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Nonlinear optical response in superconductors in magnetic field:
Quantum geometry and topological superconductivity
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Noncentrosymmetric superconductors offer fascinating phenomena of quantum transport and optics such
as nonreciprocal and nonlinear responses. Time-reversal symmetry breaking often plays an essential role in
the emergence and enhancement of nonreciprocal transport. In this paper, we show the nonreciprocal optical
responses in noncentrosymmetric superconductors arising from time-reversal symmetry breaking by demonstrat-
ing them in s-wave superconductors with a Rashba spin-orbit coupling and a magnetic field. Numerical results
reveal the superconductivity-induced bulk photocurrent and second harmonic generation, which are forbidden at
the zero magnetic field. We discuss the properties and mechanisms of the superconducting nonlinear responses
emerging under the magnetic field. In particular, we investigate the magnetic field dependence of the photocur-
rent conductivity and clarify the essential ingredients, which give a contribution unique to superconductors under
the magnetic field. This contribution is dominant in the low-carrier-density regime although the corresponding
joint density of state is tiny. We attribute the enhancement to the quantum geometry. Moreover, the nonlinear
conductivity shows peculiar sign reversal at the transition to the topological superconducting state. We propose
a bulk probe of topological transition and quantum geometry in superconductors.
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I. INTRODUCTION

Inversion symmetry breaking offers a variety of physi-
cal phenomena, which have been attracting attention from
fundamental science to technology. Especially, nonreciprocal
transport in noncentrosymmetric quantum materials is one of
the central topics in condensed matter physics [1,2]. Recti-
fication of electric current is an example that occurs when
the resistances for rightward and leftward electric currents
are different [3–14]. It is an effective tool for estimating the
microscopic characteristics of noncentrosymmetric systems
such as Rashba spin splitting in a polar semiconductor [7].

The nonlinear optical response is also strongly correlated
to the symmetry of quantum phases [15]. In particular, the
second-order optical response is a useful probe for the mi-
croscopic parity violation in complex ordered states because
the second-order response requires broken space inversion
(P) symmetry [16,17]. The second-order optical response and
nonreciprocal transport are described in a unified manner by
the formula of the nonlinear conductivity, which is given by

〈J α (ω)〉(2) =
∫

d�

2π
σα;βγ (ω; �,ω − �)Eβ (�)Eλ(ω − �).

(1)

For example, the second-order optical responses for
monochromatic light are constituted by the second harmonic
generation and photogalvanic effect, which are denoted by the
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nonlinear conductivity σ (2ω,ω,ω) and σ (0; ω,−ω), respec-
tively. The second harmonic generation, which is a frequency
doubling of the light through interaction with media, is partic-
ularly sensitive to the microscopic space inversion symmetry
breaking in materials [16–18]. The photogalvanic effect,
which is a photo-induced direct current (photocurrent), is also
a topic of current interest. Since the bulk photocurrent origi-
nating from the microscopic parity violation is influenced by
the symmetry and geometric properties of the system, topo-
logical materials [15,19] and parity-violating magnets [20,21]
are potential candidates of the novel type of photoelectric
converter.

In this paper, we focus on superconductors, which host
remarkable electromagnetic properties such as the zero-
resistivity phenomenon and the Meissner effect. It has been
shown that Cooper pairs’ condensation induces various
nonlinear and nonreciprocal responses. For example, the am-
plitude mode of the fluctuating order parameter, which is
called Higgs mode, gives rise to the reciprocal third-order
optical responses [22–24]. The current carried by Bogoliubov
quasiparticles is also important. It has been shown that
the quasiparticle contribution is dominant in the clean limit
[24,25]. The purpose of this study is to explore nonreciprocal
optical responses, which are prohibited in centrosymmetric
superconductors but arise from the interplay of space inver-
sion symmetry breaking and superconductivity. In particular,
we study the second-order optical responses of noncentrosym-
metric superconductors.

The noncentrosymmetric superconductor is an attractive
material platform for exotic quantum phenomena such as
the mixed singlet-triplet pairing [26–29] and topological

2469-9950/2024/110(1)/014520(24) 014520-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1377-3681
https://orcid.org/0000-0001-7329-9638
https://ror.org/02kpeqv85
https://ror.org/057zh3y96
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.014520&domain=pdf&date_stamp=2024-07-30
https://doi.org/10.1103/PhysRevB.110.014520


TANAKA, WATANABE, AND YANASE PHYSICAL REVIEW B 110, 014520 (2024)

superconductivity [30,31]. The boosted upper critical field
beyond the Pauli-Clogston-Chandrasekhar limit, which arises
from the spin-momentum locking, is another characteris-
tic property of noncentrosymmetric superconductors. Ising
superconductivity has been reported in transition metal
dichalcogenides, such as gated MoS2 [32,33], NbSe2 [34],
and TaS2 [35], in which the P symmetry breaking leads to a
large spin-orbit coupling and huge upper critical field. More-
over, the P-symmetry breaking causes unique nonreciprocal
transport phenomena. For example, the superconducting fluc-
tuation [8,10,11] and the dynamics of vortices [9,13] enhance
the magnetochiral anisotropy. Recently, the superconducting
diode effect, which means zero resistivity in the forward
current direction while a finite resistivity in the backward
direction, has been intensively studied in various platforms
[36–38]. These transport phenomena are useful for inves-
tigating unconventional superconducting states such as the
helical superconducting state with finite-momentum Cooper
pairs [39–42].

Although the nonlinear optics also potentially yield rich
information on exotic superconducting states, the properties
and mechanisms of the nonlinear optics in superconductors
are yet-to-be uncovered. Here, we refer to a few papers
that studied the second-order nonlinear responses in super-
conductors. Experimentally, the second harmonic generation
was observed in a s-wave superconductor thin film, where
the P symmetry is broken not by the crystalline structure
but by the supercurrent [43,44]. In theoretical studies, the
second-order optical conductivity was formulated based on
the Bogoliubov-de Gennes (BdG) Hamiltonian [45,46], and
numerical calculations have shown characteristic properties of
the superconducting nonlinear responses [47]. For example,
the resonant component, which originates from the transition
between the electron and hole bands, shows a sharp peak with
a resonant frequency around the superconducting gap. It was
also verified that the coexistence of intraband and interband
pairing is necessary for the second-order superconducting
optical responses in time-reversal (T ) symmetric single-band
superconductors [47,48]. It indicates that the superconducting
nonlinear responses need spin-triplet or multiband supercon-
ductivity when the T symmetry is conserved. Because of this
constraint, it is possible to detect spin-triplet Cooper pairs by
optical measurements.

