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Planar Hall effect from superconducting fluctuations
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We investigate the planar Hall effect (PHE) in two-dimensional (2D) superconductors with spin-orbit interac-
tions, where transport anisotropy is induced by an in-plane magnetic field. While PHE typically arises from the
breaking of basal mirror symmetry, when the field exclusively couples to spin degrees of freedom, it remains
negligible in noninteracting systems. In this study, we explore anisotropic paraconductivity as an alternative
mechanism for PHE observed in 2D superconductors in the normal state. Due to the momentum dependence
of spin-orbit interactions, the field-induced pair breaking exhibits anisotropy. To elucidate this phenomenon, we
compute the PHE for the Rashba spin-orbit interaction. Our analysis reveals that Cooper pairs propagating along
the field experience stronger pair breaking compared to those moving perpendicular to the field. This physical
insight is corroborated by explicit calculations of paraconductivity.
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I. INTRODUCTION

The planar Hall effect (PHE) is a distinct kind of a mag-
netoresistance anisotropy induced by magnetization and/or
the applied magnetic field B. The PHE implies the dis-
parity in conductivity between the current flowing parallel
(σ‖) and perpendicular (σ⊥) to the magnetization or in-plane
magnetic field (B) [1,2]. This effect has been observed in
LaAlO3/SrTiO3 and LaVO3/KTaO3 interfaces [3–6], in topo-
logical insulator nanodevices [7–10], semiconducting thin
films [11], superconductors with strong spin-orbit coupling
[12], kagome metals [13], and Weyl semimetals [14].

The standard Hall effect arises from the Lorentz force
acting on charge carriers. This effect is contained in the an-
tisymmetric part of the conductivity tensor, denoted as σ̂ .
According to the Onsager relation σ̂xy(B) = σ̂yx(−B), indicat-
ing that the standard Hall current is odd in B.

The PHE, in contrast, is contained in the symmetric part of
σ̂ , which is even in B. As a result, in magnetic materials, PHE
is sensitive to the square of magnetization rather than to the
magnetization itself. This characteristic makes PHE a valuable
tool for detecting antiferromagnetic transitions [15–17].

In this study, we concentrate on two-dimensional (2D)
systems confined to the basal (xy) plane. We consider the
planar configuration where both electric and magnetic fields
lie in plane, as illustrated in Fig. 1(a). In this geometry the
Lorentz force acts out of plane, and therefore causes no cur-
rent. Consequently, the conventional Hall conductivity is zero.
As a result, the 2D conductivity tensor is symmetric and even
in B. Furthermore, the conductivities σ‖,⊥ are principle values
of this tensor.

The preceding arguments elucidate why the PHE is fre-
quently investigated in the planar configuration [18]. In one
realization of this setup, the 2D system is formed at the (111)
interface between LaAlO3 and SrTiO3 [3–5]. These systems
are inherently anisotropic owing to the underlying crystal
structure. To distinguish this anisotropy from the PHE, the

conductivity is monitored as the field B rotates in the (111)
plane. The hexagonal symmetry of the interface results into a
sixfold angular variation of σ̂ . In contrast, the field-induced
anisotropy in the form of the PHE manifests as a distinct
twofold angular variation of σ̂ . As the field rotates through an
angle θ relative to a fixed coordinate frame, the PHE implies
a finite Hall conductivity, σxy(θ ) = (σ‖ − σ⊥) sin 2θ , satisfy-
ing σxy(θ ) = σyx(θ ). Simultaneously, the diagonal elements
acquire angular variations δσxx,yy = ±(σ‖ − σ⊥) cos 2θ/2, as
illustrated in Fig. 1(b).

The PHE is distinct from the anisotropy induced by exter-
nal symmetry-breaking perturbations [19] such as, e.g., strain
[20] or anisotropic magnetic impurities [21]. In the case of the
PHE, the anisotropy is induced by the applied magnetic field
and is an intrinsic property of the system.

Another representative experiment reports the twofold
variation of the thermodynamic and transport properties of
a few-layer NbSe2 as the in-plane field rotates [20]. In a
monolayer of the same material on a substrate, the twofold
variation is superimposed on the sixfold variation expected
for hexagonal crystals, at least within certain range of applied
fields [22].

Theoretically, the PHE has been investigated in 2D spin-
orbit coupled systems [23,24]. The conclusion of these studies
is that PHE vanishes unless the Zeeman splitting induced by
the in-plane magnetic field exceeds the spin splitting caused
by the spin-orbit interaction (�SO). The spin-orbit interaction
introduces the anomalous velocity, a spin-dependent term, to
the current operator. The anomalous velocity and the ver-
tex corrections to the normal velocity cancel each other out
[24–28]. This explains the vanishing of the PHE in noninter-
acting spin-orbit coupled 2D systems.

The theoretical findings mentioned above appear to conflict
with the observation of a finite PHE. To reconcile these dis-
parities, in this study, we propose and examine an alternative,
yet universal mechanism of the PHE. We observe that both
the LaAlO3/SrTiO3 interfaces and the few-layer NbSe2 on a
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FIG. 1. (a) The 2D system (shaded area) in the planar configu-
ration. The system, the electric field (E ‖ x̂), magnetic field (B), and
the current (I) are in the xy plane. E and B form the angle θ . (b) The
dashed (blue) line is the longitudinal conductance σxx (θ ), and the
solid (red) line is the Hall conductance σyx (θ ). The PHE implies π -
periodic angular dependence of the conductance tensor with the Hall
conductance σyx (θ ) = σxy(θ ) = (σ‖ − σ⊥) sin(2θ ), resulting from a
finite anisotropy σ‖ �= σ⊥.

substrate exhibit superconductivity upon cooling to a finite
critical temperature (Tc). Furthermore, both families of sys-
tems break the mirror symmetry of the basal plane (σh). In
light of these observations, we make two key assumptions.
First, we assume the system has a finite Tc. Second, we focus
on 2D systems with broken σh and inversion symmetry (P),
ensuring the existence of finite spin splitting of electron bands
due to the spin-orbit interaction.

We demonstrate that in a 2D superconductor with broken
σh symmetry, the conductivity arising from superconducting
fluctuations (paraconductivity) [29] becomes anisotropic in
the presence of an in-plane magnetic field. We provide an
explicit microscopic calculation of the PHE in such system.
Importantly, since the PHE vanishes in the noninteracting
limit, the anisotropic paraconductivity alone explains the PHE
for a large range of temperatures, not necessarily confined to
those close to Tc.

The paper is structured as follows. Section II provides a
phenomenological description of the PHE, grounded in sym-
metry constraints on the Cooper-pair dispersion relation. In
Sec. III, we introduce the microscopic model used to inves-
tigate the PHE. A summary of the results obtained within
this model is presented in Sec. III B. The detailed calculations
leading to these results are provided in Sec. IV, where we
compute the coefficients in the Ginzburg-Landau free en-
ergy up to second order in Cooper-pair momentum. Finally,
Sec. V discusses the results and outlines directions for future
research.

II. PHE FROM PARACONDUCTIVITY

In this section we delve into the phenomenology of the
PHE arising from superconducting fluctuations. We find as
one of our main results,

σ‖ − σ⊥ = σALB2 L2

ξ 2
0

. (1)

The PHE (1) is proportional to the zero field Aslamazov-
Larkin paraconductivity σAL. In two dimensions the latter
is universal, σAL = e2/16ε, where ε = (T − Tc)/Tc [30]. In
what follows we use units with h̄ = c = kB = 1. Hence,

the PHE (1) is determined by two phenomenological con-
stants. The first is the standard zero-field Cooper-pair size
ξ0, while the second parameter L2 characterizes the spa-
tial anisotropy of the Cooper pairs. We further elucidate the
physical significance of both parameters and derive Eq. (1) us-
ing the phenomenological time-dependent Ginzburg-Landau
approach [31].

The paraconductivity is mediated by the Cooper pairs car-
rying a 2e charge. In the normal state, these Cooper pairs
have a finite lifetime γ −1

GL . They manifest as classical fluc-
tuations of the order parameter 
(x), where x represents
a spatial coordinate. The fluctuations, characterized by mo-
mentum q = (qx, qy), are expressed as 
(x) = 
qeiqx. The
Ginzburg-Landau free energy FGL consists of terms up to
second and fourth order in 
(x). Above Tc, we disregard the
fourth-order terms, leading to FGL =∑q |
q|2ε(q), where
ε(q) denotes the dispersion relation of the Cooper pairs.
This dispersion relation ε(q) in turn defines the Cooper-pair
velocity vq = ∂qε(q).

Within the framework of time-dependent Ginzburg-Landau
theory, the paraconductivity is given by [29]

δσαβ = 2e2T γGL

∑
q

vα
q v

β
q

[ε(q)]3 . (2)

Clearly, the tensor in Eq. (2) is isotropic if the pair disper-
sion is ε(q) = ε(q). Therefore, in the proposed scenario the
transport anisotropy arises from the anisotropy of the pair
dispersion ε(q). Furthermore, similar to the standard case
of Aslamazov-Larkin corrections, the dominant contribution
to the conductivity originates from small momenta of the
Cooper pairs on the order of the inverse coherence length.
Consequently, it suffices to retain terms up to second order
in q in ε(q).

The momentum and field dependence of ε(q) is determined
by the symmetries of the system. Irrespective of the crystal
structure, time-reversal symmetry dictates that terms linear
(quadratic) in q are odd (even) in B. Additional constraints
are contingent upon the point-group symmetry of the crystal
under consideration.

At the phenomenological level, the discussion remains
general. As specific examples, we consider 2D supercon-
ductors with Rashba (C3v symmetry), Ising [32–35] (D3h

symmetry), and Dresselhaus [36] (D2d symmetry) spin-orbit
coupling. We demonstrate, based on symmetry arguments,
that the PHE is finite (zero) for systems possessing (lacking)
the σh symmetry.

The most general form of the pair dispersion, encompass-
ing Rashba and Ising symmetries, is given by

ε(q) = ε + ξ 2q2 + L1(q × B) · ẑ

− L2
[
(q · B)2 − (q × B)2

]
, (3)

where ξ 2 represents the Cooper-pair size averaged over all
q directions, and it is minimally affected by a weak B field.
Substituting Eq. (3) into the general Eq. (2) yields Eq. (1).

