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Commensuration torques and lubricity in double moiré systems
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We study the commensuration torques and layer sliding energetics of twisted trilayer graphene (t3G) and
twisted bilayer graphene on hexagonal boron nitride (t2G/BN) that have two contiguous superposed moiré
interfaces. Lattice relaxations for typical graphene twist angles of ∼1◦ in t3G or t2G/BN are found to break
the out-of-plane layer mirror symmetry, give rise to layer rotation energy local minima dips of the order of
∼10−1 meV/atom at double moiré alignment angles, and have stacking energy minima of comparable magnitude
between the next-nearest top-bottom layers. Thus, in t3G, the top and bottom layers tend to align when one
twisted interface angle is fixed, whereas in t2G/BN, the alignment of the two moiré patterns favors t2G with
θ � 1.12◦ near the magic angle when the G/BN interface is rotated at θ � 0.56◦. Precedence of rotation over
sliding during the moiré commensuration is confirmed for periodic boundary systems where the sliding energy
barriers drop to ∼10−4 meV/atom for physical misalignment angles as small as ∼0.03◦. For finite graphene
flakes of diameter D, we find enhanced friction forces for a wider range of angles �θFWHM ∼ C/D both near the
zero alignment angle in t2G and commensurate double moiré angles in t3G.

DOI: 10.1103/PhysRevB.110.024109

I. INTRODUCTION

Double moiré or supermoiré 2D materials [1–9], have
two interfering moiré interfaces due to twist angles or lattice
constant mismatch. These double interface systems are often
assumed to form commensurate double moiré geometries.
An important example in the context of flat band supercon-
ductivity is twisted trilayer graphene (t3G) with a twisted
middle layer [10–19], and likewise commensurate double
moiré geometries have been assumed when studying twisted
bilayer graphene on hexagonal boron nitride (t2G/BN) where
a spontaneous anomalous Hall effect was measured [20–25].
However, the assumption that equal period and angle aligned
commensurate double moiré systems are energetically favored
over incommensurate double moiré systems has not been yet
confirmed.

In this article, we analyze the atomic structure of double
moiré van der Waals materials taking t3G and t2G/BN as
prototypical examples to show that torques tend to lock the
systems into commensurate double moiré patterns and favor
a specific sliding geometry between the alternating layers,
generally accompanied by mirror symmetry breaking layer
corrugations. We find that the specific sliding atomic struc-
tures between the top and next nearest layer only matters
when the moiré patterns are commensurate, whereas the slid-
ing energies become practically constant for incommensurate
double moiré patterns, similar to the superlubric behavior in
single moiré twisted graphene systems studied in the literature
[2,26–31].

*Contact author: jeiljung@uos.ac.kr

II. SYSTEMS AND METHODS

The representative double moiré systems considered,
namely t3G and t2G/BN, are illustrated in Fig. 1(a), where the
layer numerals 1, 2, and 3 correspond to bottom, middle, and
top layers, respectively, where θ12 and θ32 are the twist angles
of the bottom and top layers with respect to the reference
middle layer. The atomic structure relaxation is carried out
using LAMMPS [32] with computational details provided in
the Appendix including the indices that specify double moiré
supercells in Table I, where we expand the approaches out-
lined in Refs. [33,34]. The stability of the atomic structure
relies on the total energy given as the sum

Etot = Eel + Epot (1)

where we can distinguish the elastic energy Eel = ∑
i E i

el/2
that resists the deformation due to the strains, and the poten-
tial energy Epot = ∑

i E i
pot/2 giving rise to the moiré strain

patterns, where the division by 2 accounts for double count-
ing. The local elastic Ei

el, potential Ei
pot, and interface Ei

IFmn

energies are defined as

Ei
el =

∑
j∈layer i

φi j (2)

Ei
pot =

∑
j /∈layer i

φi j =
∑

j∈ any layer

φi j − Ei
el (3)

Ei
IFmn

=
∑

j /∈ layer i
j ∈ layer n or m,

φi j
mn (4)

where φi j represents the pairwise potentials between atoms
i and j. By definition, the interface energy and the potential
energy give very similar trends, with the additional advantage
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FIG. 1. (a) Double moiré t3G and t2G/BN trilayers with θi j = θi − θ j twist angles of the i-th layer with respect to the j-th layer. (b) Layer
mirror-symmetry breaking corrugations of t3G with AAA top-bottom layer sliding and θ12 = θ32 = 1.54◦ with moiré length λ2 = 9.16 nm.
(c) Interlayer distance variations at different local stacking positions and (d) bending corrugations of the middle layer measured from the
respective bottom reference layer of the interface.

that for trilayer systems, the interface energy definition allows
to focus on a specific interface defined by m and n layers.

