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The accurate description of the structural and thermodynamic properties of ferroelectrics has been one of the
most remarkable achievements of density functional theory (DFT). However, running large simulation cells with
DFT is computationally demanding, while simulations of small cells are often plagued with nonphysical effects
that are a consequence of the system’s finite size. To avoid these finite-size effects one is thus often forced to
use empirical models that describe the physics of the material in terms of effective interaction terms, that are
fitted using the results from DFT. In this study we use a machine-learning (ML) potential trained on DFT, in
combination with accelerated sampling techniques, to converge the thermodynamic properties of barium titanate
(BTO) with first-principles accuracy and a full atomistic description. Our results indicate that the predicted Curie
temperature depends strongly on the choice of DFT functional and system size, because of emergent long-range
directional correlations in the local dipole fluctuations. Our findings demonstrate how the combination of ML
models and traditional bottom-up modeling allow one to investigate emergent phenomena with the accuracy of
first-principles calculations over the large size and time scales afforded by empirical models.
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I. INTRODUCTION

A ferroelectric is a material that possesses a permanent
electric polarization that can be switched under the action
of an external electric field. Typically, the emergence of the
polar phase is accompanied by a structural transition from a
high-symmetry paraelectric state down to a broken-symmetry
state with a characteristic long-range dipolar ordering [1,2].
This effect is of wide use in technological applications, for
instance in capacitors, where ferroelectrics are used as a high-
κ dielectric medium for effective energy and charge storage,
as well as in piezoelectric devices, sensors, and field-effect
transistors [3–6].

Density functional theory (DFT) calculations have comple-
mented experimental efforts that have sought to understand
the microscopic structure of ferroelectrics [7–10]. Calcula-
tions done at the generalized gradient (GGA) level of theory
have revealed details of the phonon instabilities in the cubic
high-symmetry structure that cause the 〈111〉 displacements
that are predicted by the eight site model [11–13]. However,
studying ferroelectrics using DFT is computationally expen-
sive. In the past researchers have thus been forced to use
less-accurate, empirical models to study long time and length
scale phenomena. Using such models is no longer necessary
as there are now a host of machine learning (ML) methods
[14–22] that offer a way to develop inexpensive models that
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have DFT-level accuracy for the energies and forces. There
is clearly a problem with using such techniques to study fer-
roelectrics, however. Early work [23,24] in this direction has
identified discrepancies between the temperatures at which
structural transitions occur in the simulations and the tem-
peratures at which these transitions occur in reality. These
discrepancies are often reduced by introducing artificial cor-
rections to the simulated pressure [25–27]. This additional
pressure brings the simulation volume closer to the values
seen in experiments and drives the predicted Curie tempera-
ture towards its experimental value. However, this correction
tells us little about the physical origins for the discrepancies
that are observed in simulations.

There are multiple sources of error that could be the
origin for these discrepancies. (1) The GGA functional
(PBEsol) [28] used in previous work slightly underestimates
the equilibrium volume of cubic BaTiO3. (2) The determi-
nation of the transition temperature by tracking spontaneous
fluctuations between the phases limits the system size that
can be studied, despite the reduced computational cost of
the ML potential. (3) Typical machine-learning potentials,
such as those based on the SOAP-GAP (smooth overlap
of atomic position plus Gaussian approximation potential)
approach [14] or atom-centered symmetry functions [15],
rely on descriptors that only account for short-range cor-
relations between the atoms, and are therefore incapable
of capturing potentially important long-range, electrostatic
interactions.

In this work, we systematically investigate the first two
of these sources of error. We fit a new SOAP-GAP potential
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TABLE I. Energy difference between a fully polarized BaTiO3

structure and a highly idealized structure with a single antiparallel
dipole, obtained using various density functionals. The accuracy and
computational expense of the functional increases as you move down
the table. The PBEsol estimate of the rotation barrier is computed
with QUANTUM ESPRESSO, the SCAN and r2SCAN estimates with
VASP. Finally, the PBE0 estimate of the rotation barrier is computed
with both VASP and QUANTUM ESPRESSO [34]. Notably, they give the
same result.

