|ψ (x)〉 = 0 ∀ x, kμ and kν, (E1a)

〈ψ (x)|k〉〈k|Q̂(x)|ψμ(x)〉 ∈ R ∀ x, k and kμ. (E1b)

Under the WPOA, Ĥμ = V̂μ, so that the commutativity condition (E1a) is always satisfied (the same holds under the POA).

1. Reality condition for the bright field

For a wave vector k in the bright field, the reality condition (E1b) becomes, to leading order in V̂ ,

〈ψ (x)|k〉〈k|Q̂(x)|ψμ(x)〉 = −i〈ψ0(x)|k〉〈k|(1 − |ψ0(x)〉〈ψ0(x)|)V̂μ|ψ0(x)〉
= −iψ̄0(k)e2π ik·x ∑

k′,k′′
[δk,k′ − ψ0(k)ψ̄0(k′)e−2π i(k−k′ )·x]Vμ(k′ − k′′)ψ0(k′′)e−2π ik′′ ·x

= −iψ̄0(k)ψ0(k − kμ)Vμ(kμ)e+2π ikμ·x + (+kμ → −kμ)

+ i|ψ0(k)|2
∑

k′
ψ̄0(k′)ψ0(k′ − kμ)Vμ(kμ)e+2π ikμ·x + (+kμ → −kμ)

= −iψ̄0(k)ψ0(k − kμ)Vμ(kμ)e+2π ikμ·x + (+kμ → −kμ)

+ i

MK
C(kμ)Vμ(kμ)e+2π ikμ·x + (+kμ → −kμ) ∈ R ∀ x, k and kμ, (E2)

where MK = 1/|ψ0(k)|2 for |k| � K . MK is just the number of wave vectors inside the STEM objective aperture. Recall that we
must have |C(kμ)|2  1; otherwise, the QFIM is significantly diminished compared with phase-contrast TEM. A diminished
QFIM in STEM is achieved by using, e.g., a highly defocused probe or, better, a speckled probe, in which case 〈|C(kμ)|2〉 �
1/MK  1. We assume such a relevant case. Hence, in the last line above, we can neglect the term containing C(kμ) to obtain

−iψ̄0(k)ψ0(k − kμ)Vμ(kμ)e+2π ikμ·x + (+kμ → −kμ) ∈ R ∀ x, k and kμ, (E3)

which is the bright-field reality condition (17).

2. Reality condition for the dark field

For k in the dark field, to leading order in V̂ , the projection operator Q̂(x) can be replaced with the identity, and the condition
(E1b) becomes

〈ψ (x)|k〉〈k|Q̂(x)|ψμ(x)〉 = 〈ψ0(x)|V̂ |k〉〈k|V̂μ|ψ0(x)〉
=
∑
k′,k′′

ψ̄0(k′)V (k′ − k)Vμ(k − k′′)ψ0(k′′)e2π i(k′−k′′ )·x

=
∑

k′
ψ̄0(k − k′)V̄ (k′)Vμ(kμ)ψ0(k − kμ)e−2π i(k′−kμ )·x + (+kμ → −kμ) ∈ R ∀x, |k| > K and kμ,

(E4)

which is the reality condition (18).

024110-9



CHRISTIAN DWYER AND DAVID M. PAGANIN PHYSICAL REVIEW B 110, 024110 (2024)

APPENDIX F: CALCULATION OF Iμν FOR 4D-STEM

Using the property of additivity, it is straightforward to incorporate the beam position x into the definition of the CFIM I:

Iμν = N

M

∑
k,x

p(k, x)(∂μ ln p(k, x))(∂ν ln p(k, x)) = 4N

M

∑
k,x

Re{〈ψμ(x)|k〉〈k|ψ (x)〉}Re{〈ψ (x)|k〉〈k|ψν (x)〉}
〈k|ψ (x)〉〈ψ (x)|k〉 , (F1)

where p(k, x) = (1/M )|〈k|ψ (x)〉|2.