In our calculations, the elastic energy contributions in
Eq. (2) are about one order of magnitude smaller than the
potential and interface energies in Eqs. (3) and (4), and only a
small fraction of the total energy in Eq. (1) dictates the stabil-
ity of our systems. Thus, the interface energies are essentially
the potential energies referred to a particular pair of layers.
The changes of this interface energy between single moiré
(2L) and double moiré (3L) systems can be obtained through

�EIFmn (r) = E3L
IFmn

(r) − E2L
IFmn

(r), (5)

where E3L
IFmn

at a given point is obtained relaxing simultane-
ously all three layers of t3G and then reading the bilayer
atomic positions for the considered mn interface, whereas
the E2L

IFmn
interface energy is obtained using the t2G relaxed

atomic positions of the two mn layers that form the interface.
In Eq. (5), we have removed the i-index dependence in Ei

IFmn

in Eq. (4) using instead the position vector r by interpolating
the data from the closest i-sublattice points.

Another quantity of interest is the torque constant

k± = dEtot

dθ32
(6)

that we define as the derivative of the total energy as a function
of twist angle, similar to the proposals in Refs. [29,31,35]. Our
torque analysis has focused on the rotation of the top layer
with respect to the middle layer, where its positive or negative
values tend to either reduce or increase the value of θ32 toward
the commensurate moiré geometry.

III. TWIST DEPENDENT SLIDING LUBRICITY

Here we present the main result of our study, namely
that doubly commensurate t3G and t2G/BN moiré systems
are more stable than the incommensurate ones. For t3G, we

choose three bottom interface angles θ12 = 1.08◦, 1.54◦, and
2.0◦ to sample the magic angles of alternating twist tNG
systems corresponding to N = 2, 3,∞ [36]. Then we ro-
tate the top layer by θ32 from 0.1◦ to 2.3◦, with the moiré
commensuration being naturally achieved when θ12 = θ32.
The relaxed atomic structures generally favor z-axis corru-
gations breaking layer mirror symmetry, where the typical
local stacking-dependent interlayer distance has variation of
the order of ∼0.1 Å while the middle layer z-axis corrugations
are of the order of ∼1.75 Å , roughly one half of the average
interlayer distance [see Fig. 1(c) and Fig. 1(d)].

The main result of this work, namely the favoring of doubly
commensurate angles, is summarized in the twist angle θ32

dependent total energies of Fig. 2(a), and select total energies
are listed in Table III. Total energy local minima are found at
the commensurate angles for all three θ12 values considered
provided that we allow a bending corrugation as illustrated in
Fig. 1(b). In fact, the mirror-symmetric t3G with a completely
flat middle layer has a higher total energy compared to the cor-
rugated atomic structure. The binding energies Eb are defined
as the difference between the dashed interpolated line using
the total energies away from commensuration and the actual
total energy at commensuration [see Fig. 2(a) and Fig. 2(b)].
The torques are generally larger for smaller θ12 angles, and the
signs of the torque constants k+ and k− obtained using Eq. (6)
will decrease/increase the θ32 to bring the incommensurate
double moiré systems back to commensuration. In Fig. 2(a),
we show that the commensurate double moiré systems are
most stable in the AAA-sliding, where the overline indicates
relative sliding between the layers prior to twisting and the
rotation center is located at the A-sublattice site of the bottom
layer. In fact, the energy difference between the AAA at the
local minima dip and AAB maxima represented is equal to
0.18 meV/atom near ∼1◦ and drops to 0.06 meV/atom for
an angle of 3.47◦ (not shown here) and are comparable to
the magnitude of the energy local minima dips due to the
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FIG. 2. (a) Total energies of t3G double moiré systems for three different values of θ12 where θ32 is varied from ∼0.1◦ to ∼2.3◦. The
commensurate θ12 = θ32 angles are indicated by vertical lines have a local energy dip. The x-symbols represent the AAB sliding and the
dashed lines are interpolated through a third degree polynomial. On the right-hand side, we show total energies for different sliding of the top
layer for select commensurate angles θ12 = θ32. These colormaps indicate which sliding configuration is the most stable and allow us to extract
the sliding energy that we can contrast with the rotation energies. (b) Similar plots for t2G/BN (Type I and Type II) where local minima are
found for two different values of θ32, corresponding to L12 = L32 (solid vertical line) and L12 = L32/2 (dashed vertical line). (c) Interpolated
interface energy differences �EIFmn (r) of Eq. (5) illustrating the local energy gain/penalty when a single moiré comes into contact with a
second moiré interface, plotted along a straight line that connects the opposite diagonal corners of the moiré cell. The most stable stacking
arrangement is highlighted with a thicker line. The negative energies correspond to a stabilizing gain in energy, whereas positive energies
indicate a destabilizing energy penalty.

rotation. Our sliding dependent total energy plots in both
x − y directions indicate that there are barrier-free sliding
paths leading to the global minimum at AAA-sliding [36,37].
Similar conclusions follow for t2G/BN where we fix the
substrate angle between G and hBN at θ12 = 0.56◦ for type

