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Confirmation of the random tiling hypothesis by polar calculus

Moritz Holzwarth , Johannes Roth , and Hans-Rainer Trebin *

Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70550 Stuttgart, Germany

(Received 5 March 2024; revised 3 May 2024; accepted 11 June 2024; published 1 July 2024)

The random tiling hypothesis, first proposed by Elser and Henley in the 1980s, states that quasicrystals are
entropy-stabilized and, hence, are high-temperature phases. We confirm the hypothesis for a two-dimensional
Tübingen triangle tiling, which arises in molecular dynamics simulations with a Lennard-Jones-Gauß potential,
by investigating the temperature dependence of its two phason elastic constants λ6 and λ8. These are the second
derivatives of the free energy F (χ6, χ8, T ) with respect to symmetrized phason strain modes χ6 and χ8. At T = 0,
F has a saddle point by descending along the χ8 direction. Therefore λ8 < 0 characterizes the quasicrystal’s
initial instability. The configurational entropy due to phason flips turns F upwards at higher temperatures,
reverses the sign of λ8, and leads to a stable quasicrystal. We obtain this result by applying geometric methods
in the form of the polar calculus, where the projection window W is divided into atomic domains Ci for each
vertex environment. We extend the calculus to a dynamic one by separating the window into areas Pk that
characterize the different kinds of phason flips. By phasonic deformation of the window, we can determine the
types of flips and their frequency of occurrence in dependence on phason strain, perform energy relaxations by
flips, and compute the configurational free energy. Previously, flips therein had been dealt with as uncorrelated
and described as Ising spins. We consider nearest neighbor correlations between flips by extending the Ising to a
Potts model and find that they constitute an important mechanism supporting the quasicrystal stability.
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I. INTRODUCTION

Quasicrystals are condensed matter systems, whose
diffraction patterns display noncrystallographic symmetries,
for example, five, eight, or tenfold ones [1]. This is why they
cannot be periodic structures, rather are modeled as aperiodic
tessellations of space with more than one tile, as the fa-
mous Penrose tiling. Quasicrystals are aperiodic, because the
number n of their reciprocal basis vectors which are linearly
independent over the integers, exceeds their spatial dimension
d . Hence, as a mathematical trick, one frequently describes
them as projections from a higher- (n-) dimensional periodic
lattice to a d-dimensional “physical” plane positioned therein
under irrational angles [2]. Displacements of the vertices
of the periodic lattice parallel to the plane give rise to the
standard elastic degree of freedom, expressed by the strain
tensor ε. But displacements orthogonal to the physical plane
represent an additional “phason” degree of freedom, charac-
terized by a phason strain tensor χ and generalized elastic
constants (phonon, phason, and coupling) [3]. In the tiling
picture phason strain shows up as flips of the tiling vertices.
If fluctuations of the phason strain are present in equilibrium,
then a quasicrystal becomes stabilized entropically. Elser [4]
and Henley [5,6] proposed this scenario as random tiling
hypothesis shortly after the discovery of quasicrystals by Dan
Shechtman [7,8]. As a consequence, quasicrystals were high-
temperature phases transforming at low temperatures into
periodic crystals.

A numerical test of the random tiling hypothesis was per-
formed in 2012 by Kiselev et al. [9] on the two-dimensional
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decagonal Tübingen triangle tiling (TTT) [10]. It was made
possible by an interaction potential with two minima, the
Lennard-Jones-Gauss (LJG) potential, which at a special
choice of positions and depths of the minima stabilized a
random version of the tiling in molecular dynamics (MD)
simulations [11,12]. Phason strain χ was applied, charac-
terized essentially by two symmetrized strain modes χ6 and
χ8. The temperature dependent free energy F (χ6, χ8, T ) was
measured. For the contribution of the phason flips to F ,
denoted configurational free energy Fconf, a model of indepen-
dent Ising spins was applied, neglecting flip correlations. As
second derivatives of F with respect to χ6 and χ8, the two
phason elastic constants λ6 and λ8 were calculated. It turned
out that with lowered temperature λ8 vanished, rendering the
quasicrystal unstable. Such a mechanism had been observed
already by Bancel et al. in x-ray investigations of icosahedral
Al-Cu-Fe [13,14]. There decreasing diffraction peak intensi-
ties and a transition to a periodic phase were explained by
softening of a phason elastic constant.

Alternatively, energetic stabilization has been proposed
for quasicrystals where the interactions enforce the match-
ing rules for completely ordered systems [3]. It has been
demonstrated that the required potentials had to show
well-defined oscillations at more than five next-neighbor
distances rendering this mechanism improbable [15]. Qua-
sicrystalline structures in dendritic liquid crystals are enforced
by frustrated tetrahedral close-packed structures of spherical
micelles, i.e., by steric reasons [16] similar as in polymeric
quasicrystals of ABC star polymers [17].

In the present paper, we confirm, using a purely geomet-
ric method characteristic for quasicrystals and denoted polar
calculus [18], that a certain monatomic system with specified
pairwise potential interactions exhibits a quasicrystal phase
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that is entropically stabilized. Out of the numerical data of
Kiselev et al. [9], we make use only of the single atom
energies at T = 0 and the insight, that the only part of the
phonon free energy contributing to the phason elastic con-
stants is the ground state energy E0(χ ). In the polar calculus,
the projection window W is divided into domains Ci for each
vertex environment, allowing to calculate its relative portion.
We go further and separate the window into sections Pk for
the different kinds of flips, extending the polar calculus to
a dynamic one. Constant phason strain deforms the window
and its substructure, changing the proportions of vertex envi-
ronments and flip types. For each value χ of phason strain, we
perform energy relaxations by flips, compute the free energy
of the relaxed state at T = 0 and its change with temperature
due to the configurational free energy Fconf, and arrive at
the temperature dependence of the phason elastic constants.
Finally, the polar calculus also allows us to introduce next
nearest neighbor correlations between flips by replacing the
Ising with a Potts model [19].