Functional Dipole rotation barrier Diff. (%)

PBEsol 943 meV
SCAN 969 meV +2.8%
r2SCAN 991 meV +5.0%
PBE0 1056 meV +12%

to energies from the more-accurate, meta-GGA, regularized
SCAN functional [29], as well as the hybrid functional PBE0
[30,31] and repeat the simulations in our previous work. Next,
we develop an order parameter that mimics the polarization
of the system. This collective variable (CV) allows us to use
accelerated sampling to drive the phase transition in larger
simulation boxes. We find that the transition temperature de-
pends strongly on system size, and trace the substantial finite
size effects in this system to the presence of long-ranged
dielectric correlations that are similar those observed for ef-
fective Hamiltonian models [32].

The remainder of this paper is laid out as follows. We
first discuss the calculations that were performed using the
regularized SCAN functional in Sec. II B. We then describe
how we can use atom-centered descriptors to estimate the po-
larization in Sec. II C. Metadynamics simulations that use the
polarization as a CV are then performed in Sec. II D. The re-
sults from these simulations are accompanied by a discussion
of the finite-size effects, which are caused by dipole-dipole
correlations.

II. METHODS

A. Dipole rotation energy barrier and effect of the functional

As discussed in the introduction, our previous simulations
[23] underestimated the temperature at which the system
transitions from the tetragonal structure to the cubic one. It
may be possible to reduce this discrepancy by employing
a more accurate (and expensive) functional for fitting.
Before embarking on the fitting we calculated the dipole
rotation barrier discussed in [23], with DFT using VASP

[33] and the functionals listed in Table I. Computational
details are provided in the Supplemental Material [35]. For
each functional two single-point DFT energy calculations
were performed on a distorted version of the rhombohedral
(space group R3m) ground state of the system with a
2 × 2 × 2 supercell and a lattice parameter of 8 Å. In the
first of these calculations all the Ti atoms in the system
were displaced along the 〈111〉 direction by 0.082 Å,
resulting in aligned local dipoles. In this structure, Ba
and Ti atoms occupy the 1a position (zBa = −0.0004 and
zTi = 0.51116), while the oxygen occupies the 3b position
(xO = 0.48823, zO = −0.01872). In the second calculation,

one of the Ti atoms was again displaced by the same amount
in the 〈1̄1̄1̄〉 direction, while the others were kept fixed.
Consequently, in this new configuration, one local dipole is
antiparallel to all the others. The dipole rotation barriers in
Table I give the difference in energy between these two struc-
tures. In other words, the dipole rotation barriers in Table I
are the energies required to flip one dipole. Even though
this highly idealized energy difference cannot be taken as a
quantitative measure of the energy scale for the ferroelectic
phase transition, it tells one something about the energetic cost
for disrupting ferroelectric order. As we shall see, the same
trend we observe here, with more accurate density functionals
giving a higher value for this barrier, is qualitatively reflected
in a corresponding increase in the ferroelectric transition
temperature.

We used the regularized SCAN functional (r2SCAN) of
Ref. [29] to construct the training set for the ML model
in this work as this functional provides a good compromise
between accuracy and computational cost [36]. For reference,
one single-point calculation at the PBEsol level, for the afore-
mentioned distorted rhombohedral ground state, only required
109 s on a single HPE Cray node with 128 CPUs. In contrast,
the same calculation performed at the PBE0 level required
66313 s on six nodes. Using the r2SCAN functional required
5940 s per calculation on a single node; considerably more
demanding than a GGA calculation, but not as much as a
hybrid functional.

B. r2SCAN ML potential

All the ML models discussed in this work were constructed
using the SOAP-GAP method [14] as implemented in the
LIBRASCAL package [37], using a set of reference energies
and atomic forces as target properties. In our previous work,
reference energies and forces were extracted from DFT cal-
culations that were performed using the PBEsol functional
[23]. This model did not reproduce the experimental critical
transition temperatures, so for this work we constructed a
new model using reference energies and forces calculated
with the more accurate r2SCAN functional [29]. Our original
dataset includes structures sampled across the cubic paraelec-
tric and all the ferroelectric phases. Furthermore, the numbers
of tetragonal and cubic structures in this data set are compara-
ble. The training set used in this work was built by randomly
selecting 500 structures from this original dataset and per-
forming single-point DFT calculations using the r2SCAN
functional, as implemented in VASP [33]. We use 450 struc-
tures from this dataset for the fitting procedure and retained
50 for testing. Parity plots and the learning curve for the
resulting ML model predictions on the test set are shown in
Figs, 1 and 2. These figures illustrate that the ML validation
error for the new model is comparable to that of our old
PBEsol model. There is even a slight improvement on the
force predictions (see also Table II). Notably, we obtain this
level of accuracy in spite of the fact that only one third of the
structures of the original PBEsol dataset were used to train
the r2SCAN model. This dramatic improvement in the effi-
ciency of the training of the SOAP-GAP model is due to the
recent implementation of linear system solvers with improved
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FIG. 1. Parity plots for the ML-r2SCAN potential and ML-
PBEsol potential of [23]. Panel (a) shows the ML energy predictions
vs the DFT energies, while panel (b) shows the force predictions.

numerical stability using the QR decomposition [38,39] in
LIBRASCAL.