1. Bright-field contribution

For the bright field, we stipulate that k lies inside the (image of the) probe-forming aperture, that is, |k| � K . In the WPOA,
we obtain, to leading order in V̂ ,

IBF
μν = 4N

M

∑
|k|�K,x

Re{〈ψ0(x)|iV̂μ|k〉〈k|ψ0(x)〉}Re{〈ψ0(x)|k〉〈k|(−i)V̂ν |ψ0(x)〉}
〈k|ψ0(x)〉〈ψ0(x)|k〉 . (F2)

For the factor containing ν, we obtain

Re{〈ψ0(x)|k〉〈k|(−i)V̂ν |ψ0(x)〉}
|〈ψ0(x)|k〉| = |Vν (kν )||ψ0(k − kν )| sin{2π [χ (k) − χ (k − kν )] + 2πkν · x + φν (kν )}

+ |Vν (kν )||ψ0(k + kν )| sin{2π [χ (k) − χ (k + kν )] − 2πkν · x − φν (kν )}. (F3)

A similar result is obtained for the factor containing μ, and so the CFIM consists of four terms “+kμ,+kν ,” “−kμ,+kν ,”
“+kμ,−kν ,” and “−kμ,−kν .” Only the sine functions depend on the probe position x, and we can perform the summation over
x using the generic expression

1

M

∑
x

sin[2πa + 2πkμ · x] sin[2πb + 2πkν · x] = 1

2
δkμ,kν

cos[2π (a − b)] − 1

2
δkμ,−kν

cos[2π (a + b)]. (F4)

Using this expression, after some algebra, we obtain a nonzero result only for the diagonal terms

IBF
μμ = 4N |Vμ(kμ)|2

∑
|k|�K

(|ψ0(k − kμ)|2 − |ψ0(k − kμ)||ψ0(k + kμ)| cos{2π [2χ (k) − χ (k − kμ) − χ (k + kμ)]}). (F5)

2. Dark-field contribution

For the dark field, k lies outside of the (image of the) probe-forming aperture, that is, |k| > K . To leading order in V̂ , we
obtain

IDF
μν = 4N

M

∑
|k|>K,x

Re{〈ψ0(x)|V̂μ|k〉〈k|V̂ |ψ0(x)〉}Re{〈ψ0(x)|V̂ |k〉〈k|V̂ν |ψ0(x)〉}
〈k|V̂ |ψ0(x)〉〈ψ0(x)|V̂ |k〉 . (F6)

The factor |〈k|V̂ |ψ0(x)〉|2 in the denominator cancels with the factors in the numerator, so that this expression is second order
in V̂ just like the bright-field contribution. Writing each of the matrix elements 〈a|b|c〉 in the above expression in terms of its
modulus |〈a|b|c〉| and phase arg 〈a|b|c〉, we can obtain after some algebra

IDF
μν = 2N |Vμ(kμ)||Vν (kν )|

M

∑
|k|>K,x

|ψ0(k − kμ)||ψ0(k − kν )|{δμν + cos[ϕμ(k, x) + ϕν (k, x) − 2ϕ(k, x)]}

+ (+kμ → −kμ,+kν → −kν ), (F7)

where

ϕμ(k, x) = arg 〈k|V̂μ|ψ0(x)〉 + 2πk · x = 2πkμ · x − 2πχ (k − kμ) + φμ(kμ), (F8)

with an analogous expression for argν (k, x), and

ϕ(k, x) = arg 〈k|V̂ |ψ0(x)〉 + 2πk · x = arg
∑

k′
V (k′)ψ0(k − k′)e+2π ik′ ·x. (F9)

Expression (F7) contains two parts, one featuring +kμ,+kν (as written out explicitly) and the other featuring −kμ,−kν (as
indicated by the shorthand notation). For a given k, only one of those parts can be nonzero, but the summation over k means
that both parts always contribute. Notice that the presence of the cosine terms means that IDF