I or −0.58◦ for type II. We allow θ32 between both graphene
layers to change up to a value of 1.5◦ to achieve moiré periods
that satisfy pLM

tBG = q LM
tGBN , where p, q are integers [38]. For

p = 1, we observe two local minima dips in the energy curve
corresponding to θ32 = 0.56◦ for q = 2 with a G/G moiré
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pattern period twice as large as that of the G/BN interface, and
θ32 = 1.12◦ for equal periods with q = 1. The double moiré
commensuration total energy local minima dips in Fig. 2(a)
and Fig. 2(b) for t3G and t2G/BN due to interfering moiré
patterns can be further understood through the interface en-
ergy difference between three-layer and two-layer relaxed
systems, calculated using Eq. (5) and illustrated as line plots in
Fig. 2(c), which shows the energy gain/penalty (negative and
positive values, respectively) arising when two moiré patterns
interfere with each other. The strongest local energy penalties
often happen away from the high symmetry local stacking
regions and the global energy minimization does not follow
simple rules of thumb, especially for heterostructures like
t2G/BN.

IV. TWIST DEPENDENT SLIDING LUBRICITY

To further understand the twist angle dependent slid-
ing energetics and frictions in relation to the stabilization
of the commensurate double moiré systems versus the in-
commensurate ones, we show in Fig. 3 the local stacking
distribution maps for each one of the t3G interfaces. For
commensurate moiré patterns and stable AAA-sliding, the
energetically unfavorable AA local stacking that makes about
7.7% of the total area increases to 12.2% for the less stable
AAB-sliding. We approximate the incommensurate double
moiré systems by allowing two different moiré pattern pe-
riods, such as the combination of 1.54◦ − 1.1◦ with 1/7
moiré length ratios or 1.54◦ − 1.5◦ with 1/39 ratios. For
these geometries, the relative distribution of the AA, AB,
or BA local stacking areas become practically insensitive
to the relative sliding of the top layer resulting in almost
the same local stacking area ratios for both AAA and AAB
slidings, indicating in turn that they will have weak inter-
layer sliding force gradients. Sliding energy landscapes of
10−1 meV/atom for commensurate double moiré systems
where �θ = θ32 − θ12 = 0◦ quickly drops to 10−4 ∼ 10−5

meV/atom for small twist angles away from commensuration
of �θ � 0.03◦ ∼ 0.5◦ suggesting moiré superlubricity away
from double moiré commensuration. Therefore, the sliding-
dependent energy landscape of the outer layers will have non-
negligible gradients for locally commensurate double moiré
patterns.

To assess these interlayer sliding forces in a more realistic
setting, we perform friction force calculations based on flakes
in Fig. 4 and obtain the friction coefficients μ = |F f |/Fn as
the ratio of the friction force amplitude integrated along half
a period τ of the armchair direction of the unrotated reference
layer when we apply a constant normal force Fn = 1 nN/atom
[39]. We note that superlow friction is usually defined as the
dynamic friction coefficient being lower than μ = 0.01 or
close to μ = 0.001 at the limit of what can be detected by
available tribometers [40], where our quasistatic coefficient
values should be considered as upper bounds to the dynamic
values [41]. Using D = 20 nm flakes, it was shown experi-
mentally that the friction coefficient for t2G drops into the
superlubric regime away from zero alignment [28]. For our
t3G systems, the commensurate configuration at 1.54◦ has
a friction coefficient of about 25% of the aligned t2G value

FIG. 3. Local stacking rearrangement due to lattice relaxations in
double moiré t3G systems using the conventions of Ref. [33]. These
maps visualize the assignment of a high-symmetry stacking (AA,
AB, BA,...) to each one of the intermediate stackings that are natu-
rally present in moiré systems that facilitates quantifying the lattice
reconstruction and making comparisons between systems. (a) Com-
mensurate double moiré patterns with equal angles θ12 = θ32 = 1.54◦

for two top-bottom layer sliding geometries. The AAA sliding shows
a smaller AA local stacking area when compared with the AAB
sliding going from 7.7% to 12.2%, respectively. (b) Incommensurate
double moiré patterns approximated by commensurate approximants
in a system with unequal angles θ12 = 1.54 and θ32 = 1.1◦ and
corresponding local stacking area ratios for two sliding geometries.
Although the relaxation profiles change with different sliding geome-
tries, the ratios for local AA, AB, and BA stackings remain nearly the
same.

and transitions into the superlubric regime away from double
moiré commensuration, where �θFWHM ∼ C/D◦ is the width
of the friction peak that can be fit with C ∼ 0.04 deg · nm for
both single moiré t2G and double moiré t3G. The suppressed
friction in t3G near θ32 = 0◦ likely results from allowing
relaxations in the unconstrained middle layer while in the t2G
simulations the bottom layer is kept rigid. The computation
details as well as further discussions in terms of the flake size
are given in the Appendix.