As we reviewed above, the recent progress unveiled the
basic mechanism of the second-order nonlinear responses in
T -symmetric superconductors. Naturally, the next topic of
interest is the effect of T -symmetry breaking. The effects
of T -symmetry breaking are expected to be significant be-
cause of the following reasons. First, it was shown that the
photogalvanic effect in the normal state is enhanced by the T -
symmetry breaking [49,50] (magneto-photogalvanic effect).
Second, in the two-dimensional superconductors, which are
suitable for optical measurements, the second-order responses
are prohibited by T symmetry in most noncentrosymmet-
ric point groups [47,49]. Third, the s-wave superconductors
do not show the second-order optical responses characteris-
tic of superconductors, when the T symmetry is conserved
[47]. Therefore, it is desirable to clarify how the T -
symmetry breaking influences the nonlinear responses in
superconductors.

In the following part, we theoretically investigate the
second-order optical responses of s-wave superconductors
with a Rashba type spin-orbit coupling under the magnetic
field. The photocurrent and second harmonic generation are
demonstrated in a model with a two-dimensional C4v crys-
tal structure. We show that the T -symmetry breaking due
to the magnetic field enables the superconducting nonlin-
ear responses to be finite although they disappear at zero
magnetic fields. The nonlinear conductivities show the peak
structure and low-frequency divergence, which correspond to
the resonant and nonresonant components of superconducting
nonlinear responses, respectively. In addition, the dependence
of the photocurrent conductivity on the magnetic field and
the chemical potential is explained based on the approxi-
mately defined joint density of states (JDOS) (J̃B(i) and J̃B(ii)

introduced later). In particular, the contribution from J̃B(ii)

is sensitive to the magnetic field in the low-carrier-density
regime as illustrated in Figs. 1(b) and 1(c). The chemical
potential from the Dirac point at k = 0 is the controlling
parameter as is the case for topological s-wave supercon-
ductivity [30,31]. We will see that quantum geometry [51]
strongly enhances this field-sensitive component of super-
conducting nonlinear responses. Moreover, we show that the
photocurrent conductivity and the second harmonic genera-
tion coefficient drastically change at the topological transition.
Therefore, the second-order optical responses can be a probe
of quantum geometry and topological superconductivity.

The outline of the paper is given below. In Sec. II, we
briefly explain the formulation and review the second-order
nonlinear optical responses in superconductors. In Sec. III,
we analyze the JDOS before showing the nonlinear optical
conductivity. The JDOS is an essential quantity to discuss
the characteristic behavior of photocurrent conductivity. In
Sec. IV, we demonstrate the photocurrent and second har-
monic generation by numerical calculations. We explain the
dependence of the photocurrent conductivity on the magnetic
field and the chemical potential by the JDOS in Sec. V. In
particular, we reveal the characteristic behaviors due to the
Dirac point. In Sec. VI, we show the enhancement of pho-
tocurrent conductivity due to the peculiar quantum geometry.
In Sec. VII, we show the specific behavior of photocurrent
conductivity around the transition to the topological super-
conducting state. In Sec. VIII, we discuss the multiple roles of
the magnetic field and propose candidate materials for observ-
ing superconducting nonlinear responses. A brief summary is
given in Sec. IX. Throughout this paper, we present formulas
with h̄ = 1 (Dirac constant) and q = 1 (electron charge).

II. FORMULATION

A. Model Hamiltonian

We consider s-wave superconductors with an antisym-
metric spin-orbit coupling under a magnetic field. The
Hamiltonian is given by

H = Hkin + HASOC + HZeeman + Hs−wave, (2)

Hkin =
∑
k,s

ξ (k)c†
k,sck,s, (3)
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FIG. 1. (a) Schematic illustration of the band structure and the optical transitions in the superconducting state. Energy bands of Bogoliubov
quasiparticles (E1k � E2k � E3k � E4k ). The upper and lower green (red) lines indicate E3k and E2k (E4k and E1k), respectively. The type A and
type B transitions give resonant contributions to the second-order optical responses. The type A transition is an analog of optical transitions
in the normal state. The type B transition gives rise to the superconducting nonlinear responses [47]. (b) Schematic illustration of the JDOS,
which is derived from the type B transition. The color of the lines corresponds to the Fermi level illustrated in (c). A peak appears in the JDOS
at � = 2ψ . In addition, a plateau (blue line) or a peak (orange line) may appear between � = 2|ψ − h| and � = 2ψ , when the Fermi level
is close to the Dirac point at the time-reversal invariant momentum (� point in this paper). (c) Approximate parabolic bands around the �

point in the normal state. The nonlinear optical responses show characteristic behaviors under the magnetic field when the chemical potential
measured from the Dirac point μ̃ is small.

HASOC =
∑
k,s,s′

g(k) · σss′c†
k,sck,s′ , (4)

HZeeman =
∑
k,s,s′

h · σss′c†
k,sck,s′ , (5)

Hs−wave =
∑

k

(ψc†
k+q,↑c†

−k+q,↓ + H.c.), (6)

where σ = (σx, σy, σz) is the vector of Pauli matrices, and ck,s

(c†
k,s) is the annihilation (creation) operator with momentum k

and spin s. In the following, we assume the two-dimensional
C4v crystal structure. Hkin is a kinetic energy in the tight-
binding approximation measured from a chemical potential
μ, and HASOC represents a Rashba-type spin-orbit coupling.
The kinetic energy and the g vector of spin-orbit coupling are
assumed as

ξ (k) = −2t1(cos kx + cos ky) + 4t2 cos kx cos ky − μ, (7)

g(k) = α(sin ky,− sin kx, 0). (8)

Later, the parameters are set as t1 = 1, t2 = 0.2, and α = 0.4
for the numerical calculations. HZeeman is a Zeeman field,
and Hs−wave represents an s-wave superconducting order pa-
rameter introduced phenomenologically. We focus on the
quasiparticle’s dynamics and do not consider the dynamics of
order parameter. The magnitude of the s-wave pair potential
is set as ψ = 0.09. The Zeeman field is assumed as

h = (0, h cos θ, h sin θ ), (9)

with θ being the angle between the magnetic field and the two-
dimensional plane. In the Rashba superconductor with an in-
plane component of the magnetic field, the total momentum
of Cooper pairs is finite without injecting an electric current
[28,29]. This is called the helical superconducting state, and
we introduce the Cooper pairs’ momentum 2q in Eq. (6). We
can rewrite the Hamiltonian in the matrix form by using the