We stress that the final r2SCAN ML model was fitted
directly to the r2SCAN DFT data. During an initial inves-
tigation we found that validation errors were larger when
we used δ learning [40] on the PBEsol baseline. Closer fits
were obtained when we fitted the r2SCAN energies and forces
directly. This result is unusual and may be the result of the
different treatments for long range forces in the two function-
als. Such differences are difficult to fit with δ learning as our
machine learning model does not use descriptors that describe
long-range structural features.

Details of the DFT calculations and the hyperparameters
used in the ML model fitting are provided in the Supplemental
Material (SM) [35]. As we discuss in the SM, we also
fitted a potential to 300 PBE0-level reference calculations.
Simulations with this potential lead to a large overestimation
of the c/a ratio in the tetragonal phase. This result is
consistent with results from previous simulations that were
performed with this hybrid functional [41]. We also observe
a dramatic overestimation of the ferroelectric transition
temperature, which indicates that r2SCAN is not only more
affordable, but also more accurate than PBE0 in predicting
the subtle energetic balance that governs ferroelectricity in

FIG. 2. Learning curve for the ML-r2SCAN potential for energy
and force predictions. The number of sparse points is kept constant.

TABLE II. RMSEs for energy and force predictions for a
50-structure test set calculated using the ML-PBEsol [23], the ML-
r2SCAN, and the ML-PBE0 models. 1200, 450, and 375 structures,
respectively, were used for training.

RMSE ML-PBEsol ML-r2SCAN ML-PBE0

Energy (meV/f.u.) 4.71 6.02 4.30
Forces (meV/Å) 59.3 (11.1%) 51.8 (8.9%) 43.0

barium titanate, supporting our choice of this functional as
the main focus of this study.

C. A collective variable for BaTiO3 with atom-centered
density features

We use an order parameter based on atom-centered-density
features to distinguish between the tetragonal and cubic per-
ovskite structures. In this scheme, the details of which can be
found in Refs. [42,43], a set of neighbor densities around atom
i for each chemical element a are calculated using

ρ i,a(r) =
∑

j

δa,a j exp

[
−|r − r ji|2

2σ 2

]
fcut(r ji). (1)

In this expression, the sum runs over neighbors j that are of
element a and that are within a sphere of radius rcut centered
on atom i. Furthermore, the function fcut(r ji ) ensures that the
contribution from atom j smoothly goes to zero at rcut.

A quantity that serves as a proxy for the local polarization
around atom i is extracted from Eq. (1), by expanding the
density using a basis set that is constructed by taking an outer
product between a set of Gaussian type orbital (GTO) radial
functions and spherical harmonics. This procedure amounts to
calculating the coefficients

ci,a
nlm =

∫
dr Rn(r)∗Y m

l (r̂)∗ρ i,a(r). (2)

The ci,a
nlm coefficients for the l = 1 channel for Ti-centered

features offer a representation for the local polarization as
the values of these coefficients change dramatically when Ti
atoms are displaced along the 111 direction within the oxygen
cage. Furthermore, the three ci,a

nlm coefficients with m = +1,
m = −1, m = 0, and l = 1 (or a sum of these coefficients for
the Ti-centered environments) transforms as a vector in real
space in the same way as the global polarization, as motivated
in Ref. [23]. As we demonstrate in the SM, these quantities,
once summed over all atoms in a structure, correlate very well
with the components of the total polarization computed via
density-functional perturbation theory. Using this quantity to
represent the polarization is also much cheaper than using the
fully fledged machine-learning model for the polarization that
we developed in a previous study [23]. We can thus use the
components of the density expansion coefficients to define an
effective local polarization vector for each atom:

pi
n = (

pi
x, pi

y, pi
z

)
n

∝ (
ci,O

n1+1, ci,O
n1−1, ci,O

n10

)
(3)