V. DISCUSSIONS

We have shown that double moiré systems tend to align
their angles and form rational p/q moiré length ratios, as
illustrated in alternating t3G p = q = 1 and t2G/BN p = 1,
q = 1, 2 systems, with the effect diminishing quickly for p, q
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FIG. 4. Friction coefficients μ = |F f |/Fn for t2G and t3G cal-
culated using Fn = 1 nN/atom with a rigid tip and bottom layer.
We see a clear transition from the incommensurate superlubric to
sizable friction regime near zero angle commensuration in single
interface t2G and the supermoiré double interface commensuration
at 1.54◦ in t3G. The double moiré frictions are about 1/4 of the
single moiré counterpart. The sizable friction angle range follows
�θFWHM ∼ 0.04◦/D where D(nm) is the flake diameter.

values larger than 1. The binding energies gained during the
rotational alignment near θ32 � 1◦, 1.5◦, and 2◦ of the order of
∼0.2, 0.17, and 0.13 meV/atom, respectively, are comparable
in magnitude with the energy differences resulting from the
relative sliding of the top and bottom layers in commensurate
double moiré geometries [36,37]. The suppression of sliding
energies by a few orders of magnitude for incommensurate
double moiré geometries happens in periodic systems as soon
as the system is marginally twisted away from double moiré
commensuration with very small physical rotation angles as
small as ∼0.03◦. This observation on double moiré systems
extends previous knowledge from single moiré systems where
zero degree alignment was shown to prevent superlubricity
due to the increased number of energy barriers the system
has to overcome when compared to the incommensurate con-
figurations where friction forces cancel out on average for
sufficiently hard periodic materials [42]. Simulations based
on finite flakes indicate sizable finite friction forces for wider
twist angle deviations of �θFWHM � 2◦ in a flake with a
diameter D = 20 nm. These results indicate precedence of
rotational alignment over the relative sliding of top-bottom
layers in the double commensuration process. Thus, com-
mensurate double moiré local domains are expected within
long period incommensurate double moiré systems akin to
the commensurate stacking domains found in marginally t2G
[43], suppressing the angle disorder prevalent in t2G. In fu-
ture work, one could consider additional contributions to the
friction, such as the nature of a possible substrate, the dry or
wet environment of the measurements, and electronic excita-
tion contributions [44,45] that may further affect the current
results.

The torque calculations in t3G suggest that after fixing
the bottom interface angle θ12 in experiments targeting θ32

angles that are equal or slightly larger than the commensurate
double moiré angle will more easily tend to lock the system

into moiré commensuration, whereas targeting a smaller angle
may result in the system rotating back to the trivial zero-
alignment commensurate phase upon thermal annealing. Our
results for t2G/BN suggest that it is possible to prepare t2G
at an angle θ that is defined by the angle formed by G with
the underlying h/BN substrate, by exploiting double moiré
commensuration. G/hBN samples at an angle of 0.56◦ might
preferably host magic angle tBG. The qualitative conclusions
based on the t3G and t2G/BN double moiré systems found in
this work are expected to apply for a variety of other twisted
layered van der Waals materials forming multiple moiré pat-
terns.
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APPENDIX A: COMPUTATIONAL DETAILS

We use the REBO2 force field [46] for the intralayer
interactions of graphene and EXTEP [47] for those of hexag-
onal boron nitride, whose equilibrium geometries are aG =
2.4602 Å and aBN = 2.50576 Å, respectively. The interlayer
force fields are based on EXX-RPA-informed [48] DRIP [49]
parameterizations [50] and we used both the fire and CG
minimization scheme [51] with a timestep of 0.0001 ps for
the former and 0.001 ps for the latter and a stopping tolerance
on the forces of 10−5 eV/Å.

Commensurate moiré superlattices can be built in general
based on 4 integer indices using the conventions in Ref. [34],
as exemplified in Ref. [33] for t2G systems. For double
moiré systems, the same approach requires the definition of
6 integers, namely (i, j, i′, j′, i′′, j′′). These integers define
the following three transformation matrices where Mi with
i = 1, 2, 3 correspond to L1, L2, and L3, respectively:

M1 =
(

i j

− j i + j

)
,

M2 =
(

i′ j′

− j′ i′ + j′

)
,

M3 =
(

i′′ j′′

− j′′ i′′ + j′′

)
.