Before delving into how symmetries govern the form of
Eq. (3), let us first explore its physical meaning and its relation
to Eq. (1). To start, we can eliminate the L1 term by perform-
ing a shift of integration variables in Eq. (2). Consequently,
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FIG. 2. The in-plane field shifts the spin-split Fermi surfaces in
the opposite directions. The Cooper pairs residing at the inner (outer)
Fermi surfaces are shown as empty (full) circles. The typical Cooper
pairs contributing to σ‖ (σ⊥) are shown in (a) [(b)]. The pair-breaking
effect of the field is evident as not all the Cooper pairs can be placed
at the Fermi level. The Cooper pairs shown in (a) experience a field-
induced pair breaking that is weaker than that experienced by the
pairs shown in (b), implying σ‖ > σ⊥.

this term does not contribute to the final result (1). Now,
considering pairs propagating parallel (q ‖ B) or perpendic-
ular (q ⊥ B) to the applied field, the dispersion relation (3)
yields ε‖,⊥(q) = ε + (ξ 2 ∓ L2)q2, where ∓ corresponds to
parallel (−) and perpendicular (+) propagation, respectively.
For instance, if L2 > 0, it implies that Cooper pairs moving
parallel to the applied field are bound more strongly (or have
a smaller size) compared to those moving perpendicular to it.

To understand this anisotropy, let us consider the pair-
breaking effect of the in-plane field in the Rashba model,
as illustrated in Fig. 2. In this model, Cooper pairs located
at different regions of the Fermi surface are influenced in
varying degrees by the applied field. Specifically, the in-plane
field B causes shifts in the Fermi surfaces perpendicular to
B in opposite directions [37]. This implies that pair break-
ing is weakest (strongest) for paired electrons propagating
along (perpendicular to) B, as depicted in Figs. 2(a) and 2(b),
respectively.

Based on these geometric considerations, we anticipate
that L2 > 0 in the Rashba model. This expectation is consis-
tent with the positive PHE described by Eq. (1). Specifically,
the supercurrent along the field is carried by pairs that are
more strongly bound compared to those perpendicular to the
field. This difference in binding strength contributes to the
positive PHE.

Now, let us return to the discussion of how symmetries
determine the form of Eq. (3), as outlined in Table I. The
term linear in momentum q, proportional to the constant L1,

TABLE I. Allowed ( �= 0) and forbidden (0) phenomenological
constants L1 (second row) and L2 (third row) in the pair dispersion
[Eq. (3)]. The columns refer to 2D systems with and without σh

symmetry. The C3v (Rashba) and D3h (Ising) are representatives of
these two classes of systems. In all cases the parity P is broken.

2D (PX) σh�(D3h ) σhX(C3v )

L1 = 0 �= 0
PHE, L2 = 0 �= 0

is known as the Lifshitz invariant and has been extensively
studied and tabulated (see, for instance, [38]). Specifically, the
form of the Lifshitz invariant appearing in Eq. (3) corresponds
to the one allowed for the 2D Rashba system.

However, in systems where the σh symmetry, such as the
Ising superconductor, is present, the Lifshitz invariant is for-
bidden as it violates the combined σhT symmetry [39]. More
generally, in the planar configuration, the breaking of σh sym-
metry is a necessary condition for the Ginzburg-Landau free
energy to contain terms that are odd in momentum.

Next, we examine the last term of the pair dispersion
given by Eq. (3), which is proportional to L2. To con-
struct the symmetry-allowed terms note that the two pairs
(qx, qy) and (By,−Bx ) transform as identical two-dimensional
E irreducible representation of the C3v group [40]. Conse-
quently, the only second-order combinations that transform
trivially under C3v are q2 and B2. Additionally, we have two
pairs of identically transforming combinations, (2qxqy, q2

x −
q2

y ) and (2BxBy, B2
x − B2

y ), both belonging to the E rep-
resentation. With this observation, we construct the scalar
4qxqyBxBy + (q2

x − q2
y )(B2

x − B2
y ) = (q · B)2 − (q × B)2. The

remaining scalar combination q2B2 is fully isotropic and is
included as part of the second term of Eq. (3).

To extend our analysis to the Dresselhaus symmetry,
we begin with the two pairs (qx, qy ) and (Bx,−By), which
transform identically and irreducibly. The resulting Lifshitz
invariant qxBx − qyBy is well documented for the D2d symme-
try. For the PHE, we need to identify the possible invariants
that are second order in both q and B. In addition to q2B2 and
(q · B)2 − (q × B)2, obtained for the Rashba symmetry case,
we also have the combination (qxBx − qyBy)2. However, from
the perspective of the PHE, this distinction is inconsequential,
and both systems exhibit qualitatively similar field-induced
anisotropy.

The symmetry group of the 2D Ising superconductor D3h is
derived from the Rashba symmetry group C3v by adding σh. In
contrast to the Lifshitz invariant, the term proportional to L2 is
quadratic in both momentum q and magnetic field B. Initially,
it may seem that the addition of σh symmetry does not influ-
ence the determination of the L2 constant. Indeed, the three
combinations q2B2, (q · B)2, and (q × B)2 = q2B2 − (q · B)2

are all permissible scalars for both D3h and C3v symmetries.
However, as we demonstrate, the σh symmetry renders the
planar Hall effect zero in Ising superconductors.

The σh symmetry dictates that the spin polarization of
electrons, induced by the spin-orbit interaction, points out of
plane [34]. Thus, in addition to the crystallographic symme-
tries acting on both spin and orbital degrees of freedom, we
have an additional symmetry Uz(δϕ) = exp(−iσzδϕ/2) that
acts solely on spins. This operation rotates the spinors by an
arbitrary angle δϕ around the z axis.

In the planar configuration, B couples only to spins via a
Zeeman interaction HZ ∝ B · σ. Consequently, Hamiltonians
with differently oriented in plane B are related by the unitary
transformation Uz(δϕ) for the angle δϕ between the two mag-
netic fields. This unitary equivalence implies that the system
is fully isotropic with respect to the orientation of an in plane
B. Consequently, L1,2 = 0, and the PHE is forbidden.

The specific expressions for L2 and its dependence on pa-
rameters such as spin-orbit splitting, electron mean-free path,
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and temperature can only be provided within a particular mi-
croscopic model, which is outlined in Sec. III for the Rashba
spin-orbit interaction. For readers uninterested in technical
details, a summary of the analytical expressions for L1,2 is
provided in Sec. III B.

III. MICROSCOPIC MODEL

We consider the two-dimensional disordered superconduc-
tor placed in an in-plane magnetic field B, and described by
the Hamiltonian,

H = H0 + HSO + HZ + Hdis + Hp, (4)

where H0 is the kinetic energy of the free electrons, HSO stands
for the spin-orbit coupling present in a system without an
inversion center, HZ is the Zeeman interaction term, Hdis is
the nonmagnetic disorder potential, and Hp is the pairing in-
teraction. Close to the � point we can assume that the system
has a C∞v symmetry. In this limit the dispersion relation is
parabolic with an effective mass m,

H0 =
∑

ks

c†
ks(k

2/2m)cks, (5)

where c†
ks creates an electron with momentum k and spin

projection s = ± 1
2 on the z direction perpendicular to the

basal xy plane.
The spin-orbit coupling takes the standard form

HSO =
∑
k,ss′

c†
ks[γ (k) · σ]ss′cks′ , (6)

where σ = (σx, σy, σz ) is the vector of Pauli matrices acting in
spin space. The C3v symmetry gives rise to Rashba spin-orbit
coupling γ (k) = α(k × ẑ).

The Zeeman coupling has a standard form

HZ =
∑
k,ss′

c†
ks[B · σ]ss′cks′ . (7)

The spin interactions (6) and (7) give rise to the two
spin-split bands labeled by the index λ = ±. Their energies
counted relative to the Fermi energy EF is

ξλ
k,B = k2/2m + λαk̃ − EF , (8)

where k̃ = k + α−1ẑ × B. The spinors ψλ
B that make H0 +

HSO + HZ diagonal read as

ψλ
B(k) = 1√

2

[
1

λ
k̃y−ik̃x

k̃

]
. (9)

The inverse transformation reads as

ck↑ = 2−1/2[ψ+
B (k) + ψ−

B (k)],

ck↓ = 2−1/2[ψ+
B (k) − ψ−

B (k)](k̃y + ik̃x )k̃−1. (10)

In the limit B = 0, we introduce the spinors of the chiral
basis

ψλ
k = ψλ

B=0(k). (11)

The chiral basis spinors (11), along with the zero-field dis-
persion (ξλ

k = ξλ
k,B=0), are obtained from Eqs. (9) and (8),

respectively, by setting k̃ = k. The difference between the

energy of the two chirality bands defines the spin-orbit energy
splitting as

�SO = ξ+
kF

− ξ−
kF

= 2αkF . (12)

At B = 0, the two spin-split Fermi momenta are kλ
F =√

α2m2 + k2
F − λmα with kF = √

2mEF . The Fermi velocity
vF =

√
v2

F0 + α2 , vF0 = kF /m is the same for both chiralities
λ = ±1.

The density of states for the two bands reads as νλ =
ν0(1 − λx), where x = �SO/4EF . The finite difference of the
two densities of states ν− − ν+ = 2ν0x is necessary for the
Lifshitz invariant in the limit of weak magnetic field. One of
our results is that this is not strictly speaking true once the
Cooper pairing in the triplet channel is taken into account,
repulsive or attractive alike. Hence, we turn to the description
of the pairing interaction with this observation in mind.

For simplicity we consider the short-range spin-conserving
disorder potential of the form

Hdis = V
∑
R j

∑
k′,k,s

ei(k′−k)·R j c†
ksck′s, (13)

where the summation over the scattering centers labeled by
j and placed at random locations R j . The disorder, Eq. (13),
gives rise to the disorder scattering rate 1/τ = 2πν0|V |2.

The pairing interaction normally contains singlet and
triplet parts Hp = Hs

p + Ht
p. The triplet interaction is pre-

sented in Appendix E 2. The singlet part is standard

Hs
p = g

4

∑
k,k′,q;s

{c†
k+s1

[iσy]s1,s2 c†
−k−s2

}{c−k′−s3 [iσy]†
s3s4

ck′+s4},

(14)

where we have introduced the notation k± = k ± q/2, and∑
k,k′,q;s denotes the summation over the momenta k, k′, and

q as well as over all the spin indices. The coupling g fixes the
critical temperature Tc0 = (2eγE /π )ωD exp(−1/|g|ν0), where
γE is the Euler gamma constant, and ωD is the Debye
frequency.