For each atom in the system there are in principle three (the
number of species) times the number of radial basis functions
of these three-dimensional vectors of ci,a

nlm components with
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l = 1. We use radial basis functions with n = 1 when calcu-
lating the CV and correlations in local polarizations because,
as we show in the Supplemental Material [35], this CV is
better at distinguishing the cubic and tetragonal phases than
the symmetrized combination of the cell parameters that we
used in our previous work [23]. Therfore, the final CV that
was used in this work is given by

P =
√(

CO
11−1

)2 + (
CO

110

)2 + (
CO

11+1

)2
, (4)

where

Ca
nlm =

∑
i

ci,a
nlm

and the sum runs over all central Ti atoms in a given structure.
This CV thus corresponds to an approximation of the polariza-
tion modulus of a BaTiO3 structure and tracks the structural
changes associated with the ferroelectric phase transition, as
evidenced in Sec. III A.

D. Metadynamics simulations

Metadynamics was used to construct a history-dependent
bias on the collective variable defined in equation (4). As
shown in the Supplemental Material [35], this bias potential
drives transitions between the tetragonal and cubic phases to
occur roughly once every 10 ps. This frequency of transition
was obtained by using the well-tempered variant of meta-
dynamics [44] with γ equal to 20 and by adding Gaussian
hills with a height of 0.5 kJ mol−1 and a width of 0.15 CV
units every 0.1 ps. These choices were made based on the
fluctuations of the CVs in an unbiased trajectory, as is cus-
tomary for this field [45]. Simulations were performed using
a combination of LAMMPS [46], I-PI, [47,48], LIBRASCAL [37],
and PLUMED [49,50]. Modifications to PLUMED and LAMMPS

were required to interface these codes with LIBRASCAL. The
modified version of these codes and the compilation instruc-
tions are available through Refs. [51,52].

The molecular dynamics (MD) simulations were per-
formed in the NST ensemble, with an external diagonal stress
tensor σ = diag(p, p, p) with p = 1 atm. This setup mim-
ics the effect of an isotropic pressure, while keeping the
simulation box completely flexible. The cell vectors are all
allowed to change, which is essential for ensuring that fre-
quent jumps between the tetragonal and cubic phases can
occur. The equations of motion that govern these changes are
controlled using a generalized Langevin equation [53] (GLE).
A thermostat thus acts on the cell degrees of freedom. A
second stochastic-velocity-rescaling (SVR) thermostat [54] is
then used to control the velocity distribution of the atoms.
The characteristic times for the barostat, the SVR thermo-
stat, and the MD time step were set to 1 ps, 2 fs, and 2 fs
respectively. Simulations with various supercell sizes were
performed (from a 4 × 4 × 4 cell to a 14 × 14 × 14 cell)
to achieve finite-size convergence of the relative chemical
potentials of the cubic and tetragonal phases. Furthermore,
simulations were performed for temperatures between 150
and 320 K in order to detect the transition point. LIBRASCAL

does not natively support parallelization over the atoms so we
use the domain decomposition implementation in LAMMPS to
accelerate the evaluation of the potential. The CV is, however,

FIG. 3. Free energy surfaces as a function of the collective vari-
able for temperatures above and below the transition temperature
(249 K) for a 10 × 10 × 10 cell. The shaded areas correspond to
errors on the free energy, computed as the standard deviation on the
mean of the free energy estimates on four independent blocks for
each metadynamics simulation.

computed on a single core. To prevent the calculation of the
CV from becoming a bottleneck we only computed those
features that are necessary to evaluate P and used a multiple
time-stepping protocol that computes the bias potential once
every ten MD steps. This setup ensures that we are able to
generate a nanosecond-long simulation for a system contain-
ing 13 720 atoms in 5.5 days on one node with 72 CPUs. Input
files and short reference trajectories for our calculations are
available from the Materials Cloud [55].