(A1)

These matrices relate the lattice vectors r1 and r2 to the lattice
vectors a1 and a2 of the respective layers through

(
r1

r2

)
= M1 ·

(
a1

a2

)
= M2 ·

(
a′

1

a′
2

)
= M3 ·

(
a′′

1

a′′
2

)
(A2)
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TABLE I. Torque constants k± = dEtot/dθ32 in units of
meV/(atom · rad) as defined in Eq. (6) evaluated to the left (k−) and
right (k+) of the respective local minima at the commensurate angles
θ32, and the binding energy Eb(θ32) estimated as the difference be-
tween the smoothly interpolated polynomial curve and the respective
minima in Fig. 2(a) and Fig. 2(b).

t3G t2G/BN

Type I Type II
(θ12 = θ32) (θ12 = +0.56◦) (θ12 = −0.58◦)

θ32 (◦) 1.08 1.54 2.00 0.56 1.12 0.56 1.12
k−(θ32) −42.12 −18.34 −8.513 −40.01 −9.69 −7.124 −14.33
k+(θ32) 75.06 53.04 36.85 48.01 35.52 54.54 40.46
Eb(θ32) 0.156 0.135 0.104 0.024 0.058 0.039 0.095

The lattice mismatch αmn and twist angle θmn between the
layers m and n can be related to these integers as follows:

α12 = |a1|
|a′

1|
=

√
i′2 + j′2 + i′ j′

i2 + j2 + i j
,

α32 = |a′′
1|

|a′
1|

=
√

i′2 + j′2 + i′ j′

i′′2 + j′′2 + i′′ j′′
,

θ12 = θ1 − θ2 = cos−1

[
2ii′ + 2 j j′ + i j′ + ji′

2α12(i2 + j2 + i j)

]
,

θ32 = θ3 − θ2 = cos−1

[
2i′′i′ + 2 j′′ j′ + i′′ j′ + j′′i′

2α32(i′′2 + j′′2 + i′′ j′′)

]
,

(A3)

where we assume the middle L2 layer as the untwisted refer-
ence layer. In Table II, we summarize the six integers used to
generate the systems represented in Fig. 2(a) and Fig. 2(b) in
the main text for the t3G and the two t2G/BN systems.

In Table III, we show the total energies and their break-
down for representative doubly commensurate geometries of
t3G and t2G/BN.

In Eqs. (1)–(4) from the main text, we formally introduced
how the different energy contributions are defined. These ex-
pressions are valid for pairwise potentials. More generally,
if one performs DFT calculations, one can also extract such
contributions. Similar to what we do here under the hood
to separate the elastic and potential contributions, i.e., (i)
calculate the total energy for the full system, (ii) calculate
separately the energy for the relaxed layers (elastic contribu-
tion), and (iii) obtain the potential energy by subtracting the
elastic contribution from the total energy, in DFT, the binding
energy which can be related to our potential here is often also
calculated in a similar manner (possibly accounting for the
Basis Set Superposition Error [52]). Alternatively, the DFT
elastic energy can also be obtained from the displacement of
the atoms using the expressions given in Ref. [53] where the
Lame parameters for different force fields/DFT schemes were
calculated/reminded in Ref. [33].

APPENDIX B: T2G ANGLE-DEPENDENT ENERGIES

In the main text, we estimated the double moiré commen-
suration energies by comparing the actual calculations against

FIG. 5. Twist angle dependence of the total energies per atom for
t2G when the two layers are fully relaxed (blue), when the bottom
layer atoms are kept fixed (orange), and where both layers are rigid
and kept at a constant interlayer distance of 3.35 Å. The system
favors the zero degree alignment by ∼1.5 meV/atom when we allow
atomic relaxations.

the interpolated data near double commensuration obtained
based on the energies outside this region. In the following, we
show in Fig. 5 the twist angle dependent total energy of t2G
for different atomic relaxation schemes.

APPENDIX C: TORQUE MAPS

We illustrate in Fig. 6 the difference between the local
torque maps for a commensurate and an incommensurate
moiré system calculated through

τs = (rs − rcm) × Fs, (C1)

where s is the sublattice index and cm refers to the center
of mass of the dimer formed by the neighboring A and B
sublattices, and where Fs is the interface component of the
force acting on an atom extracted at the end of the LAMMPS
minimization by subtracting the intralayer forces. The left
panels show the local torque maps for commensurate moiré
pattern cases where the moiré cell has been repeated 15 times
for a more direct comparison with the right-hand panels that
have the same size. On the right panel, we illustrate the same
torques for an incommensurate moiré configuration modeled
through a commensurate cell approximant containing multiple
moiré repetitions with a longer supermoiré period. In the
middle layer, L2, we see that a large region of the atoms
feels the same torque as is seen for the commensurate phase,
suggesting that within the region confined by long-period
triangular patches we largely recover the commensurate moiré
phase behavior seen for θ23 = 1.54◦.