In a most recent paper [20], it was demonstrated for a
dodecagonal quasicrystal of a hard sphere mixture that it is
stabilized by configurational entropy. The method and system
are barely comparable to ours. We use realistic interactions
and only one sort of atoms, thus are not troubled by the
entropy of mixing.

In Sec. II, we inform how the TTT is constructed and how
it is represented by two kinds of triangles, and—as primarily
applied here—five types of polygons. The LJG potential is
presented and the random tiling to which it gives rise in
MD simulations. Furthermore, we list the nine vertex en-
vironments within an effective interaction radius rint = 2 of
the potential, which is twice the nearest neighbor distance.
Section III refers to the free energy calculations by Kiselev
et al. [9] for the phonon and the configurational part. In
Sec. IV, we introduce the dynamic polar calculus by dividing
the window W into areas Pk for the different flip types. The
previous representation of the vertex flips by an Ising model
is replaced by a Potts model with ten instead of two states.
It takes into account correlations of neighboring flips and is
denoted pentagon model. In Sec. V, the stability range of
the random TTT is explored by following the temperature
dependence of the phason elastic constants. It is confirmed
that one of the constants, λ8, starts from T = 0 with nega-
tive values. Due to configurational entropy, it turns positive
at finite temperatures, in accordance with the random tiling
hypothesis.

II. THE MODEL QUASICRYSTAL

A. LJG potential and Tübingen triangle tiling

In 2007 Engel and Trebin proposed a parametrized radially
symmetric pair potential with two minima, denoted Lennard-
Jones-Gauß (LJG) potential [11]:

VLJG(r) = 1

r12
− 2

r6
− ε exp

[
− (r − r0)2

2σ 2

]
, (1)

by which in certain parameter and temperature ranges they
could grow two-dimensional monoatomic quasicrystals in
MD simulations. For the parameters r0 = 1.53, ε = 1.8, and
σ 2 = 0.02, they obtained a random form of the Tübingen

FIG. 1. (Left) Ordered TTT. Some of the original golden trian-
gles are highlighted. (Right) Random TTT as a result of an MD
simulation with the LJG potential.

triangle tiling (Fig. 1, right). Its two minima with a distance
ratio of 1.512 close to the golden mean favor an easy realiza-
tion of flips.

The decagonal TTT was proposed in 1990 by Baake et al.
[10]. It is related to the Penrose pattern and, in its basic form,
is composed of thin and thick golden triangles. An alternative
representation by polygons (regular and nonconvex decagons,
nonagons, hexagons, and pentagons) is obtained by connect-
ing nearest neighbors as in Figs. 1 and 2, left. The tiling can
be constructed via a substitution rule or by projection from
a four-dimensional hyperspace H. Using the latter method,
the TTT’s vertices are projections of lattice points of a four-
dimensional root lattice A4 onto a two-dimensional subspace
of H. Though four-dimensional, the hyperlattice is most natu-
rally represented by the five vectors ai, i ∈ {0, 1, 2, 3, 4} with

ai = ei − e(i+1)mod5. (2)

The vectors ei constitute the canonical basis of R5. The
tenfold symmetry of A4 becomes apparent as the group D10

has a five-dimensional representation that simply permutes the
basis vectors ai. There are two two-dimensional invariant sub-
spaces of H with respect to D10. The one in which the tiling
is constructed is transforming according to the irreducible
representation �5 of D10 and is called parallel space E‖. The
other one, which is used to select the projected hyperlattice

FIG. 2. (Left) A small patch of the decagonal TTT. The colors
correspond to the distinct vertices as in Table I. Two vertices are
marked with the interaction circle. The pentagon indicates one of
the PC clusters dealt with in Sec. IV C. (Right) The window W in
perp space is a regular decagon and is divided into atomic domains
Ci for the corresponding vertices.
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TABLE I. Vertices, their potential energies, and densities, from
Ref. [9].

Vertex Ei ni/N

• V1 −19.6 τ−6

• V2 −18.4 τ−9

• V3 −17.2 2τ−8

• V4 −16.1 2τ−7

• V5 −14.5 2τ−6

• V6 −12.9 4τ−5

• V7 −11.3 2
√

5τ−6

• V8 −10.9 4τ−8

• V9 −9.0 τ−9

points, is called perpendicular space E⊥ and transforms ac-
cording to �7 [21]. Only E‖ components of those hyperlattice
points are considered as vertices in the TTT for which the E⊥
component lies within a certain region called the projection
window W ⊂ E⊥. In the case of the TTT, W is the projection
of the Voronoi cell of A4 onto E⊥. It has the shape of a regular
decagon, see Fig. 2, right. The window is covered densely. The
mapping between a projected point v

‖
j in E‖ and the projection

v⊥
j in W is bijective.

Symmetry adapted orthonormal bases {b‖
x, b‖

y} for E‖ and

{b⊥
x , b⊥

y } for E⊥, which together with corresponding two-
dimensional canonical bases {e‖

x, e‖
y}, {e⊥

x , e⊥
y } define the

projection operators P‖ and P⊥ to both spaces, the vertices
di ∈ H of the Voronoi cell and the corners d⊥

i ∈ E⊥, d‖
i ∈ E‖

of the decagonal window are given in the Appendix.
Local shifts of W along E⊥, represented by a displace-

ment field wi(x
‖
j ) and a phason strain tensor χi j = ∂ jwi cause

rearrangements of the tiling vertices by flips. A random
tiling emerges from an isotropic distribution of thermally
excited flips.