III. RESULTS

A. Finite-size convergence of the Curie point in BaTiO3

In our previous work [23] we observed transitions between
the cubic and tetragonal phases in unbiased molecular dy-
namics simulations of 4 × 4 × 4 supercells. These transitions
occur in unbiased MD because the cell is relatively small.
When a larger supercell is employed (and/or a lower temper-
ature is considered, as for the transitions between different
ferroelectric phases of BaTiO3) spontaneous transitions be-
come exceedingly rare and the system remains stuck in the
energetic minimum that corresponds to the cubic or tetragonal
phase for the duration of the simulation. For these systems a
simulation bias is thus required to drive transitions between
the two phases. Figure 3 shows that metadynamics simula-
tions using the order parameter described in Sec. II C can
be used to drive transitions for 10 × 10 × 10 supercells. This
figure shows the free energy surfaces (FES) that emerge from
these metadynamics simulations. These free energy surfaces
were obtained by reweighting using the iterative trajectory
reweighting (ITRE) method [56]. Block averaging was used to
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FIG. 4. Difference between the chemical potential of the cubic
and tetragonal phases as a function of the temperature for different
simulation box sizes L.

estimate the errors on the estimates of the free energy shown
in Fig. 3.

Figure 3 clearly shows that there is a minimum for high CV
values when the temperature is low and the system is in the
tetragonal phase and ferroelectric. This minimum is replaced
by a minimum at a low value of the CV when the temperature
is high and the system is in the cubic phase and paraelectric.
At intermediate temperatures two minima are observed as one
phase is metastable.

To extract the difference in chemical potential between the
tetragonal and cubic phases we performed clustering using the
probabilistic analysis of molecular motifs algorithm (PAMM)
[57]. This clustering technique assigns two probabilities θ1(si )
and θ2(si ) to each CV value si. θ1(si ) is the likelihood that
the corresponding frame is from the cubic basin, while θ2(si )
measures the likelihood that it is from is tetragonal basin. The
chemical potential difference per formula unit between the
two phases can thus be estimated as

�μC-T = −kBT

L3
ln

(∑
i θ1(si )wi∑
i θ2(si )wi

)
,

where the sum runs over all the trajectory frames, L3 is the
number of unit cells, T is the temperature, and wi is the weight
for each trajectory frame obtained from ITRE.

Figure 4 shows how �μC-T changes with temperature for a
range of differently-sized supercells. This quantity is initially
positive for all cell sizes indicating that the tetragonal phase is
more stable than the cubic one at low temperatures. It becomes
negative at high temperatures when the relative stabilities of
the two phases reverses. The Curie point can be determined
from Fig. 4 by finding the temperature at which �μC-T is
zero. In Fig. 4 these temperatures are indicated by the vertical
dashed lines. Errors on these estimates of the Curie tempera-
ture are also indicated. To determine these errors we divided
each trajectory into four blocks and obtain four separate esti-
mates for each �μC-T value. Variances were computed from
these four estimates so the shaded areas in Fig. 4 indicate the
(1σ ) confidence limits. The Curie temperature for each system
size was extracted by drawing a line of best fit through the
estimates of �μC-T. Propagated errors from this fitting then
yield an estimate of the error on the transition temperature.

Figure 4 clearly shows that the Curie temperature in-
creases with system size. Furthermore, these differences in

FIG. 5. Predicted Curie point at a function of the inverse of the
box size 1/L. The grey dot at the bottom right shows the result
from [23]. The more accurate functional used in this work shifts the
transition temperature upwards by 16 K as indicated by the vertical
arrow. However, this upward shift is smaller than the increases in
transition temperature that are seen for the larger systems simulated
in this work.

transition temperature are for the most part statistically signif-
icant. Figure 5 indicates the size dependence for the transition
temperature more clearly. In this figure the transition tem-
perature is shown as a function of the inverse box size.
It is only the 14 × 14 × 14 system that has a transition
temperature that is compatible with the smaller 12 × 12 × 12
system. For all other system sizes the transition temperature
is underestimated. Furthermore, as shown in the SM, there is
also a large simulation-size dependence for the transition tem-
perature when simulations are performed using the potential
that was trained using PBESol. The observation of significant
finite-size effects here contradicts the analysis provided in
Ref. [23] that relied on extrapolating the dielectric constant
in the high-temperature regime with a Curie-Weiss law. In-
terestingly, this indirect approach underestimates the finite
size effects. If the aim is to extract accurate thermodynamics
simulating large system sizes is thus essential.