Nambu spinor ck, q = (ck+q,↑, ck+q,↓, c†
−k+q,↑, c†

−k+q,↓)�,

H = 1

2

∑
k

c†
k, qH (k, q)ck, q (10)

= 1

2

∑
k

c†
k, q

(
HN(k + q) ψ (iσy)

ψ (iσy)� −HN(−k + q)�

)
ck, q. (11)

Here, HN(k) is the normal-state Hamiltonian given by

HN(k) = ξ (k) + (g(k) + h) · σ. (12)

The total momentum of Cooper pairs 2q is determined so
as to minimize the free energy, which is calculated by

F = 〈H〉eq − T S, (13)

= −T

V

∑
k,α

log(1 + e−Eα (k, q)/T ). (14)

See Appendix A for details.

B. General formula for nonlinear conductivity

Next, this subsection briefly explains the formulation of the
nonlinear optical response in superconductors. With the veloc-
ity gauge E = −∂t A(t ), the coupling to external electric fields
is introduced by the minimal coupling prescription HN(k) →
HN(k − eA). Thus, the vector potential A dependence of the
Hamiltonian is expressed as

H (k, q, A) =
(

HN(k + q − eA) ψ (iσy)
ψ (iσy)† −HN(−k + q − eA)�

)
.

(15)

The perturbative Hamiltonian �H (k, q, t ) is given by

�H (k, q, t ) ≡ H (k, q, A(t )) − H (k, q, 0) (16)

=
∑
n=1

1

n!
Aα1 (t ) · · · Aαn (t )Jα1···αn (k, q), (17)
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where we introduce the generalized velocity operator

Jα1···αn (k, q) = (−1)n ∂nH (k, q, A)

∂Aα1 · · · ∂Aαn

∣∣∣∣
A=0

. (18)

We define the electric current density operator J α (t ) as

J α (t ) = 1

2

∑
k

c†
k, qJα

A (k, q, t )ck, q, (19)

where we define Jα
A (k, q, t ) by

Jα
A (k, q, t ) =

∑
m=0

1

m!
(−1)mAβ1 (t ) · · · Aβm (t )Jαβ1···βm (k, q). (20)

Following the standard perturbative treatment, we evaluate the expectation value of the electric current density

〈J α (ω)〉 =
∑
n=1

〈J α (ω)〉(n), (21)

where 〈J α (ω)〉(n) is the electric current of the nth order in the electromagnetic field A. The formula for the second-order nonlinear
conductivity is obtained as

σα;βγ (ω; ω1, ω2) = 1

2(iω1 − η)(iω2 − η)

∑
k

⎡
⎣∑

a

1

2
Jαβγ

aa fa +
∑
a,b

1

2

(
Jαβ

ab Jγ

ba fab

ω2 + iη − Eba
+ Jαγ

ab Jβ

ba fab

ω1 + iη − Eba

)

+
∑
a,b

1

2

Jα
abJβγ

ba fab

ω + 2iη − Eba
+

∑
a,b,c

1

2

Jα
ab

ω + 2iη − Eba

(
Jβ

bcJγ
ca fac

ω2 + iη − Eca
− Jβ

caJγ

bc fcb

ω2 + iη − Ebc

)

+
∑
a,b,c

1

2

Jα
ab

ω + 2iη − Eba

(
Jγ

bcJβ
ca fac

ω1 + iη − Eca
− Jγ

caJβ

bc fcb

ω1 + iη − Ebc

)⎤
⎦, (22)

where indices a, b, c are spanned by the energy eigenvalues Ea

of the unperturbed Hamiltonian H (k, q) and the energy differ-
ence is Eab ≡ Ea − Eb. We omit the description (k, q) from
Jα1···αn (k, q) and others. We introduce the Fermi-Dirac distri-
bution function fa = (eβEa + 1)−1 and defined fab ≡ fa − fb.
The infinitesimal positive parameter η appears due to the
adiabatic application of the external fields.

C. Normal and anomalous photocurrent responses

In this subsection, we discuss the photocurrent re-
sponse given by the second-order nonlinear conductivity
σα;βγ (0; �,−�). In the gapful superconductors at low tem-
peratures, the total photocurrent conductivity is decomposed
into the two components [37,46]

σ = σn + σa. (23)

The first term σn is a normal photocurrent that can be fi-
nite even in the normal state, while the second term σa is
an anomalous photocurrent unique to the superconducting
state [46]. Note that the superconducting nonlinear responses
appear even in the normal photocurrent due to the optical tran-
sition unique to the superconducting state [47]. As we show
below, the normal photocurrent corresponds to the resonant
components characterized by the optical transition, whereas
the anomalous photocurrent arises from the nonresonant com-
ponents that show divergent behaviors in the low-frequency
regime.

The normal photocurrent consists of four contributions

σn = σEinj + σMinj + σshift + σgyro, (24)

which are termed electric injection current [52], magnetic in-
jection current [53], shift current [52,54], and gyration current
[49,50], respectively. The formulas have been given by [46]

σ
α;βγ

Einj = − iπ

8η

∑
a 
=b

(
Jα

aa − Jα
bb

)
�

λβλγ

ba Fab, (25a)

σ
α;βγ

Minj = − π

4η

∑
a 
=b

(
Jα

aa − Jα
bb

)
g
λβλγ

ba Fab, (25b)

σ
α;βγ

shift = −π

4

∑
a 
=b

�[[
Dλα

ξλβ
]

ab
ξ

λγ

ba + [
Dλα

ξλγ
]

ab
ξ

λβ

ba

]
Fab,

(25c)

σα;βγ
gyro = iπ

4

∑
a 
=b

�[[
Dλα

ξλβ
]

abξ
λγ

ba − [
Dλα

ξλγ
]

abξ
λβ

ba

]
Fab.