Our central observable for judging the stability of our ran-
dom TTT is its free energy in dependence of temperature and
applied average strain tensor χ . In continuum harmonic ap-
proximation the free phason elastic energy density per particle
is [22]

F (χ, T ) = 1
2λ6(T )

[(
χ

(1)
6

)2 + (
χ

(2)
6

)2]
+ 1

2λ8(T )
[(

χ
(1)
8

)2 + (
χ

(2)
8

)2]
, (3)

with symmetrized strain modes⎡⎢⎢⎢⎢⎢⎣
χ

(1)
6

χ
(2)
6

χ
(1)
8

χ
(2)
8

⎤⎥⎥⎥⎥⎥⎦ = 1√
2

⎡⎢⎢⎣
1 −1 0 0
0 0 1 1
1 1 0 0
0 0 1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

χ11

χ22

χ12

χ21

⎤⎥⎥⎦. (4)

The phason elastic constants λ6 and λ8 are temperature
dependent and are weighting strain contributions transforming
according to the �6 and �8 irreducible representations of the
symmetry group D10 [21]. In the following, we are applying

FIG. 3. The nine vertex environments of the TTT within a radius
rint = 2, enumerated in Table I and coded by the color of the central
vertex.

only strain with χ12 = χ21 = 0. Therefore only χ
(1)
6 and χ

(1)
8

are nonzero and henceforth denoted χ6 and χ8. By varying
them we determine λ6 and λ8.

B. Molecular dynamics calculations

The screenshot on the right of Fig. 1 results from MD
simulations of 1600 particles with the LJG potential in an NPT
ensemble at T = 0.45. The solid phase is melting in a first-
order phase transition at T = 0.56 ± 0.02. Monte Carlo (MC)
simulations with the same potential had shown a transition to a
Xi approximant at T = 0.37 ± 0.03. Thus, from simulations,
we can expect a stability range of the random TTT between
T = 0.37 and 0.56.

C. Polar calculus and vertex environments

In the simulations, a cutoff radius of rc = 2.5 was applied,
however, it is justified to assume an interaction radius for each
atom of rint = 2, as for this value the potential energy is 2%
of its maximal depth. For this interaction radius, there are up
to rotations and reflections nine vertex environments Vi, given
in Table I (from Ref. [9]) and pictured in Fig. 3. For two of
them, the interaction circle is drawn in Fig. 2, left.

This is a confusing large vertex variety, compared to the
one in periodic crystals. However, in quasicrystals there is
an efficient bookkeeping tool for the vertices, denoted polar
calculus [18].

The window W is subdivided into domains Ci of area
|Ci|, see Fig. 2, right. Vertices that are mapped into the same
domain have the same neighborhood. The neighborhoods here
are the vertex environments, with the same colors in direct
as in orthogonal space. If in an area with N vertices, one
counts ni vertices of type i, the corresponding vertex density
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ρi ≡ ni/N in the limit N → ∞ is given by ρi = |Ci|/|W| and
is listed in column 4 of Table I.

Vertex Vi has potential energy

Ei =
∑

j

VLJG(r j ), i = 1, . . . 9. (5)

The sum runs over the atoms j inside the disk of radius rint

with energy optimized separations r j from the central atom
at T = 0. For the perfect TTT, the configurational potential
energy per atom at T = 0 follows as

E = 1

2

9∑
i=1

ρiEi, (6)

where the factor 1
2 avoids double counting of atoms.

Let us shortly repeat the principles of polar calculus. Take
any atom configuration {v‖

j } in the tiling, where the positions
are found via the projection operator P‖ and are expressed in
the basis {e‖

k}:

v
‖
j =

∑
k

v jke‖
k . (7)

The corresponding position v⊥
j in E⊥ is found simply

by replacing e‖
k by e⊥

k . Then, the window W is attached to
each E⊥ position. W is parameterized by its corners d⊥

l ,
l = 1, . . . , 10 (see Table II in Appendix). The domain Ci of
the atom configuration is then the intersection of all these
windows

Ci =
⋂

j

(v⊥
j + W ). (8)

It can be calculated through triangulation, for which we
have used the geometry package SHAPELY for PYTHON [23].

An alternative interpretation of the domain Ci is the follow-
ing: A vertex environment Vi is an allowed subset of the tiling
if its projection P⊥Vi is contained in the window W: P⊥Vi ⊂
W . Ci is then identical to the set of translations x⊥

j which
move P⊥Vi inside W , Ci = {x⊥

j ∈ W, x⊥
j + P⊥Vi ⊂ W}. Such

a type of set is denoted “W-polar of P⊥Vi” by Katz and
Duneau [18] in their variant of the projection method called
the strip method, providing the name “polar calculus” for our
approach.

To calculate the phason elastic constants we have to apply
homogeneous phason strain to the TTT. Kiselev et al. enforced
a well-defined average strain χ artificially by constructing
a series of orthorhombic approximants with up to 20 000
atoms and values |χ11|, |χ22| � 0.2, χ12 = χ21 = 0, leaving
only χ

(1)
6 ≡ χ6 and χ

(1)
8 ≡ χ8 nonzero. We apply the phason

strain by continuously deforming the window W and its inte-
rior structure.

Two steps must be taken into account. Firstly, the corners
d i of the A4-Voronoi cell are shifted. In general, a phasonic
strain could change which of the Voronoi corners end up as
the window corners and which are projected somewhere in
the interior of W . But for |χn| < 0.03, n ∈ {6, 8} this does not
happen. So the corners of the phasonically distorted window

FIG. 4. Windows of phasonically distorted TTTs. (a) χ6 = 0.03,
χ8 = 0. (b) χ6 = 0, χ8 = 0.03. Here, a new vertex type V10 appears
(see Fig. 9). The windows are no longer regular decagons. The
phasonic strain deforms W , but for small χ , this change is hardly
visible.