B. The role of dielectric correlations

We investigated the dielectric correlations to better under-
stand the origin of the enormous system size effects that were
described in the previous section. To obtain the result shown in
Fig. 6 we, therefore, reanalysed the metadynamics simulation
on the 14 × 14 × 14 cell that was performed at 300 K - a
temperature that is above the transition temperature for the
r2SCAN-fitted potential (see also Fig. 4). We calculated a
proxy of the local polarization vector for each Ti atom in each
frame using equation (3) and n = 1. We then computed the
ensemble average of the following correlation coefficient for
each pair of atoms i and j in the system:

〈
δ

i j
αβ

〉 =
〈

pi
α pj

β

|pi||p j |

〉
(5)

where |pi| is the modulus of pi and α and β can be x, y, or z.
The coloured circles in Fig. 6 show the average values of

δ
0 j
zz for a (100) slice. The atom at the origin is coloured yellow

and marked by a red circle. One can see that most of the other
atoms in the system are coloured in purple, which indicates
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FIG. 6. Spatial dependence of the Pz-Pz dielectric correlations
between atom at the origin (marked by a red circle) and all the
other atoms lying on the same (100) plane in a 14 × 14 × 14 cell.
A dashed rectangle is drawn at the boundary of a 4 × 4 × 4 section,
corresponding to the smallest cell that we have simulated. This box
highlights how much stronger the correlations are at the edge of this
small cell than at the boundary of the full cell.

there is relatively little correlation between the polarization
along the z-axis for atom 0 and the polarization along the z-
axis for most of the other atoms. The exceptions to this general
rule are the row of atoms that have the same y coordinates
as atom 0. When Ti atoms sit in the same row along
z their polarisations prefer to point in the same direction. This
result is consistent with the appearance of the needle-like
correlations that are observed both in previous computational
studies using DFT and ML models [23,58,59] and in
experiments [60].

Figure 7 provides a more quantitative assessment of the
correlations between local dipoles. In generating this fig-
ure we reanalysed the metadynamics simulations on cells of
various sizes from the previous section at temperatures where
the structure was cubic. For each box size we computed av-
erages of δ

i j
zz over all pairs of atoms that have the same z

separation as well as δ
i j
zz over all pairs of atoms that have

the same y separation. This averaging provides information
on the distances over which parallel and transverse correla-
tions between polarisations persist. One can clearly see that
correlations between the z-components of the polarization are
much stronger along z than they are along y. In other words,
the domains tend to polarize along chains that are aligned
with the crystallographic directions. The correlation between
these chains is weak and has vanished by the second neighbor.
However, even when BTO is in the cubic phase there are
no polarization fluctuations that only affect single Ti atoms.
Polarisation fluctuations are highly correlated along the axis
of the fluctuation. Similar observations have been made in

FIG. 7. Dielectric correlations in the form of normalized Pearson
coefficients, for a set of NST simulations in the cubic regime (above
the critical transition temperatures computed in Sec. III A) with dif-
ferent box sizes. The temperatures of these simulations are 225 K for
L = 4 and 300 K for L = 8, 12, 14. The comparison between δzz(z)
and δzz(y) indicates that correlations for polarizations in the parallel
direction are much stronger than in the transverse direction.

the literature for BaTiO3 as well as for other ferroelectrics.
The emergence of long-range correlations along the 〈100〉
crystallographic directions was first proposed in Comes et al
[61] and theoretically confirmed by Yu and Krakauer in [62] in
the case of KNbO3 by first-principles calculations. The latter
paper specifically revealed the presence of phonon instabili-
ties associated with chains of displaced Nb atoms. The results
presented here are consistent with these findings and justify
the use of the CV presented in Sec. II C, as the polarization
proxy defined in Eq. 3 closely maps the local displacements
of Ti-atoms and the local dipoles that are associated with
them. It is important to reiterate that our ML potential does
not consider structural correlations beyond a cutoff of 5.5
Å, as in Ref. [23]. The long-range correlations we observe
must, therefore, be generated by an effective short-ranged
interaction. By way of contrast, empirical Hamiltonian models
usually employ long-range electrostatic terms.