(25d)

These formulas contain geometric quantities such as the
Berry curvature (�λαλβ

ab ), quantum metric (gλαλβ

ab ), and the co-
variant derivative Dλα

. These geometric quantities are based
on the connection ξ

λα

ab , which is different from the Berry
connection in the normal state. In the superconducting state,
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FIG. 2. The energy bands of quasiparticles around the � point [k = (0, 0)]. (a), (b) The energy dispersion of electrons in the normal state.
We set α = 0.4, h = 0.05, and μ = 0. The horizontal lines in (b) indicate the Fermi levels for μ = −3.2, −3.12, and −3.0. (c) The energy
dispersion of Bogoliubov quasiparticles in the superconducting state for ψ = 0.09, α = 0.4, h = 0.05, and μ = −3.2. (d) Same as (c), but
without the spin-orbit coupling (α = 0). (e) Same as (c), but without the magnetic field (h = 0). The angle of the magnetic field is fixed as
θ = 0◦.

we introduce the connection ξ
λα

ab by

ξ
λα

ab = i

〈
aλ

∣∣∣∣ ∂bλ

∂λα

〉
, (26)

where λ is the variational parameter introduced by

H (k, q, A = 0) → Hλ(k, q) = H (k, q, A =λ). (27)

The normal photocurrent includes a resonant component char-
acterized by Fab ≡ fabδ(� − Eba), which means the Pauli
exclusion principle at the optical transition.

The anomalous photocurrent consists of two contributions

σa = σNRSF + σCD, (28)

which are termed the nonreciprocal superfluid density term
and the conductivity derivative term, respectively. The formu-
las are obtained as [46]

σ
α;βγ

NRSF = lim
λ→0

− 1

2�2
∂λα

∂λβ
∂λγ

Fλ, (29)

σ
α;βγ

CD = lim
λ→0

1

4�2
∂λα

⎡
⎣∑

a 
=b

Jβ

abJγ

ba fab

(
1

� − Eab
+ 1

Eab

)⎤
⎦,

(30)

where Fλ is the free energy of the BdG Hamiltonian Hλ(k, q).
The nonreciprocal superfluid density term originates from the
nonreciprocal correction to the superfluid density, f αβγ =
limλ→0 ∂λα

∂λβ
∂λγ

Fλ, which is called the nonreciprocal super-
fluid density and leads to the nonreciprocal Meissner effect
[55]. The conductivity derivative term is proportional to the
first-order derivative of linear responses with the vector poten-
tial. The physical interpretation of the conductivity derivative
term remains partly unclear, but a recent study [56] discusses

the origin from the viewpoint of the generalized Pitaevskii re-
lation, which refers to a nontrivial relation between the linear
and nonlinear responses. A unique property of the anomalous
photocurrent is the low-frequency divergence, σNRSF ∝ �−2

and σCD ∝ �−1. Therefore, the low-frequency photocurrent is
dominated by the anomalous photocurrent, and it can realize
a giant photogalvanic effect in superconductors.

III. JOINT DENSITY OF STATES

Before showing the nonlinear optical responses in detail,
we discuss the JDOS in the model and analytically calculate
it. The JDOS is an essential quantity for the nonlinear optical
responses, because the formulas for the normal photocurrent
conductivity, Eqs. (25a)–(25d), contain the factor δ(� − Eba),
which corresponds to the optical transition between the a and
b bands. Below we show the characteristic frequency depen-
dence of the JDOS and effects of the finite total momentum of
Cooper pairs 2q. In addition, we identify the essential optical
transition and approximately decompose the corresponding
JDOS to J̃B2(i) and J̃B2(ii). These approximated JDOS show
characteristic dependence on the magnetic field and chemical
potential. In the later sections, the photocurrent conductivity
is discussed based on the analysis of the JDOS.

In the following part, we mainly discuss the electron
systems with the Fermi level near the Dirac point at the time-
reversal invariant momentum [see Figs. 1(c) and 2(b)]. This
is because of the following reasons. First, it has been shown
that several nonreciprocal and nonlinear responses show pe-
culiar chemical potential dependence around the Dirac point
[2,7,9,57–59]. For example, the magnetochiral anisotropy in
semiconductors is significantly enhanced around the Dirac
point [2,7]. The band geometry around the Dirac point also
gives a giant circular photogalvanic effect [59]. We will see
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FIG. 3. (Upper panels) The JDOS for the chemical potential (a) μ = −3.2, (b) −3.12, and (c) −3.0. The JDOS JA1(�), JA2(�), JB1(�),
and JB2(�) correspond to the optical transitions E3k ↔ E1k, E4k ↔ E2k, E4k ↔ E1k, and E3k ↔ E2k, respectively. We set the parameters t1 = 1,
t2 = 0.2, and h = 0.05. (Lower panels) Blue and orange lines plot the approximate JDOS, J̃B2(i)(�) and J̃B2(ii)(�), respectively. The effective
chemical potential in (d) μ̃ = 0, (e) 0.08, and (f) 0.2 correspond to the panels (a)–(c), respectively. We adopt t = 0.6 consistent with the
tight-binding parameters t1 = 1 and t2 = 0.2. In the cases (a) μ = −3.2 and (d) μ̃ = 0, the Dirac point lies on the Fermi level. The characteristic
frequencies discussed in Sec. III A are given as below. (d) � = 2|√ξ 2

k=0 + ψ2 − h| = 0.08 and (e) 0.141. (a) � = 2|
√

ξk=0
2 + ψ2 − heff | =

0.056 and (b) 0.119. In all the panels (a)–(f), � = 2ψ = 0.18.

that the superconducting nonlinear optical responses are sen-
sitive to the presence of the Dirac point. Second, the s-wave
superconductors with a Fermi level near the Dirac point are
candidates for topological superconductors [30,31]. We show
that the nonlinear optical responses show peculiar behaviors
at the topological transition. Therefore, the following studies
will be helpful in the search and identification of topological
superconductors.

A. Numerical results of JDOS

We define the JDOS, JA1, JA2, JB1, and JB2, as

JA1(�) =
∑

k

δ(� − E3k + E1k), (31)

JA2(�) =
∑

k

δ(� − E4k + E2k), (32)

JB1(�) =
∑

k

δ(� − E4k + E1k), (33)

JB2(�) =
∑

k

δ(� − E3k + E2k), (34)

where Eik are eigenenergies of Bogoliubov quasiparticles
(E1k � E2k � E3k � E4k) in the superconducting state. Be-
cause E1k and E2k are hole bands and E3k and E4k are
electron bands, the above four JDOS are relevant for the
optical responses. In particular, the JDOS with subscript B,
namely, JB1 and JB2, correspond to the type B transition spec-
ified in Fig. 1(a), which was shown to be essential for the
nonlinear optical responses unique to superconductors [47].
Figures 3(a)–3(c) show the JDOS for μ = −3.2, −3.12, and
−3.0, respectively. We see that the JDOS JB2(�) is dom-
inant at low energies. Thus, it is expected that the type B

optical transition between the E2k and E3k bands dominates
the superconducting nonlinear responses to the irradiation of
low-frequency light.