A. The regime of parameters to compute L2

We now formulate the regime for which the calculation
presented in Sec. IV holds. We have assumed that the Zeeman
energy is sufficiently small, B � min{Tc, 1/τ }. Here 1/τ is
the disorder scattering rate. In Eq. (1) and below we have set
the g factor to two, and have absorbed the Bohr magneton μB

into the definition of B for clarity. The parameters specifying
the pair dispersion (3) summarized in Sec. III B for the clean
and dirty limits Tc 
 1/τ and Tc � 1/τ , respectively. The
typical dependence of the conductivity [Eq. (1)] on temper-
ature and disorder scattering rate is shown in Fig. 8.

In all of the calculations we assume that the spin-orbit
energy splitting �SO at the Fermi level is larger than other
energy scales except for the Fermi energy EF . The parameter
range we have specifically considered is

B � min{Tc, 1/τ }, max{Tc, 1/τ } � �SO � EF . (15)

The second condition in Eq. (15) disfavors the inter-band
Cooper pairs, therefore essentially implying that the two spin-
split bands can be treated as a two-band superconductor. The
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extension of the present treatment beyond the limit set by
Eq. (15) is relegated to future studies. In the considered limit
of the effective two-band superconductor the quasiclassical
theory has been previously developed [41]. We have checked
the consistency of our approach and the quasiclassical theory
reproducing the earlier results for L1 in special cases.

Below in Sec. IV we provide all the details of the calcu-
lation of the dispersion relation (3). For convenience, prior to
delving into the details, we list the coefficients entering the
dispersion relations in the clean and dirty limits in Sec. III B.

B. Summary of the dispersion relation (3)

We discuss now in turn all terms in the dispersion relation
(3) with different order in momentum and field. We give the
general result and the expressions in the clean and dirty limits.

1. Critical temperature suppression

To zero order in both momentum and magnetic field,
Eq. (3) describes the critical temperature reduction caused by
the applied field,

Tc − Tc0 = −4Tc0B2τγ2, (16)

where Tc0 = Tc(B = 0). The suppression of the critical
temperature is detailed in Appendix D 3. Here we have intro-
duced the useful sums over the Matsubara frequencies εn =
2πT (n + 1/2):

γ j = T
∑
εn>0

π

ε2
n (1 + 2 jτεn)

, (17a)

u j = T
∑
εn>0

π

2ε
j
n(1 + 2τεn)3(1 + 4τεn)2

, (17b)

where j is non-negative integer. The origin of these definitions
is detailed in Appendix D 3.

In the clean and dirty limit γ j , Eq. (17a) attains the values

τγ c
j = 2

k

(
ξ c

0

)2
v2

F

, τγ d
j = 2

(
ξ d

0

)2
v2

F

, (18)

expressible in terms of the zero-field size of the Cooper pairs
ξ0 in their respective limits:

ξ c
0 =

(
7ζ (3)v2

F

32π2T 2
c

)1/2

, ξ d
0 =

(
πτv2

F

16Tc

)1/2

. (19)

Substituting the clean limit τγ c
2 given by Eq. (18) into Eq. (16)

reproduces the result of Ref. [42]. In the dirty limit we obtain
instead Tc − Tc0 = −B2πτ/2. Comparison of the clean and
dirty limits shows that disorder opposes the pair-breaking
effect of the in-plane field. This is in contrast to the case of
Ising superconductors with γ (k) ‖ ẑ [43–45].

The superconducting transition occurs into the helical state
with finite momentum qh = ẑ × BL1/2ξ 2

0 . This, however, has
negligible effect on the critical temperature.

2. Lifshitz invariant L1

As we stressed in Sec. II, the Lifshitz invariant bears no
implications on PHE. To maintain consistency the terms of
the pair dispersion that are of first order in momentum have
to be analyzed before we come to the second-order terms.

B
(a) (b)

kx

ky

kx

ky

FIG. 3. Deformation of the spin texture set by Rashba spin-orbit
interaction due to the in-plane field (arbitrary units). The two circles
are the Fermi surfaces of the two spin-split bands. The arrows stand
for the spin polarization at the point of origin. (a) We set �SO =
0.6EF for illustration. (b) An in plane field B = Bŷ shifts the two
Fermi surfaces in opposite directions. The deformation of the spin
textures is largest along the ky axis, where the combination γ (k) × B
is maximal.

The calculation of Lifshitz invariant is a benchmark for the
subsequent analysis of L2. We recover the previous results
of Refs. [41,46] for the Lifshitz invariant. Yet, when the
Cooper channel coupling is not too weak we find additional
contributions.

The standard result for L1 reads as

L1 = xvF τγ2 (20)

(see Appendixes D 3 and D 4 for the detailed derivation). The
clean and dirty limits of Eq. (20) follow from Eqs. (18) and
(19). The suppression of L1 caused by disorder follows from
the ratio of Lc,d

1 in the clean and dirty limits,

Ld
1

Lc
1

= 2π3

7ζ (3)
Tcτ. (21)

We stress that a finite result is obtained only if the density
of states of the two spin-split bands are not the same, i.e.,
x �= 0. The dependence of L1 on the disorder strength and the
temperature are the same as that of the Tc suppression as both
are proportional to τγ2. Thus, stronger pair breaking leads to
enhanced L1.

Apart from Eq. (20) there is an additional contribution
to L1,

δLs
1 = ln

(
2ωD

πTc0
eγE

)
1

kF �SO
, (22)

originating from the modification of the matrix elements of
the spin-singlet interaction (14) by the field (see Appendix E 1
for details). This can be interpreted as arising from the field-
induced deformation of the spin texture (see Fig. 3). Here we
underestimate Ls

1 by ignoring log(ωD/�SO) in comparison to
log(ωD/Tc0). Otherwise, Eq. (22) acquires an additional factor
of 2.

At first glance in the considered range of parameters
[Eq. (15)], Eq. (22) is smaller than the standard expression
for the Lifshitz invariant (20), which is proportional to T −1

c ,
Eq. (19). Nevertheless, Eq. (22) can be comparable or even
exceed Eq. (20) because it is enhanced by the large Cooper
logarithm. Furthermore, Eq. (20) is proportional to x � 1.
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Specifically, in the clean limit, the ratio

δLs
1

Lc
1

= ln

(
2ωD

πTc0
eγE

)
T 2

c

�2
SO

(8π )2

7ζ (3)
(23)

can be large within the considered range of parameters,
Eq. (15). For instance, taking ωD = 250 K, �SO = 50 K in
Eq. (23) gives δLs

1/Lc
1 ≈ 3.2 for |g|ν0 = 0.25. At the same

time Tc0 ≈ 5 K still satisfies the condition Tc0 � �SO. The
ratio (23) is enhanced by disorder. For sufficiently weak cou-
pling the exponential decrease of Tc makes this ratio inevitably
small, and the standard result (20) is recovered.

We note in passing that the p-wave triplet channel interac-
tion, Eq. (E6), makes a contribution to the Lifshitz invariant
that is similar in form to that of the interaction in the singlet
channel, Eq. (22),

δLt
1 = −4

gt

|g|δL
s
1, (24)

where gt is the triplet interaction amplitude that is assumed to
be weak, gt � g. Equation (24) is derived in Appendix E 2.

3. Field dependence of the Cooper-pair size ξ

To second order in B we write ξ 2 = ξ 2
0 + ξ 2

2 B2, where up
to a small corrections in x � 1

ξ 2
0 = 1

2v2
F τγ1 (25)

is standard [47]. In the clean and dirty limits, ξ0 reduces to
ξ c,d

0 given by Eqs. (19), respectively.
In a weak field, the angular average size of the Cooper pairs

decreases by an amount

ξ 2
2 = −ρ2 − ρ1/4, (26)

where as in Eq. (25) we have set x to zero. Equation (26) is
derived in Appendix D 4. We introduce the notation

ρ1 = 2πτ 2v2
F (13τu2 + 72τ 2u1 + 96τ 3u0), (27a)

ρ2 = π

2
τ 2v2

F (4u3 + 37τu2 + 104τ 2u1 + 96τ 3u0),(27b)

where we employed the previous definition of uk , Eq. (17b).
The expression arises from the Matsubara summation of the
bubble diagram (see Appendix D 3).

In the clean limit these are reduced to

ρc
1 = 93ζ (5)

(
4

7ζ (3)

)2 (ξ c
0

)4
v2

F

, ρc
2 = ρc

1/4, (28)

and in the dirty limit,

ρd
1 = 52τ 2

(
ξ d

0

)2
, ρd

2 = 14ζ (3)

π2

τ

Tc

(
ξ d

0

)2
. (29)

4. The field-induced anisotropy L2

The field-induced anisotropy of the Cooper pairs is encap-
sulated in the L2 coefficient

L2 = ρ1/4 (30)

(see Appendixes D 3 and D 4 for a more detailed deriva-
tion). Based on Eqs. (28) and (29) the ratio of the anisotropy

coefficient in the clean and dirty limits is

Ld
2

Lc
2

= (τTc)3 206π5

93ζ (5)
. (31)

Equation (31) indicates that disorder suppresses the planar
Hall effect. This is to be expected as the disorder tends to
restore the isotropy of the dispersion relation of the Cooper
pairs.

Similar to the case of the Lifshitz invariant the variation of
the matrix elements of the singlet pairing interaction as well
as the p-wave triplet interaction introduce corrections to L2.
These corrections read as

δLs
2 = ln

(
2ωD

πTc0
eγE

)
1

2k2
F �2

SO

, δLt
2 = gt

|g|δL
s
2, (32)

respectively. These are derived in Appendix E. Unlike the case
of L1 these corrections are small:

δLs,t
2

L2
∝ ln

(
2ωD

πTc0
eγE

)(
Tc

EF

)2( Tc

�SO

)2

. (33)

In contrast to Eq. (23), Eq. (33) contains an extra small param-
eter (Tc/EF )2, which makes δLs,t

2 irrelevant. The difference
between L1 and L2 stems from the different dependence on
the density of states L1,2 ∝ ν− ∓ ν+.

IV. CALCULATION OF THE DISPERSION
OF THE COOPER PAIRS

In this section we perform the calculation of the Cooper-
pair dispersion (3). For now we focus on the pairing in the
s-wave singlet channel. At a latter stage we analyze the ad-
ditional contributions due to the triplet channel interaction.
Introduce the correlation function for the Cooper pairs at the
momentum q and bosonic Matsubara frequency �n = 2πT n
[29]:

K (q, i�m) =
∑
k,k′,s

∫ T −1

0
dτ exp(i�nτ )

× 〈Tτ

{
c−k−s1 (τ )[iσy]†

s1s2
ck+s2 (τ )

× c†
k′+s1

(τ )[iσy]s1,s2 c†
−k′−s2

(τ )
}〉

, (34)

where Tτ stands for the time ordering in the imaginary time τ ,
and for any operator O, O(τ ) = exp(Hτ )O exp(−Hτ ).