W (χ ) are given by

d⊥
l (χ ) = d⊥

l + χd‖
l , l = 1, . . . , 10, (9)

with the phasonic strain tensor either

χ = χ6√
2

[
1 0
0 −1

]
or χ = χ8√

2

[
1 0
0 1

]
. (10)

The hyperlattice points corresponding to the atom positions
are shifted in the same manner as the Voronoi corners. So
in a crystal of small but constant and homogeneous phasonic
strain, Eq. (8) is generalized to

Ci(χ ) =
⋂

j

(v⊥
j + χv

‖
j + W (χ )). (11)

Two examples of slightly phasonic deformed projection
windows are depicted in Fig. 4. The windows remain convex,
but not exactly regular decagons. There, a new vertex V10

appears (see Fig. 9) with energy as V6.
We call such a homogeneously deformed tiling “flat” and

denote it as Q(χ ). The proportion or “density” of vertices of
type i in the flat tiling is ρi(χ ) = |Ci(χ )|/|W (χ )|, and its con-
figurational potential energy per atom (or “energy density”)
results as

E (χ ) = 1

2

∑
i

ρi(χ )Ei, (12)

where the sum runs over the nine or possibly further vertices.

III. FREE ENERGY CALCULATIONS

As in quasicrystals phonon frequencies are two orders of
magnitude larger than phason flip rates, one can separate their
total free energy F = Fphon + Fconf into a phonon part Fphon,
which can be treated by molecular dynamics, and a configura-
tional part Fconf, which is due to the tiling degeneracy caused
by phason flips and which requires accelerated methods.

A. Phonon free energy from MD

Kiselev et al. calculated the phonon part in dependence of
a constant average phason strain χ with a combination of the
Frenkel-Ladd [24] method and thermodynamic integration as
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in Ref. [25] and obtained

Fphon(χ, T ) = E0(χ ) + T g(χ ) + I (χ, T ). (13)

Here, E0(χ ) is the ground state energy. It is obtained from
the configurational potential energy E (χ ) by minimization
through phason flips. The term g(χ ) is an integration constant
and I (χ, T ) the thermodynamic integral according to Frenkel-
Ladd. To obtain E0(χ ), for each approximant the energy was
relaxed by Monte Carlo phason flips within the unit cell, and
the binding energies of the vertex environments were summed
up. They found that g(χ ) and I (χ, T ) are independent of χ .
Hence the two terms do not contribute to the phason elastic
constants and do not have to be considered further.

As already Kiselev et al. recognized, randomization by
phason flips can lower E (χ ) to the true configurational
potential or “ground state” energy E0(χ ) as used in the
Frenkel-Ladd method Eq. (13). To perform this relaxation and
to calculate the configurational free energy with purely geo-
metric methods, we will enlarge the polar calculus in Sec. IV.

B. Flip Ising model for the configurational free energy

Kiselev et al. dealt with phason flips in two ways. For
energy relaxations, they used stochastic methods, namely,
checking randomly whether a vertex can be flipped and per-
forming the flip whenever it lowered the energy. To calculate
the configurational free energy Fconf, they applied an approx-
imation of uncorrelated flips. They restricted themselves to
flips that originate in the vertices V7, V8, and V9, arguing
that in a small shift of the projection window, only these
vertices flip as their domains are located at the boundary.
There are six types Fk, k = 1, . . . , 6, of flips and they were
modeled as Ising spins with flip energies 
Ek = |Ek

2 − Ek
1 |,

k = 1, . . . , 6, given as the potential energy difference of two
involved vertices V k

1 and V k
2 . The configurational free energy

(per atom) then results as

Fconf(χ, T ) = −kBT
∑

k

nk (χ )

N (χ )
ln

[
1 + exp

(
−
Ek

kBT

)]
,

(14)

where N (χ ) is the number of atoms in the unit cell of the
approximant and nk (χ ) is the number of flips therein of
type k.

C. Phason elastic constants and stability ranges

Now Kiselev et al. could calculate the phason elastic con-
stants as

λn(T ) = ∂2E0(χ )

∂χ2
n

+ ∂2Fconf(χ, T )

∂χ2
n

, n ∈ {6, 8}. (15)

E0(χ ) showed up as saddle point, ascending along the
χ6- and descending along the χ8-direction. Thus, at T = 0,
λ8 resulted as negative, rendering the quasicrystal unstable.
The second term for both directions was positive and in-
creased with temperature, changing the sign of λ8 at Tc =
0.35 ± 0.01. Thus the model quasicrystal turned out to be
a high-temperature phase, in accord with the random tiling
hypothesis.

FIG. 5. Simpleton flip of the TTT.

IV. DYNAMIC POLAR CALCULUS

We are going to check the random tiling hypothesis by
purely geometrical methods. From the results of Kiselev et al.
we make use only (1) of the potential energies Ei of the ver-
tices Vi, Eq. (5), and (2) of the fact, that the only χ -dependent
part of the phonon free energy is E0(χ ). We generalize the
above results by (a) enlarging the variety of flips and (b)
introducing flip correlations.

A. Flip extensions and flip acceptance domains

Two types of phason strain must be distinguished. (i)
The average phason strain χ , which Kiselev et al. realize
by the deformed unit cell of the approximant and we by
the homogeneously deformed projection window, and (ii)
the position-dependent strain χ (x‖), which arises in flip re-
laxations and expresses the randomness. For the latter, we
abandon the restriction of Kiselev et al. to flips only be-
tween vertices V7, V8, and V9 and admit flips between those
vertices which in the Golden Triangle subdivision allow the
rhombic simpleton flip Fig. 5. Inspection shows that these are
V4, . . . ,V10.

Let us now use the notation F (i, j) for a flip Vi → Vj . All
possible single flips that can happen in any crystal Q(χn) with
|χn| < 0.01, n ∈ {6, 8} are shown in Fig. 6. Only the ones
shown in blue were considered by Kiselev et al.

In some clusters of Fig. 6 not only the vertices around
the flipping particle but also the vertex configuration of the

FIG. 6. All possible initial flip configurations in the crystals
Q(|χn| < 0.01), n ∈ {6, 8}, together with the vertices within the in-
teraction radii of initial and final flip position. For some flips F (i, j),
there are several tile combinations labeled (a), (b), etc.
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FIG. 7. Flip windows in the ideal TTT. The areas outlined in
black correspond to flips that were used by Kiselev et al.

flipping particle itself will not be one of V1, . . . ,V10 after the
flip. The new vertex types that emerge this way are called
V11, V12, and V13, see Fig. 9. Their potential energies are
E11 = −9.3, E12 = −7.9, and E13 = −6.7. The energies of
V12 and V13 are very high compared to the vertices V1, . . . ,V11,
making flips that result in states V12, V13 very unlikely for
temperatures T below the melting temperature Tm.