APPENDIX D: FRICTION CALCULATIONS

We extend here the calculations of the friction forces when
applying a normal force FN of 1 nN, for the reference t2G sys-
tem and the t3G system with θ12 = 1.54◦ using the quasistatic
approach outlined in Refs. [54–56] where the static lateral
forces are calculated for a series of intermediate positions
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TABLE II. Details about the commensurate cells that are used for our simulations on the t3G and t2G/BN systems where the first column
contains θ12, the second column summarizes the θ32 for each of the corresponding θ12 values, the third column contains the six integers as
defined in Refs. [33,34] where the first two integers control the lattice vectors of the first layer, the next two integers define the lattice of
the second layer and the final two integers orient the lattice vectors of the top layer following Eq. (A2). The fourth column contains the
slightly strained lattice constant aL3 for the third layer which is different from the unstrained lattice constants of 2.4602 Å for L1 and L2.
The fifth column contains the number of atoms and the final column represents the super-moiré length or commensuration cell length λ as a
multiple of the commensurate cell moiré length λi when θ12 = θ32, where λ1 = 129.97 Å, λ2 = 91.62 Å and λ3 = 70.32 Å for θ12 = 1.0845◦,
1.5385◦ and 2.0046◦ respectively for t3G and λ4 = λ5 = 125.71 Å for t2G/BN Type I and t2G/BN Type II. We highlight the commensurate
angle configurations from the main text in bold while the other entries are commensurate approximations of the incommensurate angle
combinations.

t3G

θ12 (deg) θ32 (deg) (i j i′ j ′ i′′ j ′′) aL3 (Å) # atoms λ

1.084549 0.098591 341 330 330 341 331 340 2.460226 2026246 11λ1

0.299180 899 870 870 899 878 891 2.460278 14083050 29λ1

0.500560 403 390 390 403 396 397 2.460300 2829990 13λ1

0.699713 961 930 930 961 950 941 2.460291 16092466 31λ1

0.898632 1085 1050 1050 1085 1079 1056 2.460253 20513502 35λ1

1.049565 961 930 930 961 960 931 2.460204 16092846 31λ1

1.084549 31 30 30 31 31 30 2.460190 16746 λ1

1.150275 1023 990 990 1023 1025 988 2.460162 18236534 33λ1

1.200741 868 840 840 868 871 837 2.460138 13129050 28λ1

1.491197 248 240 240 248 251 237 2.459963 1071810 8λ1

1.951946 155 150 150 155 159 146 2.459556 418722 5λ1

1.538500 0.099248 682 651 651 682 653 680 2.460244 7997326 31λ2

0.299135 792 756 756 792 763 785 2.460329 10784906 36λ2

0.498959 814 777 777 814 789 802 2.460384 11392218 37λ2

0.699314 242 231 231 242 236 237 2.460410 1006902 11λ2

0.901887 638 609 609 638 626 621 2.460405 6998394 29λ2

1.098945 154 147 147 154 152 149 2.460371 407758 7λ2

1.201971 704 672 672 704 697 679 2.460342 8521378 32λ2

1.301824 286 273 273 286 284 275 2.460305 1406374 13λ2

1.398649 242 231 231 242 241 232 2.460263 1006942 11λ2

1.499055 858 819 819 858 857 820 2.460212 12657686 39λ2

1.538500 22 21 21 22 22 21 2.460190 8322 λ2

1.577943 858 819 819 858 859 818 2.460167 12657842 39λ2

1.600032 550 525 525 550 551 524 2.460153 5201302 25λ2

1.700421 418 399 399 418 420 397 2.460087 3004326 19λ2

1.794869 132 126 126 132 133 125 2.460018 299606 6λ2

1.900421 374 357 357 374 378 353 2.459932 2405226 17λ2

1.999934 220 210 210 220 223 207 2.459844 832278 10λ2

2.004628 0.200433 170 160 160 170 161 169 2.460326 490182 10λ3

0.801831 255 240 240 255 246 249 2.460551 1102842 15λ3

1.202796 255 240 240 255 249 246 2.460551 1102842 15λ3

1.397199 561 528 528 561 551 538 2.460508 5337818 33λ3

1.603742 85 80 80 85 84 81 2.460431 122542 5λ3

1.700933 561 528 528 561 556 533 2.460384 5337998 33λ3

1.799055 663 624 624 663 659 628 2.460329 7455662 39λ3

1.899139 323 304 304 323 322 305 2.460265 1769586 19λ3

1.950459 629 592 592 629 628 593 2.460230 6710766 37λ3

2.004628 17 16 16 17 17 16 2.460190 4902 λ3

2.056017 663 624 624 663 664 623 2.460150 7456022 39λ3

2.100064 357 336 336 357 358 335 2.460115 2161826 21λ3

2.198572 527 496 496 527 530 493 2.460030 4711026 31λ3

2.301520 459 432 432 459 463 428 2.459934 3573806 27λ3
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TABLE II. (Continued.)