The dynamic properties of the Cooper pairs are contained
in the retarded correlation functions obtained from (34) via
the analytic continuation i�n → � + i0+. In this work we
assume that the dependence of the Cooper-pair propagators
on the frequency � at � � T − Tc � Tc is unaffected by the
magnetic field and the spin-orbit interaction. Under this condi-
tion we take the Cooper-pair dissipation rate γGL in Eq. (2) as
in the standard BCS theory. This assumption holds under the
conditions (15). We therefore set �n = 0 in Eq. (34) above.

In the weak coupling regime |g|ν0 � 1 the correlation
function (34) takes the standard form

K (q, i�m) = �(q, i�m)

1 + (g/4)�(q, i�m)
, (35)

where the polarization operator �(q) at �m = 0 is the cor-
relation function K in the noninteracting limit g = 0. The
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FIG. 4. Diagrammatic presentation of Eq. (39) defining the effect
of the disorder on the fluctuation spectrum. Gλ

λ′ is introduced in

Eq. (40), and �
λ

λ′ stands for the Cooperon vertex.

dispersion relation is proportional to the denominator of
Eq. (35),

ν0ε(q) = 1/g + �(q)/4, (36)

where as before the order parameter is normalized to equal the
gap function at equilibrium.

A. Chiral basis formulation

The calculation of the Cooper-pair dispersion (36) is per-
formed in the chiral basis (11). This is done in two steps. First
we employ Eq. (9) to transform to the basis which diagonal-
izes the free part of the Hamiltonian (4) including Eqs. (5), (6),
and (7). Second, one performs the expansion of the dispersion
relation (36) in B. As B is set to zero, the generic basis (9)
turns into the chiral basis (11).

The transformation to the basis (9) has an advantage of
making the Green function matrix diagonal Gλλ′ = δλλ′Gλ

even at finite B. The diagonal elements of the Green function
read as

Gλ(k, εn) =
[

iεn − ξλ
k − vF · Qλ + i

sgn(εn)

2τ

]−1

, (37)

where

Qλ = q/2 + λẑ × B/vF . (38)

We note that the diagonal form of the Green function pre-
sumed by Eq. (37) is preserved by the disorder potential
only if the disorder potential does not mix spin-split bands.
This imposes the condition max{1/τ, Tc} � �SO included in
Eq. (15).

The calculations are performed to the fourth order in Qλ.
This implies according to the definition (38) that we keep
all the terms in the Cooper-pair dispersion to the order nq

in qvF / max{Tc, 1/τ } and nB in B/ max{Tc, 1/τ } such that
nq + nB � 4. Clearly, such procedure is sufficient to obtain
all the terms in the expression (3). Each of the coefficients in
Eq. (3) is given in Sec. III B in clean and dirty limits.

To encompass the effect of the disorder we express the
Cooper-pair propagator in terms of the Green functions and

the Cooperon vertex �
λ

λ′ (k, q, B, εn) (see Fig. 4):

�(q) = 2T
∑

k,εnλλ′
[iσ̌y(k, q, B)]λλ′Gλ

λ′ (k, q, B, εn)�
λ

λ′ , (39)

where the combinatorial factor of 2 is included,

Gλ
λ′ (k, q, B, εn) = Gλ(k+, εn)Gλ′ (−k−,−εn), (40)

FIG. 5. Diagrammatic presentation of the integral equation (43)
satisfied by the Cooperon vertex �. The disorder scattering vertex Ṽ
is defined in Eq. (44), and G stands for the product of the two Green
functions [see Eq. (40)].

and [iσ̌y(k, q, B)] stands for the interaction vertex of the inter-
action Hamiltonian [Eq. (14)] in the basis of Eq. (9). It defined
such that the interaction Hamiltonian (14) takes the form

Hs
p = g

4

∑
k,k′,q;λ

{
ψ̂

λ1†
B (k+)[iσ̌y]λ1,λ2ψ̂

λ2†
B (−k−)

}

× {ψ̂λ3
B (−k′

−)[iσ̌y]†
λ3λ4

ψ̂
λ4
B (k′

+)
}
. (41)

Naturally, [iσ̌y(k, q, B)] vertex takes a more complex form
of Eq. (A5) than just iσy in the original basis (14). We will
see, however, that since the interaction vertex depends on the
two small parameters q/kF � 1 and B/�SO � 1, it is greatly
simplified in the studied limit.

In contrast to the interaction vertex in Eq. (39), the
second factor Gλ

λ′ depends on the momentum and the
field via the dimensionless parameters, qvF / max{Tc, 1/τ }
and B/ max{Tc, 1/τ }. Because as stated in Eq. (15),
max{Tc, 1/τ } � �SO and Tc � EF we can discard the mo-
mentum and the field dependence of iσ̌y(k, q, B) and keep it
only in the Gλ

λ′ . As detailed in Appendix A, to zero order in
q/kF and B/�SO, the interaction vertex

[iσ̌y(k)]λλ′ = iλδλλ′eiϕ (42)

is purely intraband.

B. Cooperon vertex renormalization

The Cooperon vertex introduced in Eq. (39) satisfies the
integral equation (see Fig. 5)

�
λ

λ′ (k, q, B, εn) = [iσ̌y]†
λλ′ +

∑
p′ηη′

λ
λ′Ṽ η

η′ (k, k′)

× Gη

η′ (k′, q, B, εn)�
η

η′ (k′, q, B, εn), (43)

where Ṽ is the scattering vertex in the chiral basis. All the im-
portant electron momenta are close to kF . For such momenta
we have

λ
λ′Ṽ η

η′ (k, k′) ≈ V 2

4
[1 + ληe−i(ϕ−ϕ′ )][1 + λ′η′e−i(ϕ−ϕ′ )]. (44)

This equation holds under the same conditions as Eq. (42) (see
Appendix B).

As discussed in Appendix C the interband scattering pro-
cesses captured by Eq. (43) by the terms with η �= η′ give a
negligible contribution under the condition max{1/τ, Tc} �
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FIG. 6. Diagrammatic representation of the integral equa-
tion (49) satisfied by the modified Cooperon vertex �. The disorder
scattering amplitude V0 is defined by Eq. (50). The integrated product
of the two Green functions Ḡ is given by Eq. (45).

�SO. This restriction is consistent with the Green function
(37) being diagonal in the band index. The above condition,
in fact, ensures the two spin-split bands can be treated as a
two-band superconductor. In this approximation the interband
pairing has a negligible effect.

Considering only the intraband Cooper pairs we follow the
standard route by integrating over fast electron momentum
introducing the integral

G
λ

λ(ϕ, q, B, εn) = νλ

∫ ∞

−∞
dξλ

k Gλ
λ(k, q, B, εn)

= 2πνλ

2|εn| + 2ivF · Qλ + sgn(εn )
τ

. (45)

The integration in Eq. (45) has an effect of setting all the
electron momenta to the Fermi momentum. In result, keeping
only intraband contributions, Eq. (43) is transformed to

�
λ

λ(ϕ, q, B, εn) = [iσ̌y(ϕ)]†
λλ +

∫
dϕ′

2π

∑
η

λ
λṼ η

η (ϕ − ϕ′)

× G
η

η(ϕ′, q, B, εn)�
η

η(ϕ′, q, B, εn). (46)

It is convenient to introduce the modified vertex function

�λ(ϕ) = ieiϕ�
λ

λ(ϕ) (47)

and the modified disorder scattering vertex

λ
λṼ η

η (ϕ − ϕ′) = [V0]λη(ϕ − ϕ′)[e−i(ϕ−ϕ′ )]. (48)

Multiplying Eq. (46) by ieiϕ , and using the definitions (47)
and (48) we write it in the form

�λ(ϕ) = λ +
∑

η

∫ 2π

0

dϕ′

2π
[V0]λη(ϕ − ϕ′)G

η

η(ϕ′)�η(ϕ′),

(49)

illustrated graphically in Fig. 6. The disorder scattering vertex
V0 in Eq. (49) is fixed by Eqs. (44) and (48),

[V0]λη = V 2

2
[cos(ϕ − ϕ′) + λη] (50)

(see Appendix B).
It is clear from Eq. (49) and the form of the disorder

scattering amplitude (50) that the solution to Eq. (49) takes
the form

�λ(ϕ) = C(0)
λ + C(c)

λ cos ϕ + C(s)
λ sin ϕ. (51)

FIG. 7. Diagrammatic presentation of the expression (56) for the
polarization operator �(q). The integrated product of the two Green
functions Ḡ is given by Eq. (45). The Cooperon vertex � satisfies the
integral (49) illustrated in Fig. 6.

The specific form of Eq. (51) turns Eq. (49) into six linear
algebraic equations for the six unknown coefficients C(0)

± ,
C(c)

± , and C(s)
± . These equations can be summarized as follows.

Introduce the column vector

C = [C(0)
+ ,C(c)

+ ,C(s)
+ ,C(0)

− ,C(c)
− ,C(c)

− ]t, (52)

where the superscript t stands for the transposition. The linear
equation satisfied by C takes the form

(M − 16)C = [−1, 0, 0, 1, 0, 0]t, (53)

where 16 is the 6 × 6 unit matrix, and M can be written as the
6 × 6 matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00
+ A10

+ A01
+ −A00

− −A10
− −A01

−
A10

+ A20
+ A11

+ A10
− A20

− A11
−

A01
+ A11

+ A02
+ A01

− A11
− A02

−
−A00

+ −A10
+ −A01

+ A00
− A10

− A01
−

A10
+ A20

+ A11
+ A10

− A20
− A11

−
A01

+ A11
+ A02

+ A01
− A11

− A02
−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(54)

where

Amn
λ = V 2

2

∫ 2π

0

dϕ

2π
G

λ

λ(ϕ) cosm ϕ sinn ϕ. (55)

A more detailed derivation of Eqs. (52)–(55) is given in
Appendix D 1.

To complete the calculation, we rewrite the expression for
the polarization operator (39) within the approximations made
above in the form (see Fig. 7)

�(q) = 2T
∑
εn

∫ 2π

0

dϕ

2π
(G

+
+�+ − G

−
−�−). (56)

We have checked that at q = 0 and B = 0, Eq. (56) reduces to
the expression, �(q) = 4πν0/|εn| which does not include the
disorder in accordance with the Anderson theorem.