Now we can use the vertex configurations of Fig. 6 to con-
struct flip domains Pk in exactly the same way as the domains
Ci of the vertices Vi, Eqs. (8) and (11). They allow to calculate
densities νk ≡ nk/N of flip type k as for example used in
Eq. (14), as νk = |Pk (χ )|/|W (χ )|. In each arrangement, the
flip atom was chosen as the reference atom and placed at the
origin. The domains are shown in Fig. 7 for χ = 0 and in
Fig. 8 for χ = 0.03 with three orientations. For the perfect
tiling (χ = 0), one orientation would be already sufficient. For
Q(χ 
= 0), three segments are required and suffice because the
phasonic strain matrices in χ

(1)
6 and χ

(1)
8 -directions commute

with the reflections in x and y directions, from which all other
orientations of the flip domains result. The flips in the outlined
black areas were used by Kiselev.

B. Analytical ground state relaxation

We are ready to approximately relax the energy E (χ ) of
Eq. (12) of the flat tiling to E0(χ ) of a random tiling with our

FIG. 8. Flip windows in the phasonically distorted TTT Q(χ ).
(a) χ6 = 0.03 and (b) χ8 = 0.03.

FIG. 9. New vertices that appear due to phasonic strain, or due to
single flips. The red circle marks the interaction radius of the central
atom.

geometric tool. In the flat tilings, we look for atom configura-
tions whose energy can be lowered by a single flip. Of these,
there are only two types, the flips F (8, 7) and F (9, 8). All
other flips are already in their low-energy state. So, for the
relaxation, we assign to every atom with a local configuration
F (8, 7) the energy E7 and to every atom with configuration
F (9, 8) the energy E8. In other words, we subtract the energy
per particle νF (8,7)E8 and replace it by the flipped energy
νF (8,7)E7, and the same for F (9, 8):

E0(χ ) = 1

2

∑
i

ρi(χ )Ei + νF (8,7)(E7 − E8)

+ νF (9,8)(E8 − E9). (16)

Interestingly such energy-lowering single flips only show up
for χ 
= 0.

Surely, the energy could be still lowered by including the
effects of correlated flips. However, as we will see below, it
already contains the seed for a low-temperature instability
of the quasicrystal and is not changed by nearest neighbor
correlations as dealt with in the following pentagon coupling
model.

C. Flip correlations and pentagon coupling

The flip Ising model of Sec. III B ignores the fact, that
two neighboring particles cannot flip simultaneously. In the
examples of Fig. 10, the blue and red particles are strongly
correlated because each is a corner point of the other par-
ticle’s flip rhombus. The corners of the overlapping rhombi
form a pentagon. By flipping consecutively the particles create
ten states, which are 2π/10 rotated about the bottom anchor

FIG. 10. Two nearest neighbor flips are correlated in such a way
that one particle is a corner point on the side of the other particle’s
rhombus. Six consecutive flip states are shown. Each state is related
to all other states by some D10-operation. The flip particles can never
leave the pentagon that is defined by their rhombi.
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FIG. 11. All PC clusters in flat crystals Q(|χ | < 0.01), marked
by yellow pentagons, and their surroundings. The two correlated flips
are oriented as shown by the small rhombi in one of the figures.

point. After five flips, the initial sequence repeats but with blue
and red exchanged, so there are pairs of degenerate states. The
pentagon represents a generic version of coupled particles,
which may be embedded in an arbitrary, but fixed environ-
ment. This kind of nearest neighbor coupling is almost ubiqui-
tous in the crystals Q(χ ), see also Fig. 2. Except for F (4, 13),
the flipping vertex of all flip types in Fig. 6 is part of such a
pair of 2π/10-rotated rhombi. Due to this local symmetry, we
will call this type of correlation pentagon coupling (PC).

We want to identify all neighborhoods of the pentagons of
that minimal size, which suffices to determine precisely the
energies of the five states. All required neighbor atoms must
be within the interaction radii of both flipping particles for all
their positions. These environments will be called PC clusters.
Since the flips shown in Fig. 6 are all possible single flips
in any crystal Q(|χ | < 0.01), each PC cluster must contain
some combination of them. Further surrounding atoms could
be necessary. Luckily, it turns out that all PC clusters are found
simply by adding one extra tile to the single flip configura-
tions. In total, 23 types of PC clusters are found in the crystals
Q(|χ | < 0.01). They are shown in Fig. 11. A PC cluster is
labeled F (i, j)F (k, l ), where F (i, j) is the flip on the left
side and F (k, l ) is the flip on the right side, provided that the
cluster is oriented such that the common anchor point of the
two rhombi is pointing downwards as in the picture. Note that

FIG. 12. A section of the window for χ = 0 with the domains for
the flips as in Fig. 6 and the further subdivision for the PC clusters as
in Fig. 11.

the cluster F (k, l )F (i, j) is just a reflection of F (i, j)F (k, l )
and is not shown.

In the same way, as we found the domains of the sin-
gle flip configurations, we can also compute the domains of
the PC clusters. They were calculated with respect to one of
the flip atoms as a reference so that they lay within the same
flip window as the single flips. The PC domains subdivide
and decompose the single flip domains as shown in Fig. 12.
The new domains should just cover the single flip domains
completely, except for the one of F (4, 13), to prove that all
PC clusters were found.