In our model, the Dirac point exists at k � 0 [see Fig. 2(a)].
When the magnetic field is absent, the chemical potential
μ = −3.2 lies on the Dirac point [blue lines in Fig. 1(c) and
Fig. 2(b)], while μ = −3.12 and −3.0 lie above the Dirac
point [orange and brown lines in Fig. 1(c), respectively].
The chemical potential dependence of the JDOS JB2(�) was
illustrated in Fig. 1(b) based on the results in Figs. 3(a)–
3(c). Specifically, the JDOS has characteristic structures. First,
a sharp peak exists around � � 2ψ = 0.18 independent of
the chemical potential. Second, Fig. 3(a) (μ = −3.2) and
Fig. 3(b) (μ = −3.12) show finite JB2(�) below the frequency
� = 2ψ , while Fig. 3(c) does not show it. Especially, the
JDOS in Fig. 3(b) has a sharp peak at a low frequency � �
0.12. The origin of the similarities and differences between
JDOS spectra for different chemical potentials is explained
below.

Here, we focus on the JDOS at low frequencies, � < 2ψ =
0.18, namely, in the in-gap region for h = 0. For the analysis,
we show Fig. 4 for the momentum-resolved contribution to
the JDOS. Figures 4(a) and 4(b) show that the low-frequency
JDOS originates from the momentum space around the Dirac
point k � 0. The spin-orbit coupling is negligible in this
regime due to its momentum dependence, and therefore the
band dispersion in the superconducting state can be approxi-
mated by taking α = 0 [compare Fig. 2(c) for α = 0.4 with
Fig. 2(d) for α = 0]. Then, the energy difference �E32 ≡
E3 − E2 is approximated as �E32 � 2|

√
ξ 2 + ψ2 − h|. This

approximation is exact at k = 0 when the total momentum of
Cooper pairs q is zero. The energy gap �E32(k=0) is obtained
as �E32(k=0) = 0.08 and �E32(k=0) = 0.141 when we adopt
the parameters in Figs. 3(a) and 3(b) but set q = 0. In reality,
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FIG. 4. Distribution of the JDOS JB2(�) in the k space [−π/4, π/4] × [−π/4, π/4]. Upper panels (a)–(c) for the case of � = 0.12 < 2ψ

and lower panels (d)–(f) for � = 0.18 = 2ψ . We set the chemical potentials (a), (d) μ = −3.2, (b), (e) μ = −3.12, and (c), (f) μ = −3.0. We
fix h = 0.05, θ = 0◦, and ψ = 0.09.

the gap edge in the JDOS appears at lower energies because
of the finite momentum of Cooper pairs.

When the chemical potential is far away from the Dirac
point, the JDOS does not show the low-frequency component.
This is because the energy gap is not determined at k = 0. For
μ = −3.0 in the case of Fig. 3(c), the approximation in the
previous paragraph gives an estimate of �E32(k=0) = 0.339.
However, we do not see any characteristic behavior around
� � 0.339 because this energy is far above the superconduct-
ing gap.

Although we have neglected the momentum of Cooper
pairs q in the above discussion, it plays a quantitatively essen-
tial role. Figures 3(a) and 3(b) show that the JDOS becomes
finite above a frequency lower than the above estimate. For
example, the finite JB2 appears above � � 0.05 in Fig. 3(a)
is spite of the previous estimate �E32(k=0) = 0.08. By taking
into account a small but finite total momentum of Cooper
pairs 2q = (2qx, 0, 0), the normal Hamiltonian can be approx-
imated around k � 0 as

HN(k + q) � HN(k) + �heff · σ, (35)

�heff ≡ (0,−αqx, 0)�. (36)

Thus, it is estimated that the JDOS is finite above the fre-
quency � = 2|

√
ξk=0

2 + ψ2 − heff |, where we define heff by
heff ≡ h + �heff . In the cases of Figs. 3(a) and 3(b), qx and
heff are obtained as summarized in Table I, and the gap edge
is estimated as 2|

√
ξk=0

2 + ψ2 − heff | = 0.056 and 0.119,
respectively. These values are more precisely consistent with
the numerical results than the previous estimate where h is
adopted instead of heff .

While the JDOS in the low-frequency region � < 2ψ =
0.18 originates from the momentum space around the
Dirac point |k| � 0, the sharp peak at � = 2ψ is domi-
nantly contributed from the region |k| � π/4, as shown in
Figs. 4(d)–3(f). For the momentum away from the Dirac
point, the energy dispersion of Bogoliubov quasiparticles is
not significantly affected by the Zeeman magnetic field and is
well approximated by setting h = 0. [Compare Fig. 2(c) with
Fig. 2(e) where h = 0.] A notable effect of the magnetic field
is the asymmetry in the band dispersion. Although the energy
bands satisfy the relation E2k = −E3k if either the spin-orbit
coupling or Zeeman field is absent [Figs. 2(d) and 2(e)], the
relation breaks down in Fig. 2(c) because the system is neither
T nor P symmetric because of the finite Rashba spin-orbit
coupling and the Zeeman magnetic field. The asymmetry in
energy is roughly estimated by the energy nonreciprocity in
the normal state, εak − εa−k ∝ gk · h, where εak is the energy
band of normal Hamiltonian (see the Supplemental Material
[60] for details). However, the effect of the energy-spectrum
asymmetry is ignorable in the energy difference �E32 because
the energy shift cancels out between E2 and E3. Therefore, the
effect of the magnetic field on the JDOS is negligible when the
JDOS arises from the momentum away from the Dirac point.

TABLE I. The values of qx and (�heff )y for the parameters in
Figs. 3(a) and 3(b). The total momentum of Cooper pairs 2q is
determined so as to minimize the free energy (see Appendix A).

Figure of JDOS μ qx (�heff )y

Figure 3(a) −3.2 −3.0 × 10−2 1.2 × 10−2

Figure 3(b) −3.12 −2.8 × 10−2 1.1 × 10−2
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This is the reason why the sharp peak in the JDOS at � � 2ψ

is robust.