In order to better understand the nature of these dipole
correlations, we performed an analysis of snapshots from an
unbiased simulation at T = 300 K for a 16 × 16 × 16 super-
cell. In this analysis we consider two neighboring cells to
be part of a dipole chain along one of the (100) directions
if the projection of the dipole on that direction is, for both
cells, larger than the root mean square dipole component
averaged over the entire trajectory, and aligned in the same
direction. The procedure yields a “real-space” view of the
dipole correlations [Fig. 8(a)] that reveals a seemingly random
coexistence of dipole chains along the three (100) directions,
with both polarities. While the arrangement of the dipole
chains is weakly correlated (consistent with the fast decay of

024101-6



MODELING THE FERROELECTRIC PHASE TRANSITION … PHYSICAL REVIEW B 110, 024101 (2024)

(a)

(b)

FIG. 8. (a) Snapshot from a simulation of a 16 × 16 × 16 cell of
BaTiO3 in the paraelectric phase. Chains of more than 5 adjacent
cells with the above-average polarization along one direction are
represented with elongated boxes; red and blue colors indicate the
direction of the polarization vectors. (b) Average counts of polar-
ization chains as a function of length; dashed lines indicate the
expected behavior for a random distribution (p0 being the probability
of observing a cell with a dipole component above the average), and
the dashed black line indicates an exponential decay with a fitted
decay rate (pfit).

tranverse correlations in Fig. 7), there are many more long
chains than expected based on a random distribution in the
longitudinal direction [Fig. 8(b)], even though the population
decay is still exponential. There is even a small but nonzero
fraction of chains that span the full size of the supercell,
further underscoring the difficulty in converging finite-size
effects for this system.

It is possible that the presence of these dipole chains ex-
plains the strong system size effects as these chains will be
affected by the artificial periodicity of the supercell geometry.
The square in Fig. 6 shows the extent of the 4 × 4 × 4 cell.
One can clearly see that very strong correlations extend across

FIG. 9. Per-atom heat capacity (expressed in units of kB) as a
function temperature for NST simulations run with different box
sizes. The peak in the heat capacity corresponds to the cubic-
tetragonal phase transition. The decrease of the simulation box
results in a broadening and a shift of the peak to lower temperatures,
consistently with the results of Fig. 5.

the entirety of this small simulation box. In small supercells,
the first two coordination spheres around the individual atoms
in the cubic phase resemble those around the atoms in the
tetragonal phase. This similarity lowers the energy difference
between the two phases, which in turn allows the cubic phase
to appear at lower temperatures. The strength of the correla-
tion for sites on either side of the simulation cell decreases
when the cell is larger. Polarization sites in larger simulation
cells are thus less constrained by their neighbors. These sites
can thus explore structures that are different from those in the
tetragonal phase, which pushes up the energy of the cubic
phase. Even though the cubic phase is higher in energy in
these larger cells, it will still form (albeit at higher temper-
atures) because the greater conformational flexibility ensures
that its entropy is higher. Figure 9 confirms that the enthalpy
difference of the two phases increases as the box size in-
creases. This figure shows the constant pressure heat capacity
per atom as a function of temperature in units of kB for each
system size. These heat capacities were calculated using finite
differences and average enthalpies taken from our metady-
namics simulations, as we found that these estimates are better
statistically behaved than those obtained from the enthalpy
fluctuations. You can clearly see that the heat capacity curve
is more strongly peaked when the system size is larger and
that the integral of the curve is larger. Therefore, these larger
peaks for larger system sizes are indicative of a larger per-
atom enthalpy difference between phases. Similar effects are
seen for the lattice expansion (see SM [35]). For a converged
supercell (above 10 × 10 × 10), the temperature dependence
of the lattice parameter shows nearly constant thermal ex-
pansion up to the T-C transition temperature, where there
is a noticeable discontinuity, consistent with the first-order
nature of the phase transition. For smaller supercells, finite-
size effects lower the transition temperature and smoothen
the discontinuity, altering both the density and its temperature
dependence.
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FIG. 10. Two-dimensional (2D) free energies for a 6 × 6 × 6 cell and 4 × 4 × 12 cell at 200 K as a function of the polarization modulus P
[as defined in Eq. (4)] and the cosine of the angle (cos θ ) that the polarization vector P forms with the z axis. Horizontal and vertical subpanels
show the 1D free energies as a function of P and cos θ , obtained from their respective marginal distributions.

C. Two-dimensional metadynamics and detection
of anisotropic polarizations

Substantial system size effects for the predicted transition
temperature are not the only consequences of the long-ranged
dielectric correlations that were identified by Fig, 7. This fig-
ure indicates that these correlations are also anisotropic. This
anisotropy has consequences when one simulates a noncubic
cell, as was recently done in Refs. [63–68]. We found that
problems arise in such simulations because the polarization
for the tetragonal phase can have multiple distinct orientations
within the simulation cell. In real systems these distinct orien-
tations are symmetrically equivalent so they should have the
same chemical potential. However, we are simulating finite-
sized systems. Consequently, when the simulation box has
a noncubic shape, the orientations that have the polarization
aligned along the long and short axes of the cell are not
equivalent. This symmetry-breaking is problematic because,
when the polarization is aligned along the longer axis it is
possible to capture more of the long ranged correlations that
were identified in Fig. 7.