μν is not diagonal. Also notice that
ϕ(k, x) depends explicitly on the values of the Fourier coefficients participating in the summation over k′, which makes further
simplifications of (F7) difficult. However, as we will see below, the generic behavior is that the cosine terms tend to cancel out.
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And if we make the approximation to omit the cosine terms entirely, then IDF
μν is diagonal, with the diagonal elements taking the

very simple form

IDF
μμ ≈ 4N |Vμ(kμ)|2

∑
|k|>K

|ψ0(k − kμ)|2. (F10)

Consider a diagonal element of (F7), that is, set μ = ν, and consider the case of aberrations χ that are random on [0, 2π ). In
ϕ(k, x), the summation over k′ will execute a random walk in the Argand plane, producing an expected phase which is random on
[0, 2π ) (and an expected magnitude

√∑
k′ |ψ0(k − k′)||V̄ (k′)| which has canceled out). Hence ϕ(k, x) inside the cosine in (F7)

is just a random phase. However, the presence of ϕμ(k, x) means that the phase of the term k′ = kμ is not random, which results
in a biased random walk. The degree of bias is determined by the size of |V (kμ)| relative to the moduli of the other Fourier
coefficients participating in the summation over k′. If |V (kμ)| dominates the summation, as it can when the STEM objective
aperture is small enough that the diffracted disks do not overlap significantly, then the “random walk” is not random at all, and
we obtain for the argument of the cosine

2ϕμ(k, x) − 2ϕ(k, x) ≈ 2φμ(kμ) − 2φ(kμ) =
{

0 for λμ = |V (kμ)|,
π for λμ = φ(kμ). (F11)

Substituting into the expression for IDF
μν , we obtain

IDF
μμ ≈

{
8N
∑

|k|>K |ψ0(k − kμ)|2 for λμ = |V (kμ)|,
0 for λμ = φ(kμ).

(F12)

In this case, we have obtained approximately full modulus information but no phase information (as expected, because this is
just the classic “phase problem” of parallel-beam diffraction). On the other hand, if |V (kμ)| does not dominate, as is the case
when the STEM objective aperture is large and multiple diffracted disks overlap significantly, then the argument of each cosine
is effectively random on [0, 2π ), and the cosines will tend to cancel out. In this case, we obtain

IDF
μμ ≈

{
4N
∑

|k|>K |ψ0(k − kμ)|2 for λμ = |V (kμ)|,
4N |V (kμ)|2∑|k|>K |ψ0(k − kμ)|2 for λμ = φ(kμ).

(F13)

In this case, we have obtained approximately half of the modulus information and half of the phase information. We regard the
latter case as the “generic case” for 4D-STEM.

Now, still considering a diagonal element, consider the focused case χ = 0 (the other extreme). In this case, the phase factors
involving x, while not random, will, when averaged over x, produce results very similar to those above. That is, when |V (kμ)|
dominates we obtain approximately full modulus information but no phase information, and when |V (kμ)| does not dominate
(the generic case) we obtain approximately half of the modulus information and half of the phase information.

TABLE I. The above findings are supported by the following table which shows numerical calculations of IDF
μμ for three

different materials and three different aberration conditions (those described in the main text). The table assumes a 100-keV
beam with a 20-mrad convergence semiangle (K = 0.54 Å−1). The defocused cases use C1 = −100 nm. The right-hand side of
the table shows the values obtained for IDF

μμ (normalized such that a value of unity means full information). Most values are close
to 0.5, i.e., half of the information. Strong reflections tend to give more modulus information than phase information. The values
exhibit only a weak dependence on the aberrations. These behaviors persist for higher-order reflections (not shown). COF is an
acronym for covalent organic framework.