B. Approximate JDOS

To analyze the system with a Fermi level near the Dirac
point it is essential to understand the JDOS illustrated in
Fig. 1(b) and obtained in Fig. 3. For this purpose, we introduce
the approximate JDOS, J̃B2(i)(�) and J̃B2(ii)(�), into which
JB2(�) is approximately decomposed. In this subsection, we
approximate the normal state Hamiltonian with a focus on the
� point (k = 0) of the Brillouin zone as

ξk = t
(
k2

x + k2
y

) − μ̃, (37)

gk = α(ky,−kx, 0), (38)

μ̃ ≡ μ + 4(t1 + t2), (39)

where μ̃ is the effective chemical potential indicating the dif-
ference of the Fermi level from the Dirac point. For our choice
of parameters, μ = −3.2 corresponds to μ̃ = 0 while μ =
−3.12 and μ = −3.0 to μ̃ = 0.08 and μ̃ = 0.2, respectively.
For simplicity, we ignore the total momentum of Cooper pairs
and set 2q = 0 in this subsection. The detailed calculation is
presented within the Supplemental Material [60].

First, we derive the approximate JDOS J̃B2(i)(�), which
gives a sharp peak of JB2(�) around � = 2ψ . In the deriva-
tion, we ignore gk · h because its effect is almost canceled
between E2 and E3 in the energy difference �E32. Then, we
obtain the energies of Bogoliubov quasiparticles as

Ek = ±
√

ξ 2
k + g2

k + h2 + ψ2 ±′ 2
√

ξ 2
k

(
g2

k + h2
) +ψ2h2.

(40)

The approximate energy satisfies the symmetry Ek = E−k be-
cause we ignore gk · h. When |ξk||gk| � ψh, the energies of
Bogoliubov quasiparticles are furthermore approximated by

Ek = ±
√

(|ξk| ±′
√

g2
k + h2)2 + ψ2. (41)

To estimate the JDOS, we consider an electron band of E3k,

E3k =
√

(|ξk| −
√

g2
k + h2)2 + ψ2. (42)

Since E2k and E3k are related to each other under the
charge-conjugation transformation E2k = −E3−k, the energy
difference of the transition between the electron and hole
bands is given by

�Ek = E3k − E2k = 2

√(|ξk| −
√

g2
k + h2

)2 + ψ2, (43)

which is equivalent to the energy difference between E3k and
−E3−k. The approximate JDOS J̃B2(i)(�) is introduced corre-
sponding to Eq. (43),

J̃B2(i)(�) =
′∑
k

(� − �Ek), (44)

where integration is carried out on the region |ξk||gk| > ψh.
When we assume gk � h, which is satisfied for large k,

J̃B2(i)(�) shows the divergence at � = 2ψ . In fact, J̃B2(i)(�)
reproduces the sharp peak of the JDOS around � = 2ψ , as
shown in Figs. 3(d)–3(f). Analytical discussions of the behav-
ior of J̃B2(i)(�) are given within the Supplemental Material
[60]. We also see the peaks at � � 0.22 in Figs. 3(a) and 3(d)
and at � � 0.31 in Figs. 3(b) and 3(e). In the Supplemental
Material [60] we clarify that these peak positions are sensitive
to the spin-orbit coupling parameter α.

Next, we introduce the approximate JDOS J̃B2(ii)(�) based
on another assumption ψh � |ξk||gk|. In this case, we obtain
the electron band of E3k,

E3k =
√

ξ 2
k + g2

k + h2 + ψ2 − 2h
√

ξ 2
k + ψ2. (45)

Then, the energy difference for the optical transition between
the electron and hole bands is given by

�Ek = 2

√
ξ 2

k + g2
k + h2 + ψ2 − 2h

√
ξ 2

k + ψ2. (46)

Thus, the approximate JDOS J̃B2(ii)(�) is introduced as

J̃B2(ii)(�)

=
′′∑
k

δ(� − 2

√
ξ 2

k + g2
k + h2 + ψ2 − 2h

√
ξ 2

k + ψ2),

(47)

where integration is carried out on the region ψh > |ξk||gk|.
Integrating the momentum around k = 0, J̃B2(ii)(�) is approx-
imated by

J̃B2(ii)(�) =
{

0 (0 � � < 2|
√

μ̃2 + ψ2 − h|)
�

8πα̃2 (2|
√

μ̃2 + ψ2 − h| � �)
, (48)

with

α̃ ≡
√

α2 − 2tμ̃ + 2tμ̃h√
μ̃2 + ψ2

. (49)

We see that the JDOS J̃B2(ii)(�) is finite above � =
2|

√
μ̃2 + ψ2 − h|. We expect that the contribution of

J̃B2(ii)(�) is important in the low-frequency region because it
can be finite for the frequency � smaller than 2ψ contrary
to J̃B2(i)(�) when |μ̃| is sufficiently small. Corresponding to
this fact, we will see the nonlinear optical responses in the
region 2|ψ − h| � � � 2|ψ | when the Fermi level lies on
the Dirac point. As shown in Fig. 3(d), J̃B2(ii)(�) for μ̃ = 0
shows a plateau starting from � = 2|ψ − h|. A similar struc-
ture is seen in the numerical results of the JDOS [Fig. 3(a)].
Indeed, the JDOS JB2(�) can be approximated by summation
of J̃B2(i)(�) and J̃B2(ii)(�), as JB2(�) � J̃B2(i)(�) + J̃B2(ii)(�).
This feature was illustrated in Fig. 1(b).

C. Comparison of JDOS and approximate JDOS

Here, we compare the JDOS calculated in Sec. III A with
the approximate JDOS introduced in Sec. III B. First, let us
compare Fig. 3(a) with Fig. 3(d), where the chemical potential
lies on the Dirac point. The plateau of JB2(�) at � < 2ψ

is attributed to J̃B2(ii)(�), and the sharp peak of JB2(�) at
� = 2ψ is attributed to J̃B2(i)(�). Thus, we see a qualitative
agreement between the numerically calculated JDOS and the
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FIG. 5. The approximate JDOS J̄B2(�) defined by Eq. (40). We
set the effective chemical potential μ̃ = 0.08. Other parameters are
also the same as Fig. 3(e). The characteristic frequencies discussed
in Sec. III A are given by � = 2|√ξ 2

k=0 + ψ2 − h| = 0.141 and � =
2ψ = 0.18.

approximate JDOS. Finite JB2(�) is observed above � �
0.05, while J̃B2(ii)(�) becomes finite at � = 2|ψ − h| = 0.08.
As previously discussed, this difference is due to the effect
of the finite total momentum of Cooper pairs, which was
neglected in Sec. III B.