t2G/BN Type I

θ12 (deg) θ32 (deg) (i j i′ j ′ i′′ j ′′) aL3 (Å) # atoms λ

0.560656 0.200227 812 812 812 840 817 835 2.460259 12143930 28λ4

0.400464 406 406 406 420 411 415 2.460298 3035950 14λ4

0.501637 1102 1102 1102 1140 1119 1123 2.460306 22366846 38λ4

0.546279 1131 1131 1131 1170 1150 1151 2.460308 23559530 39λ4

0.560656 58 58 58 60 59 59 2.460308 61958 2λ4

0.583082 725 725 725 750 738 737 2.460308 9680938 25λ4

0.600704 812 812 812 840 827 825 2.460307 12143770 28λ4

0.700824 232 232 232 240 237 235 2.460300 991330 8λ4

0.800943 203 203 203 210 208 205 2.460286 758990 7λ4

0.897056 145 145 145 150 149 146 2.460265 387242 5λ4

1.000094 1073 1073 1073 1110 1106 1077 2.460235 21205546 37λ4

1.079783 783 783 783 810 809 784 2.460207 11292158 27λ4

1.121311 29 29 29 30 30 29 2.460190 15490 λ4

1.159974 841 841 841 870 871 840 2.460173 13027150 29λ4

1.229816 899 899 899 930 933 896 2.460140 14886094 31λ4

1.300703 725 725 725 750 754 721 2.460103 9681482 25λ4

1.495028 261 261 261 270 273 258 2.459981 1254762 9λ4

1.761923 203 203 203 210 214 199 2.459767 759098 7λ4

2.018092 145 145 145 150 154 141 2.459512 387322 5λ4

t2G/BN Type II

θ12 (deg) θ32 (deg) (i j i′ j ′ i′′ j ′′) aL3 (Å) # atoms λ

−0.579874 0.200227 840 784 840 812 835 817 2.460259 12145498 28λ5

0.537294 1440 1344 1440 1392 1417 1415 2.460308 35692418 48λ5

0.560656 60 56 60 58 59 59 2.460308 61966 2λ5

0.584017 1440 1344 1440 1392 1415 1417 2.460308 35692418 48λ5

0.600704 840 784 840 812 825 827 2.460307 12145338 28λ5

0.700824 240 224 240 232 235 237 2.460300 991458 8λ5

0.800943 210 196 210 203 205 208 2.460286 759088 7λ5

0.897056 150 140 150 145 146 149 2.460265 387292 5λ5

1.000094 1110 1036 1110 1073 1077 1106 2.460235 21208284 37λ5

1.079783 810 756 810 783 784 809 2.460207 11293616 27λ5

1.121311 30 28 30 29 29 30 2.460190 15492 λ5

1.159974 870 812 870 841 840 871 2.460173 13028832 29λ5

1.229816 930 868 930 899 896 933 2.460140 14888016 31λ5

1.300703 750 700 750 725 721 754 2.460103 9682732 25λ5

1.495028 270 252 270 261 258 273 2.459981 1254924 9λ5

1.761923 210 196 210 203 199 214 2.459767 759196 7λ5

2.018092 150 140 150 145 141 154 2.459512 387372 5λ5

2.099900 1530 1428 1530 1479 1434 1574 2.460238 40294166 51λ5

2.299955 1470 1372 1470 1421 1369 1521 2.460025 37197972 49λ5

when dragging a hexagonal flake along an infinite substrate
as illustrated in Fig. 4 in the main text. In our calculations, we
assume for the top flake a rigid geometry with variable inter-
layer distance upon which we apply a constant normal force.
We then evaluate the magnitude of the lateral friction force
along the x-direction corresponding to the armchair direction
of the unrotated reference layer. The friction forces entering
the definition of the friction coefficients are sometimes taken
as the maximum or the integrated force along this pulling
direction. In our case, we use the integrated value of the lateral
force for half-period of the supercell along the armchair slid-
ing direction. We keep the bottom layer fixed throughout the
calculations while sliding the top layer. For this specific set of

calculations, we use the cg and fire algorithms consecutively
using a common timestep of 0.001 ps where their respective
stopping criterion are set to 10−18 eV on the total energies for
the former and 5 × 10−3 eV/Å on the forces for the latter. We
note that unlike for the calculations for the main text where
the top layer atoms are allowed to relax for each of the high
symmetry stacking configurations, we do not relax them here
for each intermediate stacking, as a first approximation. The
main observation in Fig. 7 is that, indeed, the t3G system
transitions into superlubricity when twisted away from double
commensuration at 1.54◦ by looking at the friction forces
obtained by integrating the friction force over half a period τ

of the armchair direction of the unrotated reference layer. We
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TABLE III. Sliding dependent total, elastic, and interface ener-
gies for θ12 = θ32 = 1.5385◦ for t3G, θ12 = 0.56◦, θ32 = 1.12◦ for
t2G/BN-I, and θ12 = −0.58◦, θ32 = 1.12◦ for t2G/BN-II for sys-
tems containing 8322, 15490, and 15492 atoms, respectively. These
numbers are used to renormalize and report the energies in eV/atom.
We note that the mirror-symmetric (ms) geometry has a higher total
energy by 0.03 meV/atom than the lowest energy geometry.