To investigate whether these anisotropic correlations have
a significant effect on the relative energies of phases with
different polarization orientations we introduced the following
CV to measure the orientation of the polarization relative to
the laboratory frame:

cos(θ ) = C110

P
.

θ here measures the the angle between polarization vector and
the z-axis for the laboratory frame. This CV is thus 1 when the
polarization is parallel to the z axis, −1 when the polarization
is antiparallel to the z axis, and 0 for the other four orientations
that have the polarization parallel (or antiparallel) to the x or
y axes.

Metadynamics simulations that used P and cos(θ ) as the
CVs were performed for a 6 × 6 × 6 cell and a 4 × 4 × 12
cell. The free energies that emerge from these simulations
are shown in Fig. 10. These figures demonstrate that the
anisotropy has a significant effect. The cubic cell has minima
in cos(θ ) at −1, 0, and +1, as would be expected. There is,
however, no minimum at 0 for the anisotropic cell. The tetrag-
onal phase that forms in this simulation always has its polar-
ization parallel or antiparallel with the long axis of the cell. In
other words, formation of tetragonal phases with polarizations
aligned along the x and y axis is energetically suppressed.

IV. CONCLUSIONS

Understanding ferroelectricity epitomizes the challenges
that are inherent in atomistic modeling of materials. To study
this phenomenon one needs accurate models that capture the
relationship between the atomic geometry and the electronic
structure. These models are often computationally expensive,
which is problematic as ferroelecticity is an emergent phe-
nomenon that takes place over large length and time scales.
It is thus often necessary to use insights that can be extracted
from small scale DFT calculations to inform empirical models
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that can be used to study the long length- and timescale
behaviors. Machine learning (ML) offers a straightforward
method for constructing empirical models from DFT without
losing full atomistic detail. In the proceeding sections we
have demonstrated the power of this combination by modeling
the thermodynamics of the C-T transition in BTO, using a
post-GGA level-of-theory in the reference DFT calculations.
Furthermore, we have also shown how ML-inspired order
parameters can be used to sample the phase transition in
large-scale simulations.

We find that the transition from the cubic to tetragonal
phase occurs at a temperature of 254 K in our simulations.
This value compares much more favorably with the exper-
imental value of 393 K than the value of 182 K that was
obtained in previous, similar calculations [23]. Part of the dis-
crepancy can be attributed to the less accurate DFT functional
that was used in the previous work. However, the main source
of error comes from very large finite-size effects, that only
converge when the simulation box is larger than 12 × 12 × 12
unit cells. Running such large simulations is impossible with
explicit ab initio MD.

We argue that there are large system size effects in this
material because there are long-range directional correlations
between local dipoles in BTO. Such correlations have been
observed and discussed in the literature [58–60] for models
that rely on empirical Hamiltonian models fitted to DFT en-
ergetics. This paper shows that, when using an unrestricted
ML model that yields thermodynamic properties for BTO
that are in quantitative agreement with the electronic-structure
method used for training [23], analogous dipole chains with a
large longitudinal correlation length are observed. This result
corroborates the early findings and provides a quantitative
assessment for the impact of the details of the DFT calcula-

tions. Even though these correlations are usually understood
(and modeled) as the consequence of long-range electrostatic
interactions, we observe that they also emerge for a ML po-
tential that is restricted, by design, to short-range energetics.
Investigating the quantitative impact of a model that does
not have such limitations (e.g., one based on long-distance
equivariants [69]) is an interesting future research direction.
It is also important to note that these 1D dipolar chains can
also cause other strong finite-size effects. For example, as
we show in Sec. III C when simulating anisotropic cells, the
existence of these correlations breaks the symmetry between
the different orientations of the tetragonal structure.

This study demonstrates how ML models are an enabling
technology for studying thermodynamics and functional prop-
erties in materials. When these methods are used there is
no need to compromise on accuracy, or combine electronic-
structure calculations with simplified empirical models. The
work presented in this article serves as a blueprint to tackle
similar problems in condensed matter physics and materials
science.
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