The outline of the remaining calculation is as follows.
We solve Eq. (53) which gives the Cooperon vertex via the
expansion (51) (detailed in Appendix D 2). This solution, in
turn, allows us to evaluate the polarization operator using
Eq. (56). The knowledge of �(q) translates directly into the
Cooper-pair dispersion (36). This part of the calculation is
detailed in Appendix D 3. The results of the calculation are
represented in Fig. 8.

V. DISCUSSION AND OUTLOOK

We have investigated how superconducting fluctuations
induce a twofold magnetoresistance anisotropy in the form
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FIG. 8. Planar Hall conductance σxy as a function of disorder
strength 1/τ and temperature T both shown in units of Tc. The
conductance is given in units of BxBy/16e2T 2

c . The conductance is
a monotonically decreasing function of both variables with reaching
the maximum in the clean limit.

of the PHE. While the PHE vanishes in the absence of in-
teractions, pairing in the Cooper channel makes PHE finite.
This makes the paraconductivity due to the superconducting
fluctuations the primary source of the twofold magnetoresis-
tance anisotropy in 2D systems with broken basal plane mirror
symmetry σh. Based on symmetry, we have constructed the
phenomenology of the PHE. The key observation is that in the
planar configuration, the weak field PHE requires breaking of
the σh symmetry.

We note that in nonplanar configurations, σh symmetry
breaking is not necessary for transport anisotropies. Nonlin-
ear anisotropic paraconductivity has been reported to result
in a strongly nonreciprocal current-voltage characteristic of
gated MoS2 [48]. Even though this 2D system possesses σh

symmetry, the perpendicular magnetic field couples to a ther-
mal and nonequilibrium Cooper pairs causing the transport
nonreciprocity in the normal state.

Our findings bear implications on the PHE recently ob-
served in the topological surface states [8]. Our derivation
applies directly to the metallic regime, where the Fermi energy
is far from the Dirac point. At charge neutrality, however, the
PHE in the noninteracting regime is appreciable [49,50]. Yet,
even close to Dirac point the superconducting fluctuations
may modify the PHE. In particular, triplet correlations have
the potential to play an important role, as the spin-orbit cou-
pling is the dominant energy scale close to charge neutrality.

We stress that the PHE describes the anisotrpic, yet recipro-
cal transport. It is, therefore, distinct from the superconducting
diode effect (SDE) which recently attracts considerable atten-
tion [51–53]. The PHE and SDE are expressed via the terms in
the Ginzburg-Landau functional that are even and odd in mo-
mentum, respectively. More specifically, the PHE arises from
the field-induced modification of the pair dispersion relation
in the second order of pair momentum. At the same time, in
a planar geometry, the first-order terms L1, known as Lifshitz
invariants, appear together with the second-order terms L2.
For this reason consistency requires the consideration of both
the first- and second-order terms. The Lifshitz invariants play
an essential role in the SDE, and no role in PHE.

Once we have clarified the symmetry requirements for the
PHE, we focused on the 2D Rashba superconductor in the

planar configuration (the so-called Rashba-Zeeman supercon-
ductor). By definition Rashba spin-orbit coupling breaks σh

symmetry. We have computed the PHE within this model
for a wide range of parameters. The calculation is performed
for spin-orbit interaction exceeding the critical temperature in
both clean and dirty limits. Certainly, the PHE is finite in all
regimes, and we have considered the specific limit for con-
creteness (see Fig. 8). We argue that other types of spin-orbit
interactions breaking the σh symmetry such as the Dresselhaus
spin-orbit interaction yield very similar results to what we
have found in the case of Rashba superconductor.

We make, in fact, a more general observation regarding
the σh symmetry. Any 2D system in the planar configuration
(Fig. 1) is totally isotropic with respect to the magnetic field
orientation unless σh symmetry is broken. Indeed, two iden-
tical systems differing by the orientation of the in-plane field
are unitarily equivalent. This implies, in particular, that if σh

is not broken the critical field remains totally isotropic despite
the hexagonal symmetry of the underlying lattice in few-layer
NbSe2 [20]. In this case the sixfold symmetry is in fact not
expected. In contrast, the sixfold critical field variation in
monolayers of NbSe2 [22] is a strong indication of the broken
σh symmetry in the form of a Rashba spin-orbit interaction.

Although we mainly focused on the part of the pair
dispersion which is second order in momentum, we also
reproduced the results for the first order, i.e., the Lifshitz
invariants. In addition, in some limited range of parameters
we have found other contributions to Lifshitz invariants that
have been overlooked so far [see the discussion that follows
Eqs. (22) and (24)]. These contributions stem from (1) the
field-induced modification of the interaction matrix elements;
(2) the field-induced coupling of singlet and p-wave triplet-
pairing channels. This not only serves as a benchmark for our
findings, but also holds relevance for studies of SDE.

Finally, we speculate that the field-induced anisotropy of
the Cooper-pair dispersion may have a clear experimental
signature in the vortex state. One might expect an elliptical
shape of the vortex core with the ellipticity controlled by the
in-plane component of the magnetic field, and proportional to
L2. Very recently, the field-induced anisotropy of the pinning
force has been reported [54]. It has been analyzed in terms of
the Lifshitz invariant in a Rashba-Zeeman superconductor. It
is plausible that the terms quadratic in momentum investigated
in this study directly influence this anisotropy. This offers a
distinct yet related avenue of research.
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APPENDIX A: PAIRING INTERACTION HAMILTONIAN
IN THE BASIS (9)

In this Appendix we transform the singlet-pairing interac-
tion Hamiltonian (14), to the basis that diagonalizes the free
part of the Hamiltonian (9). We then show that to the zero-
order expansion in q/kF , B/�SO � 0, the interaction vertex is
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given by Eq. (42). This procedure amounts to a transformation
to the chiral basis (11). For completeness, the transformation
is preformed in two steps: first transform to the basis of

Eq. (9), and second reduce it to the transformation to the basis
of Eq. (11).

The inverse transformation (10) implies

ĉ†
↑
(

k + q
2

)
= 1√

2

[
ψ̂

+†
B

(
k + q

2

)
+ ψ̂

−†
B

(
k + q

2

)]
, (A1a)

ĉ†
↓
(

k + q
2

)
= 1√

2

[
ψ̂

+†
B

(
k + q

2

)
− ψ̂

−†
B

(
k + q

2

)]⎡⎢⎣
(
ky + qy

2 + Bx
α

)− i
(
kx + qx

2 − By

α

)
√(

kx + qx

2 − By

α

)2 + (ky + qy

2 + Bx
α

)2
⎤
⎥⎦, (A1b)

and similarly

ĉ↑
(

k′ + q
2

)
= 1√

2

[
ψ̂+

B

(
k′ + q

2

)
+ ψ̂−

B

(
k′ + q

2

)]
, (A2a)

ĉ↓
(

k′ + q
2

)
= 1√

2

[
ψ̂+

B

(
k′ + q

2

)
− ψ̂−

B

(
k′ + q

2

)]⎡⎢⎣
(
k′

y + qy

2 + Bx
α

)+ i
(
k′

x + qx

2 − By

α

)
√(

k′
x + qx

2 − By

α

)2 + (k′
y + qy

2 + Bx
α

)2
⎤
⎥⎦. (A2b)

We therefore have, based on Eq. (A1),

ĉ†
↑
(

k + q
2

)
[iσy]↑↓ĉ†

↓
(
−k + q

2

)
= 1

2

[
ψ̂

+†
B

(
k + q

2

)
+ ψ̂

−†
B

(
k + q

2

)][
ψ̂

+†
B

(
−k + q

2

)
− ψ̂

−†
B

(
−k + q

2

)]

×

⎡
⎢⎣
(− ky + qy

2 + Bx
α

)− i
(− kx + qx

2 − By

α

)
√(− kx + qx

2 − By

α

)2 + (− ky + qy

2 + Bx
α

)2
⎤
⎥⎦ (A3)

and, similarly,

ĉ†
↓
(

k + q
2

)
[iσy]↓↑ĉ†

↑
(
−k + q

2

)
= −1

2

[
ψ̂

+†
B

(
k + q

2

)
− ψ̂

−†
B

(
k + q

2

)][
ψ̂

+†
B

(
−k + q

2

)
+ ψ̂

−†
B

(
−k + q

2

)]

×

⎡
⎢⎣
(
ky + qy

2 + Bx
α

)− i
(
kx + qx

2 − By

α

)
√(

kx + qx

2 − By

α

)2 + (ky + qy

2 + Bx
α

)2
⎤
⎥⎦. (A4)

The sum of the two contributions (A3) and (A4) gives rise to the vertex in the basis (9):

[iσ̌y(k, q, B)]λλ′ = −1

2

⎡
⎢⎣λ

(
ky + qy

2 + Bx
α

)− i
(
kx + qx

2 − By

α

)
√(

kx + qx

2 − By

α

)2 + (ky + qy

2 + Bx
α

)2 − λ′
(− ky + qy

2 + Bx
α

)− i
(− kx + qx

2 − By

α

)
√(

kx − qx

2 + By

α

)2 + (ky − qy

2 − Bx
α

)2
⎤
⎥⎦. (A5)

Repeating the same steps for the annihilation operators (A2) we obtain the result

[iσ̌y(k′, q, B)]†
λλ′ = −1

2

⎡
⎢⎣λ

(
k′

y + qy

2 + Bx
α

)+ i
(
k′

x + qx

2 − By

α

)
√(

k′
x + qx

2 − By

α

)2 + (k′
y + qy

2 + Bx
α

)2 − λ′
(−k′

y + qy

2 + Bx
α

)+ i
(−k′

x + qx

2 − By

α

)
√(

k′
x − qx

2 + By

α

)2 + (k′
y − qy

2 − Bx
α

)2
⎤
⎥⎦. (A6)

Approximate expression for the interaction amplitude

As explained in Sec. IV A, in the regime considered in this
work it is sufficient to keep the interaction vertices (A5) and
(A6) to zero order in q/kF and B/�SO. Writing the momentum
k = kx̂ cos ϕ + kŷ sin ϕ as in the main text, we reduce the
interaction vertices to the following expressions:

[iσ̌y(ϕ)] = ieiϕσz, (A7a)

[iσ̌y(ϕ′)]† = −ie−iϕ′
σz. (A7b)

Crucially, the interaction amplitudes in the chiral representa-
tion are purely intraband.

APPENDIX B: DISORDER SCATTERING VERTEX

Here we transform the disorder Hamiltonian, and the dis-
order scattering vertex to the basis of Eq. (9). As in the case of
the pairing interaction (A7), we keep zero order in both q/kF

and B/�SO in the scattering vertices, thus greatly simplifying
them.
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FIG. 9. Diagrammatic presentation of the disorder scattering ver-
tex (B5). The matrix elements Vηiη j are given by Eq. (B4).