D. Extended free energy model

The pentagonal coupled clusters consider not only the sin-
gle flips as in the flip Ising model but also the correlations
between the flips of two neighboring particles, which results
in a total of ten states with at most five different energies.
But each PC cluster is just as independent of the rest of
the crystal as the single flips were in the flip Ising model,
introduced in Sec. III B. Hence the PC clusters can also be
treated as independent “spins,” but with ten states instead of
two, also denoted Potts model [19]. Each PC cluster will be
of some type k ∈ {1, . . . , 23}, and each type of cluster has
some density ν

pc
k (χ ), that we obtain from the polar calculus.

Furthermore, each state of a PC cluster has an energy Ek
i . It is

simply the sum of the potential energies of the two flip atoms,

Ek
i =

∑
l

VLJG
(∣∣rk

l − qi

∣∣) +
∑

l

VLJG
(∣∣rk

l − qi + 
qi

∣∣)
+VLJG(|
qi|), (17)

where rk
l are the positions of the surrounding atoms of the

type-k PC cluster, qi is the position of the blue particle in state
i and 
qi are vectors from the blue to the red atoms in Fig. 10.
Because the PC clusters are complete with respect to the cutoff
radius rc = 2, the energy differences |Ek

i − Ek
j | of two adja-

cent states are equivalent to the flip energies 
Ek as defined
in the single flip-Ising model. We normalize the energies of
the PC-states such that the total configurational free energy of
PC clusters vanishes at T = 0. So, if Ek

g is the lowest possible
energy of a type-k PC cluster, the states with energies Ek

i
get assigned the effective energy 
Ek

i = Ek
i − Ek

g � 0. The
normalized canonical partition sum of one type-k PC cluster
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FIG. 13. Offset adjusted ground state energies: blue along χ6,
red along χ8 direction. Dashed lines come from the homogeneously
phason deformed windows [Eq. (12)], full lines after geometric re-
laxation [Eq. (16)]. The single dots stem from MD simulations by
Kiselev [26].

reads

Zpc
k =

10∑
i=1

e−
Ek
i /kBT = 2

5∑
i=1

e−
Ek
i /kBT . (18)

The labels i are supposed to be ordered like the consecutive
flip states in Fig. 10 so that we can use Ek

i = Ek
(i+5)mod10. Then

the configurational free energy density of PC clusters in the
whole crystal, F pc

c follows as

F pc
config(T, χ ) = −kBT

23∑
k=1

ν
pc
k ln Zpc

k . (19)

V. RESULTS

A. Ground state energy

The energy per atom of the perfect (“flat”) TTT according
to Eq. (6), determined with the polar calculus of the window
in Fig. 2 and the data of Table I, yields the value E (χ = 0) =
−6.647. As for χ = 0, there are no energy lowering flips in
the geometric relaxation according to Eq. (16), the ground
state energy E0(χ = 0) has the same value, in excellent agree-
ment with the MC result of Kiselev EK

0 (χ = 0) = −6.649.
The full χ -dependent energies are shown in Fig. 13. They

carry an approximate parabolic shape. For comparison of the
curvatures, they are shifted vertically to meet at the origin.
Dashed curves come from Eq. (12), where the densities were
found from the homogeneously phason deformed window as
in Fig. 4, right. Upon geometric relaxation by flips F (8, 7)
and F (9, 8) as in Eq. (16) we obtain the full curves. For χ6

(blue) the curvature decreases but remains positive. However,
the parabola for χ8 (red) turns downward. The relaxed en-
ergy over the χ6 − χ8 plane presents a saddle point. This is
the essence of the present studies, since as a consequence
of Eq. (15) the phason elastic constant λ8 is negative at
T = 0 and the quasicrystal unstable. Indeed, according to

FIG. 14. Offset adjusted configurational free energy in the flip
Ising model Fconfig(χn, T ) for n = 6 in blue, n = 8 in red and
T = 0.35. Both analytical curves are calculated using the flip den-
sities for a flat crystal Q(χ ). Dots were measured by Kiselev [26] in
MC simulations for the relaxed state.

Engel et al. at T = 0 a transformation to the approximant
Xi phase occurs during annealing simulations with the LJG-
potential. The dotted points are the MC results of Kiselev
et al. They agree remarkably well with the geometric results
for χ6 but have a larger negative curvature for χ8. The reason
might be that in MC higher-order correlations were effective
[while the two-particle correlations of the pentagon coupling
model are fully taken regard of in our geometric relaxation
Eq. (16)].

The curvatures ∂2
χ6

E0(χ6), ∂2
χ8

E0(χ8) express the values of
the phasonic constants at T = 0 and are listed below. We
add the curvatures of E (K)

0 (χ ) obtained by Kiselev, denoted
λ(K)(0), which were extracted from his master thesis [26].

λ6(0) = 2.265, λ8(0) = −2.676,

λ
(K)
6 (0) = 2.314, λ

(K)
8 (0) = −5.318. (20)

B. Configurational free energy in the flip-Ising model

The dynamic polar calculus of Sec. IV leads to the flip
domains in Figs. 7 and 8 and allows to extract the flip densi-
ties νk (χ ) = nk (χ )/N (χ ) = |Pk (χ )|/|W (χ )| geometrically,
whereas they were counted numerically by Kiselev et al. Tak-
ing the flip types used by Kiselev et al. (in the figures outlined
in black) and the vertex energies from Table I we obtain the
configurational free energy for the flip Ising model according
to Eq. (14). For T = 0.35 this free energy is plotted in Fig. 14,
height adjusted as only the curvatures are of relevance. Close
to χ = 0 it shows up as parabolic. The positive curvature of
Fconfig(χ8, T = 0.35) slightly overcompensates the negative
one of E0(χ8), so that λ8(T = 0.35) just has overcome the
phason softening point, see Fig. 15. In general, the curvature
of the configurational free energy is monotonically increasing
with temperature.