Etot Eel EIF12 EIF23

t3G (AAA) −7.42537 −7.39458 −0.01542 −0.01541
t3G (AAA, ms) −7.42534 −7.39459 −0.01538 −0.01538
t3G (AAB) −7.42510 −7.39471 −0.01521 −0.01516
t2G/BN-I (AAA) −7.19472 −7.16454 −0.01458 −0.01559
t2G/BN-I (AAB) −7.19451 −7.16466 −0.01442 −0.01542
t2G/BN-I (AAC) −7.19467 −7.16455 −0.01456 −0.01556
t2G/BN-II (AAA) −7.19561 −7.16554 −0.01452 −0.01556
t2G/BN-II (AAB) −7.19562 −7.16553 −0.01453 −0.01556
t2G/BN-II (AAC) −7.19581 −7.16556 −0.01463 −0.01563

confirmed that this short period suffices to capture the main
trends reported here. This is clearest when looking at the
D = 20 nm curve. The full width at half maximum (FWHM)
of its friction peak equals 0.8◦. When contrasting these
results with the ones from the reference t2G system, we note
that the maximum of the friction peak of t3G is about 25%
the size of the maximum of the peak for t2G. The FWHM
of the t2G case is similar but slightly larger than the one
from t3G, namely 0.94◦. We note that based on additional
calculations on t2G, there exists a linear scaling between

FIG. 6. Local torque τs defined in Eq. (A1) for each layer
in t3G at the site i ∈ sublattice s are illustrated when the two
moiré interfaces are commensurate (θ12 = θ32 = 1.54◦) (left) and
incommensurate (θ12 = 1.54◦, θ32 = 1.64◦) (right). We observe the
presence of a supermoiré pattern with a longer period for the incom-
mensurate moiré case that gives rise to the total energy differences
with respect to the doubly commensurate moiré case.

0 1 2 3 4

θ32 (deg)

0.000

0.005

0.010

0.015

0.020

μ

t2G, D=10 nm

t2G, D=20 nm

t2G, D=50 nm

t2G, D′=10 nm

t3G, D=20 nm

FIG. 7. Friction coefficients for t2G and t3G using the flake
geometry illustrated in the main text showing the flake’s diameter
dependence of the transition into the frictionless regime. The larger
the flake, the narrower the friction peak becomes.

the diameter of the flake and the width of the peak where
the width of the peak decreases with increasing diameter.
For instance, when multiplying the x-coordinates from the
D = 50 nm by 5 (dashed green curve indicated by D′ = 10
nm), we overlay almost exactly the D = 10 nm curve (solid
blue curve). Applying this same linear scaling procedure, we
note that we can capture the width from the experimental
friction peak from Ref. [28] when setting D = 2.9 nm, which
agrees quantitatively with the size of the experimental tip
whose diameter is estimated to be between 1.7 and 3.0 nm.
We finally note that these simplified friction calculations
using only two or three layers only give a qualitative idea in
terms of the amplitude of the friction forces. More realistic
results can be achieved by including additional layers to
simulate the sliding tip to allow for more realistic relaxation
effects. We note, for instance, that the t2G system can lead to
stick-slip behavior when the tip is sufficiently soft [28]. Such
a condition can be approximated by contacting the top layer
with a spring whose spring constant can be controlled while
letting the top layer atoms freely relax [28]. Our simulation
conditions then correspond to a very stiff spring.

The analysis we have presented far relied on free-standing
trilayer systems. To assess the impact a substrate would
have on our results, we have performed the following
checks. For t3G, we have checked that adding a rigid hBN
substrate layer with a twist angle of 3.41◦ dampens but does
not completely remove the bending corrugation observed for
the mirror symmetry broken commensurate case. Indeed, the
maximum bending corrugation goes down for the suspended
t3G system from 1.70 Å as seen in Fig. 1(d) in the main
text to 0.25, 0.35, and 0.45 Å for L1, L2, and L3, respec-
tively, when we add a rigid substrate layer in contact with
L1. If we do not fix the additional substrate layer, the bend-
ing corrugation actually increases by up to 3.79 Å, hence
a realistic substrate simulation involving many more layers
[36,57] would probably give a maximum bending corruga-
tion somewhere in the middle of those two values. For t2G
on hBN, we have checked that adding a fixed aligned hBN
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substrate in AA’ stacking below the existing hBN layer does
not modify the qualitative behaviors and the system still shows
local energy dips at the commensurate angles. We thus expect

our conclusions based on free-standing systems to hold under
more realistic experimental conditions when substrates are
present.
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