Sample kμ d (Å) V (kμ) (eV) Focused Defocused Speckled

Re Im mod arg mod arg mod arg

SrTiO3 [001] (1, 0, 0) 3.91 +0.02 0.0 0.47 0.53 0.50 0.50 0.50 0.50
(1, 1, 0) 2.76 +6.05 0.0 0.55 0.45 0.54 0.46 0.55 0.45
(2, 0, 0) 1.95 +7.89 0.0 0.63 0.37 0.62 0.38 0.62 0.38
(2, 1, 0) 1.75 −0.15 0.0 0.52 0.48 0.46 0.54 0.50 0.50
(2, 2, 0) 1.38 +5.22 0.0 0.60 0.40 0.58 0.42 0.59 0.41

Graphene (1, 0, 0) 2.13 +1.66 −2.88 0.59 0.41 0.59 0.41 0.59 0.41
(1, 1, 0) 1.23 +2.96 0.0 0.71 0.29 0.70 0.30 0.71 0.29
(2, 0, 0) 1.07 +0.56 +0.97 0.63 0.37 0.62 0.38 0.61 0.39

COF-1 [001] (6, 3̄, 0) 2.61 −0.14 0.0 0.57 0.43 0.52 0.48 0.50 0.50
(6, 0, 0) 2.26 −0.69 0.0 0.55 0.45 0.55 0.45 0.55 0.45
(12, 6̄, 0) 1.30 +0.63 0.0 0.61 0.39 0.59 0.41 0.59 0.41
(12, 0, 0) 1.13 −0.22 0.0 0.52 0.48 0.52 0.48 0.52 0.48
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TABLE II. The following table includes both diagonal and off-diagonal elements of IDF
μν for the case of a focused probe on

SrTiO3 [001]. IDF
μν is a real-symmetric matrix so that values below the diagonal have been omitted. The largest off-diagonal (in

terms of magnitude) is about 5 times smaller than a typical diagonal, and most off-diagonals are considerably smaller still. Note
the symmetries: (i) diagonal mod-arg pairs sum to unity, (ii) off-diagonal mod-arg pairs sum to zero, and (iii) all mixed mod-arg
elements are zero. These symmetries can be inferred from (F7).

SrTiO3 [001] (1, 0, 0) (1, 1, 0) (2, 0, 0) (2, 1, 0) (2, 2, 0)

mod arg mod arg mod arg mod arg mod arg

(1, 0, 0) mod 0.47 0 0.003 0 0.001 0 −0.06 0 −0.0004 0
arg 0.53 0 −0.003 0 −0.0009 0 0.06 0 0.0004

(1, 1, 0) mod 0.55 0 0.08 0 0.001 0 0.04 0
arg 0.45 0 −0.08 0 −0.001 0 −0.04

(2, 0, 0) mod 0.63 0 0.002 0 0.05 0
arg 0.37 0 −0.002 0 −0.05

(2, 1, 0) mod 0.52 0 0.001 0
arg 0.48 0 −0.001

(2, 2, 0) mod 0.60 0
arg 0.40

3. Complete bright- and dark-field contribution

Adding the generic dark-field component [when |V (kμ)| does not dominate] to the bright-field component calculated earlier,
we obtain the (approximate) complete CFIM for STEM (under the WPOA)

Iμμ ≈ 4N |Vμ(kμ)|2
(

1 −
∑

k

|ψ0(k − kμ)||ψ0(k + kμ)| cos{2π [2χ (k) − χ (k − kμ) − χ (k + kμ)]}
)

, (F14)

which is (19).

APPENDIX G: PARTIAL SPATIAL COHERENCE

1. Jμν for phase-contrast TEM

Methods to calculate the QFIM for a mixed state are presented by Liu et al. [18]. Usually, we must describe the mixed state
using a density operator in Schmidt form,

ρ̂ =
∑

η

η|η〉〈η|, (G1)

where η is an eigenvalue of ρ̂ itself and |η〉 is the corresponding eigenstate. In our case, the eigenvalues η do not depend on the
parameters, and the QFIM can be written in the form

Jμν = 4N
∑

η

ηRe 〈ημ|ην〉 − 8N
∑
η,η′

ηη′

η + η′ Re 〈ημ|η′〉〈η′|ην〉. (G2)

For phase-contrast TEM, the incident density operator in Schmidt form is

ρ̂0 =
∑

ξ

S̃(k0)|k0〉〈k0|, (G3)

where the eigenvalue S̃(k0) specifies the distribution of incoherent incident plane waves (proportional to the Fourier transform of
the source distribution), with normalization