We discuss the k space where J̃B2(i)(�) and J̃B2(ii)(�) orig-
inate from. Figure 4(a) shows that the low-frequency JDOS
JB2(� = 0.12 < 2ψ ) arises from the region around the Dirac
point (k = 0). This is consistent with the assumption for
J̃B2(ii)(�). On the other hand, the JDOS JB2(� = 0.18 = 2ψ )
is dominantly contributed from the region k � α/t � 0.21π

[Fig. 4(d)], which gives J̃B2(i)(�) [Fig. 3(d)]. It indicates
that the contribution corresponds to the J̃B2(i). Note that a
small contribution to J̃B2(ii) also comes from the k space k �
6.42 × 10−2π . The detailed discussion is presented within the
Supplemental Material [60].

Next, Fig. 3(b) is compared with Fig. 3(e), where the Fermi
level slightly deviates from the Dirac point. We again see
qualitative agreement between the JDOS and the approximate
JDOS. The plateau of the JDOS JB2(�) at 0.12 < � < 0.18
is attributed to J̃B2(ii)(�), and the sharp peak of JB2(�) at
� = 0.18 is attributed to J̃B2(i)(�). However, J̃B2(i)(�) and
J̃B2(ii)(�) do not reproduce the sharp peak of JB2(�) at � �
0.12. This discrepancy can be resolved when we approximate
the JDOS by the energy band in Eq. (40) as

J̄B2(�) =
∑

k

(� − �Ek), (50)

with

�Ek = 2

√
ξ 2

k + g2
k + h2 + ψ2 − 2

√
ξ 2

k

(
g2

k + h2
) + ψ2h2.

(51)

As shown in Fig. 5, J̄B2(�) reproduces the sharp peak
of JB2(�) at � � 0.12. This result implies that the
peak originates from the k space where |ξk||gk| � ψh is
satisfied. Because this condition is satisfied near the Dirac
point, the position of this peak is roughly estimated as � �
2|

√
μ̃2 + ψ2 − h|.

Contrary to the above cases, we do not see the contri-
bution of J̃B2(ii)(�) in the JDOS for μ = −3.0 [Fig. 3(c)]
corresponding to an effective chemical potential μ̃ = 0.2 de-
viating from the Dirac point. The sharp peak of the JDOS still
appears around � = 2ψ and is attributed to J̃B2(i)(�). On the
other hand, J̃B2(ii)(�) vanishes in the low-frequency region
� � 2ψ because a finite contribution is obtained only above
� = 2|

√
μ̃2 + ψ2 − h| � 0.34 > 2ψ .

Based on the above results, we expect characteristic behav-
iors in the nonlinear optical responses, such as the peculiar
magnetic field dependence, when the Fermi level is close to
the Dirac point. As indicated by Eq. (48), finite photocurrent
conductivity appears in the in-gap region � < 2ψ under the
magnetic fields. On the other hand, a sharp peak of the JDOS
around � = 2ψ is not sensitive to the magnetic field except
for the change of the pair potential ψ , and therefore, we expect
that the nonlinear optical responses in this frequency range
are robust under the magnetic field. These observations are
verified in Sec. V.

IV. NONLINEAR OPTICAL RESPONSES

In this section, we numerically demonstrate the nonlinear
optical conductivity in noncentrosymmetric superconduc-
tors. In the two-dimensional superconductors with the C4v

crystal structure, typical for Rashba superconductors on in-
terfaces and surfaces, all the second-order optical responses
are prohibited at the zero magnetic field [49]. However, the
second-order responses may occur in the magnetic field,
which breaks not only the T symmetry but also the crystalline
symmetry. Actually, we show the field-induced nonlinear op-
tical responses in the following.

For a quantitative estimation, we set t1 = 1 eV and calcu-
late the response coefficients in the SI unit. Thus, the results
of the nonlinear conductivity are given in the unit AV−2.
Numerical calculations are performed on the N2-discretized
Brillouin zone (N = 3000). For numerical convergence, we
replace the parameter η with a phenomenological scattering
rate γ = 2.0 × 10−4 and introduce a finite temperature T =
10−4 for the Fermi-Dirac distribution function.

Photocurrent and second harmonic generation

We show the photocurrent generation and second harmonic
generation under the in-plane magnetic field (θ = 0) in Fig. 6.
It should be noted that some components vanish due to the
constraints discussed below. First, the constraint

σ
α;βγ

PC = (
σ

α;γ β

PC

)∗
, σ

α;βγ

SHG = σ
α;γ β

SHG , (52)

has to be satisfied by definition. This constraint requires
�[σα;ββ

PC ] = 0. Second, the symmetry of the system prohibits
some components of the nonlinear optical responses. In this
respect, the magnetic field plays a key role. In our model,
the C4v symmetry of the crystal structure lowers under the
magnetic field, and thus the magnetic field is indispensable
because the C4v point group symmetry prohibits the second-
order nonlinear responses in two-dimensional systems. The
relation between the symmetry constraints and the magnetic
fields is summarized in Table II and discussed in the follow-
ing. First, when the magnetic field h = (0, h cos θ, h sin θ ) is
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FIG. 6. Frequency dependence of the photocurrent generation and the second harmonic generation under the in-plane magnetic field
(θ = 0◦). (a) Real part �[σα;βγ

PC ] and (b) imaginary part �[σα;βγ

PC ] of the photocurrent generation. (c) Real part �[σα;βγ

SHG ] and (d) imaginary
part �[σα;βγ

SHG ] of the second harmonic generation. We set the parameters h = 0.025, ψ = 0.09, and μ = −3.2. Note that σ x;yx = σ y;xx =
σ y;yy = 0 since these components are prohibited by the m′m2′ magnetic point group symmetry. The vertical lines illustrate the frequencies
� = 2ψ, 2|ψ − h| for the photocurrent generation and � = ψ, 2ψ, ψ − h, 2|ψ − h| for the second harmonic generation.