To write the spin conserving Hamiltonian (13) in the basis
(9), it is enough to use the following transformed bilinear
combinations:

ĉ†
↑(k′ + q/2)ĉ↑(k + q/2)

= 1

2

∑
η,η′=+,−

ψ̂
η†
B

(
k′ + q

2

)
ψ̂

η′
B

(
k + q

2

)
, (B1)

and, similarly,

ĉ†
↓(k′ + q/2)ĉ↓(k + q/2)

= 1

2

∑
η,η′=+,−

(ηη′)ψ̂η†
B

(
k′ + q

2

)
ψ̂

η′
B

(
k + q

2

)

×
(
k′

y + qy

2 + Bx
α

)− i
(
k′

x + qx

2 − By

α

)
√(

k′
x + qx

2 − By

α

)2 + (k′
y + qy

2 + Bx
α

)2
×

(
ky + qy

2 + Bx
α

)+ i
(
kx + qx

2 − By

α

)
√(

kx + qx

2 − By

α

)2 + (ky + qy

2 + Bx
α

)2 . (B2)

The Hamiltonian (13) takes the form

Hdis =
∑
R j

∑
k′,η,η′

Vηη′ (k, k′; q, B)ei(k′−k)·R j

× ψ̂
η†
B

(
k′ + q

2

)
ψ̂

η′
B

(
k + q

2

)
, (B3)

where

Vηη′ (k, k′; q, B)

= V

2
+ V

2
ηη′

(
k′

y + qy

2 + Bx
α

)− i
(
k′

x + qx

2 − By

α

)
√(

k′
x + qx

2 − By

α

)2 + (k′
y + qy

2 + Bx
α

)2
×

(
ky + qy

2 + Bx
α

)+ i
(
kx + qx

2 − By

α

)
√(

kx + qx

2 − By

α

)2 + (ky + qy

2 + Bx
α

)2 . (B4)

The disorder scattering amplitude is schematically shown
in Fig. 9. Based on Eqs. (B3) and (B4) it takes the form

η1
η4

Ṽ η2
η3

(k, k′; q, B) =Vη1η2 (k, k′; q, B)

× Vη4η3 (−k,−k′; q, B). (B5)

To zero order in q/kF and B/�SO, Eq. (B4) is simplified to

Vηη′ (ϕ, ϕ′) = V

2
[1 + ηη′e−i(ϕ−ϕ′ )]. (B6)

The same limit of Eq. (B6) turns Eq. (B5) into (44) of the main
text.

Modified scattering vertex

The modified scattering vertex [V0]λη is given by Eq. (48).
For intraband pairing only, Eq. (44) is reduced to

λ
λṼ η

η (ϕ − ϕ′) = V 2

4
[1 + ληe−i(ϕ−ϕ′ )][1 + ληe−i(ϕ−ϕ′ )] (B7)

and multiplying Eq. (48) by ei(ϕ−ϕ′ ) we obtain

[V0]λη = ei(ϕ−ϕ′ )λ
λṼ η

η (ϕ − ϕ′)

= V 2

4
[ei(ϕ−ϕ′ ) + λη][1 + ληe−i(ϕ−ϕ′ )]

= V 2

4
[ei(ϕ−ϕ′ ) + e−i(ϕ−ϕ′ ) + 2λη], (B8)

which is simplified to the form of Eq. (50).

APPENDIX C: CONTRIBUTION OF THE INTERBAND
COOPER PAIRS

In this Appendix we show that the contribution of the terms
with η �= η′ to the integral equation (43) is negligible in the
range of parameters specified by Eq. (15). To this end we
compute G

−
+ setting ν+ = ν− = ν0, i.e., we set x = 0. Using

the definition (38) the simple calculation gives (εn > 0)

G
+
−(ϕ, q, B, εn) ≈ 2πν0

2εn + �SO + ivF (qx + qy) + 1
τ

. (C1)

In contrast to Eq. (45), Eq. (C1) does not contain the field
B. Therefore, at least in the limit x = 0 it contributes nothing
both to the Lifhsitz invariant and to the PHE. The field de-
pendence might appear in Eq. (C1) at higher orders in x. This
ensures that the contribution of interband processes to PHE
is negligible. The same is true for the Lifshitz invariant since
Eq. (C1) contains an additional parameter max{Tc, 1/τ }/�SO

that is small in the regime (15). We conclude that the con-
tributions of the interband Cooper pairs are negligible in the
regime (15).
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APPENDIX D: DETAILED DERIVATION OF THE COOPER-PAIR DISPERSION RELATION

In the following sections we provide a detailed derivation of the calculation of the Cooper-pair dispersion relation described
in Sec. IV. First, in Appendix D 1, we detail how the Cooperon vertex’s Dyson equation (49) is reformulated into the matrix
notation of Eqs. (52)–(55). Next, in Appendix D 2, we solve the Cooperon vertex equation by expanding to second order in
both qvF / max{Tc, 1/τ }, B/ max{Tc, 1/τ } � 1, obtaining an explicit solution for the Cooperon vertex �λ(ϕ) [Eq. (51)]. Lastly,
in Appendix D 3, we substitute �λ(ϕ) into the polarization operator (56), and expand again in the same small parameters to find
the pair dispersion relation ε(q) using Eq. (36).

1. Matrix formulation of the Cooperon vertex equation

In this section we provide a detailed derivation of the matrix form of the Cooperon vertex. Substituting Eq. (51) into Eq. (49)
we have two equations for the λ = ±1 vertices:

C(0)
λ + C(c)

λ cos ϕ + C(s)
λ sin ϕ = λ +

∫ 2π

0

dϕ′

2π
[V0]λλ(ϕ − ϕ′)G

λ

λ(ϕ′)
[
C(0)

λ + C(c)
λ cos ϕ + C(s)

λ sin ϕ
]

+
∫ 2π

0

dϕ′

2π
[V0]λ,−λ(ϕ − ϕ′)G

−λ

−λ(ϕ′)
[
C(0)

−λ + C(c)
−λ cos ϕ + C(s)

−λ sin ϕ
]

= λ +
∫ 2π

0

dϕ′

2π

V 2

2
[cos(ϕ − ϕ′) + 1]G

λ

λ(ϕ′)
[
C(0)

λ + C(c)
λ cos ϕ + C(s)

λ sin ϕ
]

+
∫ 2π

0

dϕ′

2π

V 2

2
[cos(ϕ − ϕ′) − 1]G

−λ

−λ(ϕ′)
[
C(0)

−λ + C(c)
−λ cos ϕ + C(s)

−λ sin ϕ
]
, (D1)

where the explicit expression of [V0]λη, Eq. (50), is substituted in. Using the identity cos(ϕ − ϕ′) = cos(ϕ) cos(ϕ′) +
sin(ϕ) sin(ϕ′) we equate the coefficient’s ϕ-independent ∝ cos(ϕ) and ∝ sin(ϕ) terms for each of the two bands. This results in
six coupled equations for the coefficients of the Cooperon vertex (51):

C(0)
λ = λ + V 2

4π

∫ 2π

0
dϕ′{Gλ

λ(ϕ′)
(
C(0)

λ + C(c)
λ cos ϕ′ + C(s)

λ sin ϕ′)− G
−λ

−λ(ϕ′)
(
C(0)

−λ + C(c)
−λ cos ϕ′ + C(s)

−λ sin ϕ′)}, (D2a)

C(c)
λ = V 2

4π

∫ 2π

0
dϕ′{Gλ

λ(ϕ′) cos ϕ′(C(0)
λ + C(c)

λ cos ϕ′ + C(s)
λ sin ϕ′)+ G

−λ

−λ(ϕ′) cos ϕ′(C(0)
−λ + C(c)

−λ cos ϕ′ + C(s)
−λ sin ϕ′)}, (D2b)

C(s)
λ = V 2

4π

∫ 2π

0
dϕ′{Gλ

λ(ϕ′) sin ϕ′(C(0)
λ + C(c)

λ cos ϕ′ + C(s)
λ sin ϕ′)+ G

−λ

−λ(ϕ′) sin ϕ′(C(0)
−λ + C(c)

−λ cos ϕ′ + C(s)
−λ sin ϕ′)}. (D2c)

As there are many similar angular integrals we employ the shorthand of Eq. (55) and write these six equations as

C(0)
λ = λ + A00

λ C(0)
λ + A10

λ C(c)
λ + A01

λ C(s)
λ − A00

−λC(0)
−λ − A10

−λC(c)
−λ − A01

−λC(s)
−λ, (D3a)

C(c)
λ = A10

λ C(0)
λ + A20

λ C(c)
λ + A11

λ C(s)
λ + A10

−λC(0)
−λ + A20

−λC(c)
−λ + A11

−λC(s)
−λ, (D3b)

C(s)
λ = A01

λ C(0)
λ + A11

λ C(c)
λ + A02

λ C(s)
λ + A01

−λC(0)
−λ + A11

−λC(c)
−λ + A02

−λC(s)
−λ. (D3c)

Naturally, these equations lend themselves nicely to a matrix representation with the coefficients C(i)
λ arranged in a (six-entry)

column vector C [Eq. (52)]. Equation (D3) reads as C = [−1, 0, 0, 1, 0, 0]t + MC, with the 6 × 6 matrix M defined in Eq. (54).