∑
k0

S̃(k0) = 1. We make the reasonable assumption that the extent of S̃(k0) is much
smaller than the objective aperture radius K . The incident density operator evolves into

ρ̂ =
∑

ξ

S̃(k0)Â(1 − iV̂ )|k0〉〈k0|(1 + iV̂ )Â†, (G4)

which retains a Schmidt form. Using the definitions given above, we can obtain

Jμν = 8N |Vμ(kμ)|2
⎧⎨
⎩1 −

∑
k0

[
S̃(k0)S̃(k0 + kμ)

S̃(k0) + S̃(k0 + kμ)
+ S̃(k0)S̃(k0 − kμ)

S̃(k0) + S̃(k0 − kμ)

]⎫⎬
⎭δμν, 0 < |kμ| � K . (G5)
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If S̃(k0) is a disk of radius K0, then this reduces to the particularly simple form

Jμν = 8N |Vμ(kμ)|2
(

1 − Mμ

M0

)
δμν, 0 < |kμ| � K, (G6)

where M0 is the number of plane waves inside the disk source and Mμ is the number of plane waves in the overlap of two such
sources displaced by kμ. Hence Mμ/M0 is just the fractional overlap of the disks.

Thus, the effect of partial spatial coherence is to reduce the quantum Fisher information for spatial frequencies |kμ| � 2K0.
A similar effect occurs in the case of STEM when χ = 0, except that here the effect occurs only at very low spatial frequencies
since K0  K .

2. Iμν for phase-contrast TEM

The probability of detection at a position x in the image plane is p(x) = 〈x|ρ̂|x〉/M, where ρ̂ is the density operator given
above. To calculate pν (x) we need∑

k0

S̃(k0)〈k0|Â†|x〉〈x|ÂV̂ν |k0〉 = e2π ikν ·xVν (kν )
∑

k0

S(k0)e2π iχ (k0 )−2π iχ (k0+kν ) + (+kμ → −kμ)

≈ e2π ikν ·xVν (kν )e2π iχ (0)−2π iχ (kν )
∑

k0

S̃(k0)e2π ik0·[∇χ (0)−∇χ (kν )] + (+kμ → −kμ)

= e2π ikν ·xVν (kν )e2π iχ (0)−2π iχ (kν )S[∇χ (kν ) − ∇χ (0)] + (+kμ → −kμ), (G7)

where we have used a first-order Taylor expansion of the aberration function and S denotes the inverse Fourier transform of
S̃. We assume a symmetric source S. For convenience, we define a function s(k) ≡ S[∇χ (k) − ∇χ (0)], which is real but not
necessarily symmetric, and we denote its even and odd components as s+(k) and s−(k). Then we can obtain for the relevant
real part ∑

k0

S̃(k0)Re{〈k0|Â†|x〉〈x|(−i)ÂV̂ν |k0〉}

= 2s+(kν )|Vν (kν )| sin[2πχ (0) − πχ (kν ) − πχ (−kν )] cos[2πkν · x − πχ (kν ) + πχ (−kν ) + φν (kν )]

+ 2s−(kν )|Vν (kν )| cos[2πχ (0) − πχ (kν ) − πχ (−kν )] sin[2πkν · x − πχ (kν ) + πχ (−kν ) + φν (kν )]. (G8)

Carrying out calculations similar to the pure state case, we again find that Iμν is diagonal. The diagonal elements can be cast into
the form

Iμμ = 4 N |Vμ(kμ)|2[s2
+(kμ)(1 − cos{2π [2χ (0) − χ (kμ) − χ (−kμ)]})

+ s2
−(kμ)(1 + cos{2π [2χ (0) − χ (kμ) − χ (−kμ)]})], 0 < |kμ| � K, (G9)

which reduces to the pure state expression on setting s+ = 1 and s− = 0. Thus, the effect of partial spatial coherence is to reduce
the classical Fisher information at spatial frequencies kμ where the aberration function is varying (an anticipated result). Note
that for an aberration function χ that is either symmetric or antisymmetric, we have s− = 0 in both cases.