The agreement for λ6(T ) is very good. The values for
λ8(T ) start lower as already seen in Eq. (20). Remarkably,
very similar stabilization temperatures (0.33 and 0.35) are
predicted by both models. The random tiling hypothesis is

024102-8



CONFIRMATION OF THE RANDOM TILING HYPOTHESIS … PHYSICAL REVIEW B 110, 024102 (2024)

FIG. 15. Phason elastic constants over temperature. Dashed lines
are numeric results λ(K)

n (T ) from Ref. [9]. The continuous curves
λn(T ) were calculated using the approximation of independent single
flips for E0 and Fc. The melting temperature in MD simulations is
T = 0.56.

confirmed, as F ∝ |χ |2 and as the quasicrystal becomes stable
only at elevated temperatures.

C. Configurational free energy with correlations

Now, in the configurational free energy, we take regard of
all flips as pictured in Figs. 7 and 8 apart from flip F (4, 13),
which has by far the highest flip energy 
Ek = 9.321 and
does not contribute to Fconfig. We furthermore take into ac-
count nearest neighbor correlations of flips as realized in the
23 PC clusters of Fig. 11 and in the ten-state Potts model,
and calculate the configurational free energy according to
Eq. (19). It is presented in Fig. 16 for T = 0.35 and close to
χ = 0 has a parabolic form.

We use two offset values for the zero temperature elastic
constants as in Eq. (20). The first is based on the ground state

FIG. 16. Offset adjusted configurational free energy in the ten-
state Potts model Fconfig(χn, T ) for n = 6 in blue, n = 8 in red, and
T = 0.35.

FIG. 17. Phasonic constants from the model of PC clusters. The
dashed lines are those with the offset at T = 0 from MC simulations
as given in Eq. (20).

energy E0(χ ), Eq. (16), which was obtained from relaxing
the flat energy Eq. (12) by uncorrelated flips F (8, 7) and
F (9, 8). The second, λK

8 (T = 0), comes from the numerical
simulations of Kiselev.

The temperature dependence of the phason elastic con-
stants is displayed in Fig. 17. The model with the geo-
metrically relaxed ground state energy shows a low soft
phason transition at T = 0.22. With the numerical values,
we obtain T = 0.45. With both offsets, the results prove a
low-temperature instability of the quasicrystal and confirm the
random tiling hypothesis.

VI. DISCUSSION AND SUMMARY

Quasicrystals are not periodic and possess a confusingly
large number of local environments. Fortunately, there is an
efficient bookkeeping method for the environments, denoted
polar calculus [18]. The discrete vertices of the infinite qua-
sicrystal can be mapped one-to-one onto a polygon of finite
size, which is denoted window W and necessarily is filled
densely. In the case of the Tübingen triangle tiling (TTT)—
the object of our present studies—the window is a regular
decagon. Any local environment repeats infinitely often, can
be associated with a subdomain Ci of the window and thus
given its relative portion in the structure. The polar calculus
is the exclusive geometric tool in our endeavor to confirm the
random tiling hypothesis. In a previous study by Kiselev et al.
[9] a random version of the TTT could be grown in molecu-
lar dynamics simulations with a Lennard-Jones-Gauß double
well potential VLJG. In the ideal TTT, nine types of vertex
environments Vi exist within an effective interaction radius of
rint = 2. Their relative occurrence ρi can be determined by
the area |Ci| of their domain Ci, and their potential energy Ei

by application of the potential VLJG. Uniform phason strain χ

is applied to the ideal TTT by homogeneous phason defor-
mation of the window and its interior subdivision, leading to
four more vertex environments. The procedure allows us to
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calculate a “flat” energy density E (χ ) = ∑
i ρi(χ )Ei. As

shown by Kiselev et al. with a method of Frenkel-Ladd
and thermodynamic integration [24,25] a flip relaxed version
E0(χ ) of this energy density is the only χ -dependent part of
the phonon contribution to the free energy density F (χ, T )
and is its value at T = 0. The second derivatives of F (χ, T )
with respect to χ yield the phason elastic constants. We ana-
lyzed the minimal interaction environments for all simpleton
flips, a total of 13, and constructed corresponding flip domains
Pk (χ ) in the window W (χ ). Whenever a flip lowered the en-
ergy, we replaced the initial vertex by the flipped one in the flat
energy density and thus approximated E0(χ ). In this way, we
arrived at a random tiling. It turned out that E0(χ = 0) shows
a saddle point, rendering one of the phason elastic constants,
λ8(T = 0), negative and hence the quasicrystal unstable at
T = 0. Kiselev et al. [9] had arrived at the ground state en-
ergy E0(χ ) by performing Monte Carlo flips in approximants.
Their value of λ

(K)
8 (0) also turned out negative, but twice as

deep as with our geometric method.
The phonon part must be supplemented by the configura-

tional part of the free energy density Fconfig(χ, T ), caused by
the phason degree of freedom in the form of vertex flips. Kise-
lev et al. modeled Fconfig by associating with each flip an Ising
spin, however only for flips between vertices at the boundary
of the decagonal window. Knowing their density from the
restricted flip domains, we could reproduce the results of
Kiselev et al. in acceptable approximation: The phason elastic
constant λ6(T ) remained positive over the entire temperature
interval. The constant λ8(T ) turned positive and stabilized
the quasicrystal at T = 0.33, compared with previously
T = 0.35.

Yet the flip Ising model neglects correlations between flip-
ping spins. If two rhombi overlap, forming a pentagon as in
Fig. 10, the flipping vertex of one is the corner point of the
other. A simpleton flip of the first changes the flip direction
and energies of the second. Flipping the second vertex and
continuing one creates ten states in the pentagon. It turns
out that 12 of the 13 interaction environments for simpleton
flips contain the overlapping rhombi. We identified 23 neigh-
borhoods where the atoms are within the interaction radius
of the overlapping rhombi and all the flipped states of the
pentagon and denoted them pentagon coupled (PC) clusters.
These not only encompass the single spin flips but also their
correlations. The PC clusters represent ten-state Potts models
and replace the two-state Ising spin model. To calculate the
configurational free energy Fconfig, we determine the energy
Ek

i of each Potts state i in the PC cluster k with the interaction
potential VLJG. Furthermore, the density ν

pc
k is required and

found with the help of the domains Pk (χ ) of the PC clusters
in the window W (χ ). Also in this refined model, the random
tiling hypothesis is confirmed: the free energy is proportional
to |χ |2 and the quasicrystal is unstable at low temperatures
due to a negative phason elastic constant λ8.