2. Solving Eq. (53) for the Cooperon vertex C

In this section we provide the details required for solving Eq. (53) to find the Cooperon vertex C [Eq. (52)]. To solve Eq. (53)
we start by calculating the 12 possible values of the Amn

λ [Eq. (55)], which are the entries of the matrix M [Eq. (54)]. Each is

calculated by substituting the expression for the Green’s function pair G
λ

λ, Eq. (45), into Eq. (55), then expanding the expression
to second order in both qvF / max{Tc, 1/τ } and B/ max{Tc, 1/τ } and preforming the angular integral. This results in the following
expressions which employ the x, y component of Qλ [Eq. (38)] up to fourth order [the expansion order is discussed in the main
text following Eq. (38)]:

A00
λ = V 2

4π

∫ 2π

0
dϕ′G

λ

λ(ϕ′) = νλ

ν0
τ−1

⎧⎨
⎩ 1

2(τ−1 + εn)
− v2

F

(
Qλ

x

)2 + (Qλ
y

)2
(τ−1 + εn)3

+ 3v4
F

[(
Qλ

x

)2 + (Qλ
y

)2]2
(τ−1 + εn)5

⎫⎬
⎭, (D4a)
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A10
λ = V 2

4π

∫ 2π

0
dϕ′G

λ

λ(ϕ′) cos(ϕ′) = −i
νλ

ν0
τ−1

⎧⎨
⎩ Qλ

x vF

2(τ−1 + εn)2
− 3Qλ

x v
3
F

(
Qλ

x

)2 + (Qλ
y

)2
2(τ−1 + εn)4

⎫⎬
⎭, (D4b)

A01
λ = V 2

4π

∫ 2π

0
dϕ′G

λ

λ(ϕ′) sin(ϕ′) = −i
νλ

ν0
τ−1

⎧⎨
⎩ Qλ

y vF

2(τ−1 + εn)2 − 3Qλ
y v

3
F

(
Qλ

x

)2 + (Qλ
y

)2
2(τ−1 + εn)4

⎫⎬
⎭, (D4c)

A11
λ = V 2

4π

∫ 2π

0
dϕ′G

λ

λ(ϕ′) cos(ϕ′) sin(ϕ′) = −νλ

ν0
τ−1

⎧⎨
⎩ Qλ

x Qλ
y v

2
F

2(τ−1 + εn)3 − 2Qλ
x Qλ

y v
4
F

(
Qλ

x

)2 + (Qλ
y

)2
(τ−1 + εn)4

⎫⎬
⎭, (D4d)

A20
λ = V 2

4π

∫ 2π

0
dϕ′G

λ

λ(ϕ′) cos2(ϕ′)

= νλ

ν0
τ−1

⎧⎨
⎩ 1

4(τ−1 + εn)
− v2

F

3
(
Qλ

x

)2 + (Qλ
y

)2
4(τ−1 + εn)3 + v4

F

[
5
(
Qλ

x

)4 + 6
(
Qλ

x

)2(
Qλ

y

)2 + (Qλ
y

)4]2
2(τ−1 + εn)5

⎫⎬
⎭, (D4e)

A02
λ = V 2

4π

∫ 2π

0
dϕ′G

λ

λ(ϕ′) sin2(ϕ′)

= νλ

ν0
τ−1

⎧⎨
⎩ 1

4(τ−1 + εn)
− v2

F

(
Qλ

x

)2 + 3
(
Qλ

y

)2
4(τ−1 + εn)3 + v4

F

[(
Qλ

x

)4 + 6
(
Qλ

x

)2(
Qλ

y

)2 + 5
(
Qλ

y

)4]2
2(τ−1 + εn)5

⎫⎬
⎭. (D4f)

Equations (D4) express Eq. (54) fully.
Next, we invert M̌ ≡ (M − 16) which appears in Eq. (53). The inverse matrix entries all have the same general form[

M̌−1
]

i j
= mi j

det[M̌]
, (D5)

where mi j is the numerator of the i j entry (comprised of the minors of the original matrix) and the denominator is the determinant
of the original matrix, identical for all entries.

Each [M̌−1]i j is a cumbersome expression that can effectively be dealt with using Mathematica. Here we present only a single
entry for illustration purposes. The numerator is expressed using Ai j

λ of Eq. (55):

m1,1 = A00
− [A20

+ (A02
− + A02

+ − 1) − (A11
− + A11

+ )2 + (A20
+ − 1)(A02

− + A02
+ − 1)] − [(A10

− )2(A02
− + A02

+ − 1)]

+ A10
− (A11

− + A1
+)(2A01

− − A01
+ ) + A10

− A10
+ (A02

− + A02
+ − 1) − A20

+ (A01
− )2 + A20

+ A01
− A01

+ − A20
+ A02

−

+ A10
− (A11

− + A1
+)(2A01

− − A01
+ ) + A10

− A10
+ (A02

− + A02
+ − 1) − A20

+ (A01
− )2 + A20

+ A01
− A01

+ − A20
+ A02

−

− A02
+ (A20

+ + A20
+ ) + A20

+ + (A11
− )2 − A11

− A01
− (A10

+ ) + 2A11
− A11

+ − (A01
− )2A20

+ + (A01
− )2

− A01
− A10

+ A1
+ + A01

− A20
+ A01

+ − A01
− A01

+ − A02
− A20

+ + A02
− + A20

+ + (A11
+ )2 + A02

+ − 1. (D6)

The rest of the numerators have similar expressions, and we expand these to fourth order in Qλ.
The determinant is given by a similar expression containing Ai j

λ . Keeping terms up to fourth order in Qλ we have

det[M̌] = τεn

2
+ τ 2v2

F

32
[(3(Q−

x )2 − 2Q−
x Q+

x + 3(Q+
x )2) + (3(Q−

y )2 − 2Q−
y Q+

y + 3(Q+
y )2)]

− τ 4v4
F

256
[−15(Q−

x )4 + 10(Q−
x )3Q+

x + 18(Q−
x )2(Q+

x )2 + 10Q−
x (Q+

x )3 − 15(Q+
x )4

− 30(Q−
x )2(Q−

y )2 + 10Q−
x Q+

x (Q−
y )2 + 22(Q+

x )2(Q−
y )2 − 15(Q−

y )4

+ 10(Q−
x )2Q−

y Q+
y − 8Q−

x Q+
x Q−

y Q+
y + 10(Q+

x )2Q−
y Q+

y + 10(Q−
y )3Q+

y + 22(Q−
x )2(Q+

y )2

+ 10Q−
x Q+

x (Q+
y )2 − 30(Q+

x )2(Q+
y )2 + 18(Q−

y )2(Q+
y )2 + 10Q−

y (Q+
y )3 − 15(Q+

y )4]. (D7)

With the entries of the inverse matrix M−1, Eq. (D5), the components of Eq. (52) are given by

C(0)
+ = −[M̌−1]11 + [M̌−1]14, (D8a)

C(c)
+ = −[M̌−1]21 + [M̌−1]24, (D8b)

C(s)
+ = −[M̌−1]31 + [M̌−1]34, (D8c)
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C(0)
− = −[M̌−1]41 + [M̌−1]44, (D8d)

C(c)
− = −[M̌−1]51 + [M̌−1]54, (D8e)

C(s)
− = −[M̌−1]61 + [M̌−1]64, (D8f)

and these are substituted into Eq. (51) to give the final result of the two Cooperon vertices �±(ϕ).

3. Calculation of the pair dispersion from the polarization operator (56)

Here we detail the calculation the polarization operator �(q) [Eq. (56)] and the pair dispersion relation (36). The dispersion
relation in turn allows us to identify L1 in Eq. (20), ξ 2

2 in Eq. (26), and L2 in Eq. (30).
The two terms in Eq. (56) are calculated by substituting the Cooperon vertex �λ(ϕ) [Eq. (51)] and the Green’s function

pair Gλ
λ [Eq. (45)], and expanding to fourth order Qλ [Eq. (38)]. The appropriate expansion order is discussed in the paragraph

following Eq. (38). After the angular integration, Eq. (56) takes the form

ν−1
0 �(q) =

⎡
⎣T

∑
εn>0

2π

εn
− (�B + ξxqx + ξyqy + ξ 2

0 q2 + ξ 2
x2 q2

x + ξ 2
y2 q2

y + ξ 2
xyqxqy

)⎤⎦, (D9)

with expansion coefficients proportional to the components of the pair momentum q up to second order. Each of these coefficients
contains sums over Matsubara frequencies:

�B = T
∑
εn>0

4πτB2

ε2
n (1 + 4τεn)

, (D10a)

ξ 2
0 = T

∑
εn>0

πτv2
F

2ε2
n (1 + 2τεn)

, (D10b)

ξx = +xByT
∑
εn>0

πτvF

ε2
n (1 + 4τεn)

, (D10c)

ξy = −xBxT
∑
εn>0

πτvF

ε2
n (1 + 4τεn)

, (D10d)

ξ 2
xy = 2BxByπT

∑
εn>0

τ 3v2
F

(
13 + 72τεn + 96τ 2ε2

n

)
ε2

n (1 + 2τεn)3(1 + 4τεn)2 , (D10e)

ξ 2
x2 = −B2πT

∑
εn>0

τ 2v2
F

(
4 + 37τεn + 104τ 2ε2

n + 96τ 3ε3
n

)
2ε3

n (1 + 2τεn)3(1 + 4τεn)2 − B2
yT
∑
εn>0

τ 3v2
F

(
13 + 72τεn + 96τ 2ε2

n

)
ε2

n (1 + 2τεn)3(1 + 4τεn)2 , (D10f)

ξ 2
y2 = −B2πT

∑
εn>0

τ 2v2
F

(
4 + 37τεn + 104τ 2ε2

n + 96τ 3ε3
n

)
2ε3

n (1 + 2τεn)3(1 + 4τεn)2 − B2
xT
∑
εn>0

τ 3v2
F

(
13 + 72τεn + 96τ 2ε2

n

)
ε2

n (1 + 2τεn)3(1 + 4τεn)2
. (D10g)

The repeating sums lend themselves to the definition of Matsubara sums in Eq. (17) making the expression compact:

�B = B24τγ2, (D11a)

ξ 2
0 = τv2

F

γ1

2
, (D11b)

ξx = +By(τvF γ2)x, (D11c)

ξy = −Bx(τvF γ2)x, (D11d)

ξ 2
xy = BxBy2πτ 2v2

F (13τu2 + 72τ 2u1 + 96τ 3u0), (D11e)

ξ 2
x2 = −B2

yπτ 2v2
F (13τu2 + 72τ 2u1 + 96τ 3u0) − B2 π

2
τ 2v2

F (4u3 + 37τu2 + 104τ 2u1 + 96τ 3u0), (D11f)

ξ 2
y2 = −B2

xπτ 2v2
F (13τu2 + 72τ 2u1 + 96τ 3u0) − B2 π

2
τ 2v2

F (4u3 + 37τu2 + 104τ 2u1 + 96τ 3u0). (D11g)

In order to better see the algebraic structure due to the system’s symmetry, we simplify Eqs. (D11f) and (D11g) by employing
the definitions of ρ j [Eq. (27)]. This gives ξ 2

x2 = − 1
2 B2

yρ1 − B2ρ2, ξ 2
y2 = − 1

2 B2
xρ1 − B2ρ2. Equation (D11a) modifies the critical

temperature according to Eq. (16).
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4. Symmetry-respecting form for the pair dispersion

With �(q) [Eq. (D9)] known, the pair dispersion ε(q) is given by Eq. (36). Our remaining task is to write these expressions
in a form which better represents the symmetry of the problem, thus identifying L1 and L2 in Eq. (3). The linear terms in the
field, Eqs. (D11c) and (D11d), are

ξxqx + ξyqy = (Byqx − Bxqy)(τvF γ2)x = (τvF γ2)x(q × B) · ẑ, (D12)

which according to Eq. (3) give the expression of L1 in Eq. (20).
The terms quadratic in the field, Eqs. (D11e), (D11f), and (D11g),

ξ 2
x2 q2

x + ξ 2
xyqxqy + ξ 2

y2 q2
y =

(
−1

2
B2

yρ1 − B2ρ2

)
q2

x + BxByρ1qxqy +
(

−1

2
B2

xρ1 − B2ρ2

)
q2

y

= −1

2
ρ1
(
B2

yq2
x − 2BxByqxqy + B2

xq2
y

)− ρ2B2
(
q2

x + q2
y

)
=
(
−ρ2 − ρ1

4

)
q2B2 − ρ1

4
[(q · B)2 − (q × B)2]

≡ ξ 2
2 q2B2 − L2[(q · B)2 − (q × B)2], (D13)

allow us to identify ξ 2
2 of Eq. (26) and L2 of Eq. (30).