If S̃(k0) is a disk of radius K0, then a Zernike phase condition is obtained by choosing the symmetric aberration function

χ (k) =
{

1
4 , |k| < K0,

0, |k| > K0.
(G10)

In this case, the aberration function changes abruptly at |k| = K0, so that the above assumption of a first-order Taylor expansion
is invalid. However, a direct treatment of the summation

∑
k0

S̃(k0)e2π iχ (k0 )−2π iχ (k0+kν ) is straightforward. The final result is

Iμμ = 8N |Vμ(kμ)|2
(

1 − Mμ

M0

)
, 0 < |kμ| � K, (G11)

which is equal to Jμμ. Thus, in the presence of partial spatial coherence, the Zernike phase condition enables the quantum limit
for spatial frequencies admitted by the objective aperture.

3. Jμν for 4D-STEM

Each of the M independent quantum systems is now in a mixed state, and the appropriate tensor product state is

ρ̂ = ρ̂(x1) ⊗ · · · ⊗ ρ̂(xM ). (G12)

Calculation of Jμν via expression (G2) requires each ρ̂(x) in diagonal form, which is a challenging problem. We will rather
examine the spatially incoherent case and infer the partially coherent case via interpolation. The incoherent case was, in fact,
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calculated above for phase-contrast TEM. Here the result becomes

Jμν = 8N |Vμ(kμ)|2
(

1 − Mμ

MK

)
δμν, (G13)

where Mμ/MK is the fractional overlap of the bright-field disk and the disk centered at kμ. The spatial frequency kμ is unrestricted.
This result is similar to the pure state expression except that here there is no possibility of tuning the autocorrelation owing to
the incoherence.

We infer by interpolation that, even for optimum tuning of the aberrations, partial spatial coherence will permit only an
incomplete reduction of the autocorrelation term. Thus, there is some reduction of the 4D-STEM quantum Fisher information
for spatial frequencies |kμ| � 2K . Quantum Fisher information for spatial frequencies |kμ| > 2K is unaffected.

4. Iμν for 4D-STEM

Again, we will infer the result by interpolating between the pure state case and the incoherent case. Using manipulations
similar to those already provided in detail, we find that the CFIM for the incoherent case contains only modulus information (as
expected):

Iμν = 8N |V (kμ)||V (kν )|
∑
|k|>K

|ψ0(k − kμ)|2|ψ0(k − kν )|2∑
k′ |ψ0(k − k′)|2|V (k′)|2 , λμ = |V (kμ)|, λν = |V (kν )|. (G14)

Moreover, this CFIM is nondiagonal, and it consists solely of dark-field contributions (the bright-field contributions vanish). If
there is no overlap of the diffraction disks, then it reduces to (F12), i.e., full modulus information, as it should.

We infer by interpolation that partial spatial coherence reduces those elements of the 4D-STEM CFIM that refer to the
phases, which occurs for all spatial frequencies kμ. For CFIM elements that refer to the moduli, if they are composed mostly of
bright-field contributions, then they are reduced, whereas if they are comprised mostly of dark-field contributions, then they are
possibly increased.

[1] C. Dwyer, Quantum limits of transmission electron microscopy,
Phys. Rev. Lett. 130, 056101 (2023).

[2] C. Ophus, Four-dimensional scanning transmission electron
microscopy (4D-STEM): From scanning nanodiffraction to pty-
chography and beyond, Microsc. Microanal. 25, 563 (2019).

[3] N. Shibata, S. D. Findlay, Y. Kohno, H. Sawada, Y. Kondo, and
Y. Ikuhara, Differential phase-contrast microscopy at atomic
resolution, Nat. Phys. 8, 611 (2012).

[4] K. Müller, F. F. Krause, A. Béché, M. Schowalter, V. Galioit,
S. Löffler, J. Verbeeck, J. Zweck, P. Schattschneider, and A.
Rosenauer, Atomic electric fields revealed by a quantum me-
chanical approach to electron picodiffraction, Nat. Commun. 5,
5653 (2014).
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