However, as evident from Fig. 17, the stabilization temper-
ature goes down from T = 0.35 to T = 0.17. The reason is
the high offset value λ8(0) = −2.676 from Eq. (20). With the
value λ

(K)
8 (0) = −5.318 of Kiselev et al. [9,26] it is shifted

up to T = 0.42. What is the reason for the difference? Our
geometric relaxation of the energy density E (χ ) to the ground

state energy E0(χ ) was performed by two types of energy-
reducing single flips, namely vertices V8 to V7 and V9 to V8. No
correlations were taken regard of, in contrast to the unlimited
number of correlations in the relaxation by Monte Carlo flips
of Kiselev et al. While our geometric method deals only with
a localized randomization, the MC simulations of the ground
state energy also contain phason flips propagating longer dis-
tances. For zero phason strain, there are no energy-lowering
flips and the ground state energy for both methods excellently
agrees. For χ8 
= 0, the MC relaxation of the approximants
strongly reduces the ground state energy as seen in Fig. 13.
An open question is why the geometric and numeric methods
only disagree for the ground state energy along χ8 and not
along χ6.

Thus we conclude, that for the offset the numerical calcula-
tions according to Kiselev et al. [9,26] are to be trusted more,
for the temperature dependence the pentagon cluster model,
the combination of both being represented by the dashed lines
in Fig. 17.

While the ground state energy E0(χ ) is easily accessible
to numerical methods, the real problem is the free energy
Fconfig(χ, T ). First, it was modeled by an ensemble of Ising
spins. To calculate the density of spins, the polar calculus had
to be extended to a dynamic one, where the window is divided
into domains for the different spin types. Then, the model was
refined further to a Potts model, which took regard of two-site
correlations of the flips and also required the polar calculus.
The refinement with the correlations influenced the temper-
ature dependence of the phason elastic constants but left the
conclusion untouched that quasicrystals are entropy-stabilized
and high-temperature phases.

APPENDIX: COORDINATES

Symmetry adapted orthonormal bases {b‖
x, b‖

y} of E‖ and

{b⊥
x , b⊥

y } of E⊥ are given with respect to the canonical basis
{ei, i, . . . , 5} of R5

b‖
x =

√
1

2
√

5τ

⎡⎢⎢⎢⎢⎣
1

−1
−τ

0
τ

⎤⎥⎥⎥⎥⎦, b‖
y =

√
1

10

⎡⎢⎢⎢⎢⎣
τ

τ

−1/τ

−2
−1/τ

⎤⎥⎥⎥⎥⎦,

b⊥
x =

√
1

2
√

5τ

⎡⎢⎢⎢⎢⎣
τ

−τ

1
0

−1

⎤⎥⎥⎥⎥⎦, b⊥
y =

√
1

10

⎡⎢⎢⎢⎢⎣
1/τ

1/τ

−τ

2
−τ

⎤⎥⎥⎥⎥⎦. (A1)

These vectors, together with the canonical bases {e‖
x, e‖

y} on
E‖ and {e⊥

x , e⊥
y } on E⊥, define the projection operators

P‖ = e‖
xb‖t

x + e‖
yb‖t

y , P⊥ = e⊥
x b⊥t

x + e⊥
y b⊥t

y . (A2)

The window W in the TTT is defined as the P⊥ projec-
tion of the A4 lattices’ Voronoi cell VA4 = VA4 (0) around
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TABLE II. Three of the corners of the windows, represented in
different spaces. The other corners are found by all possible x and y
reflections of these.

d ∈ H d⊥ ∈ E⊥ d‖ ∈ E ‖

1
2 (̃a0 + ã1−

ã2 + ã3 − ã4)
(

0,

√
2
5 τ

) (
0,

√
2
5

1
τ

)
1
2 (−̃a0 + ã1−
ã2 + ã3 − ã4)

(
−

√
τ

2
√

5
, τ2√

10

) (
−

√
1

2
√

5τ
, − 1√

10
1
τ2

)
1
2 (−̃a0 + ã1−
ã2 + ã3 + ã4)

(
−

√
τ3

2
√

5
, 1√

10

) (√
1

2
√

5τ3 , − 1√
10

)

the origin

VA4 = {x ∈ H, |x| < |v − x| ∀ 0 
= v ∈ A4}. (A3)

To construct VA4 more concrete the dual lattice Ã4 of A4

will be useful. Up to a factor of 2π , this is the same as the
reciprocal lattice

Ã4 = {x ∈ H, x · v ∈ Z ∀ v ∈ A4}. (A4)

A basis of Ã4 is given by{̃
ai = ei − 1

5

, i = 0, 1, 2, 3, 4

}
, where 
 =

5∑
i=1

ei.

(A5)

It can be shown that |∑i λĩai| < |v − ∑
i λĩai| for all v ∈

A4 and |λi| < 1/2. So the Voronoi cell of A4 can be written as

VA4 =
{ ∑

i

λĩai, | |λi| <
1

2

}
. (A6)

Projecting VA4 onto E⊥ yields a decagon as shown in the
right of Fig. 1. For the correct construction of the TTT, it must
be half open, similar as for the Fibonacci chain. Otherwise,
there would be “forbidden” distances between some atoms,
corresponding to overlapping tiles. This half-open condition
has no consequences for the polar calculus though, as it does
not change the window’s area. W is parameterized by its
corners d⊥

i , i = 1, . . . , 10. These corners are E⊥ projections
of some of the corners d i of the root lattice’s Voronoi cell.
They are best expressed in the basis {̃ai, i = 0, 1, 2, 3, 4} of
the dual space Ã4 and written explicitly in Table II together
with their E⊥ and E‖ projections.
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