APPENDIX E: CONTRIBUTIONS TO THE DISPERSION (3) DUE TO THE FIELD DEPENDENCE
OF THE PAIRING VERTICES

In this Appendix we explicitly derive the addition to L1 and L2 which arise from magnetic field related corrections to the
pairing Hamiltonian, Eqs. (14) and (E6), for the singlet and triplet pairing, respectively. These corrections, δL1 and δL2, are
Eqs. (22), (24), and (32) of the main text.

The Lifshitz invariant L1, defined by Eq. (3), is the prefactor linear in both q, B and thus to observe its modification due to
the pairing interaction it is enough to keep terms up to second order in Qλ [Eq. (38)]. L2 is quadratic in q, B and thus we need to
keep fourth order in Qλ. The modifications of the quadratic terms δL2 [Eq. (32)] are small [Eq. (33) and discussion thereafter],
and thus we only provide these correction’s functional form without the details of the numerical prefactors.

1. Singlet-pairing interaction vertex

We start with the singlet-pairing Hamiltonian (14). The Hamiltonian in the basis of Eq. (9) is given by Eq. (41) with the
Cooperon vertices [iσ̌y]λ1,λ2 and [iσ̌y]†

λ3λ4
, given by Eqs. (A5) and (A6), respectively. We expand these vertices to second order

in both qvF / max{Tc, 1/τ } and B/ max{Tc, 1/τ }. As with the entire calculation the expansion is obtained by keeping terms up to
fourth order in Qλ [Eq. (38)], yielding

[iσ̌y(ϕ, q, B)] = ieiϕσz + eiϕ

kF
[Qy cos(ϕ) − Qx sin(ϕ)]σx

+ [3e3iϕ (Qx − iQy)2 − e−iϕ (Qx + iQy)2 − 2eiϕ
(
Q2

x + Q2
y

)] iσz

8k2
F

+ S3(Q3)σx + S4(Q4)σz (E1a)

and

[iσ̌y(ϕ, q, B)]† = −ie−iϕσz + e−iϕ

kF
[Qy cos(ϕ) − Qx sin(ϕ)]σx

+ [eiϕ (Qx − iQy)2 − 3e−3iϕ (Qx + iQy)2 + 2e−iϕ
(
Q2

x + Q2
y

)] iσz

8k2
F

+ Sd
3 (Q3)σx + Sd

4 (Q4)σz, (E1b)

where S3(Q3), Sd
3 (Q3), S4(Q4), Sd

4 (Q4) notate the third- and fourth-order singlet-pairing vertex expansion in Qλ. These cumber-
some expressions are omitted from the presentation due to not contributing to the final result in the order of calculation.

We substitute Eqs. (E1a) and (E1b) into Eq. (39) to obtain the polarization operator for the singlet-channel pairing �s, but
instead of the Cooperon ladder on the right side of Fig. 4 we have the Cooperon vertex expanded to fourth order in Qλ. The
singlet polarization operator is

�s = �(0)
s (Tc0) + �(2)

s + �(4)
s (E2)

with the superscript indicating the order in Qλ. The zero order takes the well-known BCS form

�(0)
s (Tc0) =

[
ln

(
2ωD

πTc0
eγE

)]−1

≡ �, (E3)

with ωD the energy upper cutoff, γE ≈ 0.577 the Euler number, and defining � for notation simplification.
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The second-order correction to the singlet polarization operator is

�(2)
s

�
(0)
s

= −Q2
x + Q2

y

2k3
F �

= qxBy − qyBx

2k2
F α�

= (q × B) · ẑ

kF �SO�
, (E4)

where the SO splitting �SO [Eq. (12)] is used. This gives the correction δL1 of Eq. (22).
The singlet fourth-order correction, i.e., δLs

2, comes from the last term in Eq. (E2):

�(4)
s

�
(0)
s (Tc0)

= 1

16

(
2q2

x B2
y + 2q2

y B2
x − 4qxqyBxBy

)+ q2B2

k4
F α2�

= 1

2

[
(q · B)2 − (q × B)2

k2
F �2

SO�
+ q2B2

2k2
F �2

SO�

]
, (E5)

where the second term in the square brackets is a small correction to ξ 2
2 [Eq. (26)] and the first term is δLs

2 of (32).

2. Triplet-channel interaction vertices

The triplet-channel interaction is parametrized by the dk vector that is odd in momentum:

Ht
p = gt

4

∑
η=x,y

∑
k,k′,q;s

{
c†

k+s1

[
dη

k · σiσy
]

s1s2
c†
−k−s2

}{
c−k′−s3

[
dη

k′ · σiσy
]†

s3s4
ck′+s4

}
, (E6)

where η = x, y stands for the two components of the dk vector. We choose the triplet interaction that is motivated by geometrical
arguments. Such triplet interaction arises from the deformation of the spin-polarization texture by the Zeeman interaction (see
Fig. 3). The deformation at a particular momentum k is proportional to the cross product γ (k) × B. This observation allows one
to formulate the field-induced triplet order parameter for any given spin-orbit interaction [55]. Such field-induced triplets have
the same transformation properties as the field that induces them.

For Rashba spin-orbit coupling [Eq. (6)], writing γ (k) × B = αẑ(B · k) we deduce the following form of the field-induced
triplet interactions:

dx
k = ẑ cos ϕ, dy

k = ẑ sin ϕ, (E7)

where we denote kx = k cos ϕ and ky = k sin ϕ. Equation (E7) signifies that the Zeeman field couples to p-wave triplet
interaction channel. It is clear that the pair of functions, Eq. (E7), as well as the pair of in-plane field components, B = (Bx, By),
both transform as the E irreducible representation of C3v as expected.

We note in passing that the out-of-plane field belongs to the A2 irreducible representation of the same group. The one-
component triplets of the A2 symmetry of the form dk = k̂ are expected to be essential for the field pointing out of plane. In
fact, such triplets potentially play an important role in the field-induced transition to the odd-parity singlet state in the locally
noncentrosymmetric CeRh2As2 superconductor [56].

The prescription for obtaining the triplet contributions [Eqs. (24) and (32)] is in a similar vein to the singlet channel pairing
in Appendix E 1. The triplet pairing Hamiltonian (E6) is transformed to the basis of Eq. (9). For the appropriate dk directions
for the Rashba SO interaction (E7), the Cooperon vertex

[iσ̌x(k, q, B)]λλ′ = 1

2

⎡
⎢⎣λ

(
ky + qy

2 + Bx
α

)− i
(
kx + qx

2 − By

α

)
√(

kx + qx

2 − By

α

)2 + (ky + qy

2 + Bx
α

)2 + λ′
(−ky + qy

2 + Bx
α

)− i
(− kx + qx

2 − By

α

)
√(

kx − qx

2 + By

α

)2 + (ky − qy

2 − Bx
α

)2
⎤
⎥⎦ (E8)

is almost the same as the singlet vertex, Eq. (A5), except for the + sign prefactor for the λ term. There is a similar relation
between the triplet Cooperon vertex [iσ̌x(k, q, B)]†

λλ′ and the singlet [iσ̌y(k, q, B)]†
λλ′ [Eq. (A6)].

For the triplet corrections we expand the vertices to fourth order in Qλ [Eq. (38)]:

[iσ̌x(ϕ, q, B)] = ieiϕσx + eiϕ

kF
[Qy cos(ϕ) − Qx sin(ϕ)]σz

+ [3e3iϕ (Qx − iQy)2 − e−iϕ (Qx − iQy)2 − 2eiϕ
(
Q2

x + Q2
y

)] iσx

8k2
F

+ T3(Q3)σz + T4(Q4)σx, (E9a)

[iσ̌x(ϕ, q, B)]† = −ie−iϕσx + e−iϕ

kF
[Qy cos(ϕ) − Qx sin(ϕ)]σz

+ [eiϕ (Qx − iQy)2 − 3e−3iϕ (Qx − iQy)2 + 2e−iϕ
(
Q2

x + Q2
y

)] iσx

8k2
F

+ T d
3 (Q3)σz + T d

4 (Q4)σx (E9b)

with T3(Q3), T d
3 (Q3), T4(Q4), T d

4 (Q4) encompassing the third- and fourth-order expansions that do not appear in the final result.
The exact value of these terms is cumbersome and does not aid in understanding the calculation and is thus omitted.
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Substituting Eqs. (E9a) and (E9b) into the triplet version of Eq. (39) gives

�t = �
(2)
t + �

(4)
t , (E10)

with the superscript indicating the order in Qλ. The correction to L1 is normalized with respect to the singlet-pairing zero order
[Eq. (E3)]

�
(2)
t

�
(0)
s (Tc0)

= −4
(q × B) · ẑ

kF �SO

gt

g
. (E11)

The triplet correction to the Lifshitz invariant (E11) gives the same correction as singlet correction (E4), up to numerical factor
and the ratio of relative pairing strengths of the triplet and the singlet channels gt/g, with the singlet pairing strength related to
the Cooper logarithm (E3). This gives the correction δLt

1 in Eq. (24).
The triplet corrections to L2,

�
(4)
t

�
(0)
s (Tc0)

= −1

2

[
(q · B)2 − (q × B)2

k2
F �2

SO�
+ q2B2

2k2
F �2

SO�

]
gt

g
, (E12)

are the same as these for singlet [Eq. (E5)] up to the ratio of pairing strengths gt/g � 1. Equation (E12) immediately gives the
second term of Eq. (32). Note that we neglect small terms such as B2/k2

F which arise in this calculation.
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