parallel to the y axis (θ = 0◦), the model is characterized by
the m′m2′ magnetic point group symmetry. The symmetry
prohibits the nonlinear conductivity σ x;yx, σ y;xx, and σ y;yy.
Figure 6 is consistent with these constraints. Moreover, all the
T -even contributions symmetric under the T operation (see
Table III in Appendix B for classification of the photocur-
rent conductivity based on the mechanism and symmetry)
disappear in the two-dimensional system due to the T C2z

symmetry. Second, when θ satisfies 0◦ < θ < 90◦, the model
has the T mx symmetry, which is classified into the magnetic
point group m′. The T -even contributions of σ x;xx, σ x;yy,
and σ y;yx disappear due to the symmetry. Finally, when the
magnetic field is perpendicular to the xy plane (θ = 90◦), the
symmetry of the system is 4m′m′, and all the components of
nonlinear conductivity vanish in the two-dimensional system
due to the C2z rotation symmetry. In Sec. V, we focus on the
photocurrent conductivity σ x;xx

PC and σ
y;yx
PC . These components

have no T -even contribution for any angle θ due to the T mx

symmetry. In Appendix B, we show that the magnetic injec-
tion current and gyration current [Eqs. (25b) and (25d)], which
are T odd, are dominant in the real and imaginary parts of
these photocurrent conductivity components, respectively.

In Fig. 6, we see a characteristic frequency depen-
dence of superconducting nonlinear responses. First, in the
low-frequency region, the divergent nonlinear responses are
observed in the real part of σ

α;βγ

PC and σ
α;βγ

SHG . The nonrecip-
rocal superfluid density term σ

α;βγ

NRSF, which is odd under the
T symmetry, causes the anomalous divergent behaviors. The
static conductivity derivative term σ

α;βγ

sCD disappears because
this term is even for the T symmetry. Although the imag-
inary part also shows a weakly diverging behavior at low
frequencies, this behavior is artificial and comes from the
phenomenological treatment of the scattering rate [46].

Second, the type B transition illustrated in Fig. 1(a) gives
the characteristic resonant contribution to the photocurrent
conductivity and second harmonic generation. This contribu-
tion is often characterized by the superconducting gap. The
peak around � = 2ψ is a typical behavior and observed in
Figs. 6(a) and 6(b). Contrary to the photocurrent, not only
the transition �E ∼ � but also �E ∼ 2� may give rise to
essential contributions to the second harmonic generation,
where �E is an energy difference between transition bands.
Figures 6(c) and 6(d) actually show the peak structure and

TABLE II. Constrains of second-order optical responses and the symmetry class with θ being the angle between the magnetic field and the
two-dimensional plane [h = (0, h cos θ, h sin θ )]. The subscript “T −even” means the contribution, which is even under the T operation (see
also Table III).

Angle θ Symmetry Constraints

h ‖ ŷ (θ = 0◦) m′m2′ σ x;yx = σ y;xx = σ y;yy = 0, σ
α;βγ

T −even = 0 for all α, β, γ

0◦ < θ < 90◦ m′ σ x;xx
T −even = σ

x;yy
T −even = σ

y;yx
T −even = 0

h ‖ ẑ (θ = 90◦) 4m′m′ σα;βγ = 0 for all α, β, γ
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FIG. 7. Photocurrent conductivity �[σ x;xx
PC ] and �[σ y;yx

PC ] for various chemical potentials μ. (Upper panels) �[σ x;xx
PC ] for (a) −3.32 � μ �

−3.2 and (b) −3.2 � μ � −3.08. (Lower panels) �[σ y;yx
PC ] for (c) −3.32 � μ � −3.2 and (d) −3.2 � μ � −3.08. We set ψ = 0.09, h = 0.05,

and θ = 30◦.

sign reversal at � = ψ . The frequency dependence of the
second harmonic generation is more complex than that of the
photocurrent generation. In the remaining part, we discuss the
photocurrent conductivity in detail.

V. UNIQUE BEHAVIORS DUE TO DIRAC POINT

In this section, we show the characteristic behaviors of the
nonlinear optical responses in the systems with a chemical
potential close to the Dirac point. For this purpose, we focus
on the resonant components of the superconducting photocur-
rent, which are characterized by the JDOS. We investigate in
detail the dependence on the chemical potential and magnetic
field. Consistent with our conjecture in Sec. III, the presence
of the Dirac point near the Fermi level gives rise to unique be-
haviors in the superconducting nonlinear responses. In the fol-
lowing, we verify the conjecture with numerical calculations.

A. Chemical potential dependence

First, we discuss the dependence of photocurrent conduc-
tivity on the chemical potential μ. Figures 7(a) and 7(b)
plot the real part of the photocurrent conductivity σ x;xx

PC with
varying the chemical potential below and above the Dirac
point μ = −3.2, respectively. At μ = −3.32, the photocur-
rent conductivity shows a sharp peak around � = 2ψ . The
peak broadens when the chemical potential approaches the
Dirac point. For μ = −3.2 on the Dirac point, the pho-
tocurrent conductivity is enhanced in the region between
� � 2|ψ − h| and � � 2ψ . Figure 7(b) shows that a sharp
peak appears at a frequency between � = 2|ψ − h| and � =
2ψ for μ = −3.12 and μ = −3.08. We also find a little peak
around � = 2ψ independent of the chemical potential, which
is hard to see in the figures for some parameters.

Based on the discussions in Sec. III, we compare the
photocurrent conductivity with the JDOS. Indeed, the be-
haviors of the photocurrent conductivity are related to the
approximate JDOS studied in Sec. III. The photocurrent
conductivity enhanced at 2|ψ − h| < � < 2ψ is similar to
the approximate JDOS J̃B2(ii)(�) in the dependence on the
frequency and chemical potential. At μ = −3.2, the photocur-
rent conductivity is enhanced in the whole region 2|ψ − h| <

� < 2ψ . When the chemical potential goes away from the
Dirac point, the enhancement starts at a higher frequency
� � 2|

√
μ̃2 + ψ2 − h|. Thus, the photocurrent conductivity

in this frequency region is attributed to the contribution from
the approximate JDOS J̃B2(ii)(�). More precisely, we see
the enhancement starting at � � 0.06 < 2|ψ − h| because the
finite total momentum of Cooper pairs induces the effective
magnetic field �heff and influence the JDOS and the pho-
tocurrent conductivity. In other words, the estimation based
on J̃B2(ii)(�) becomes more precise when we use heff instead
of h as in Eq. (35). On the other hand, a tiny anomaly around
� = 2ψ is robust against the change of the chemical potential,
and thus it is attributed to the contribution of the approximate
JDOS J̃B2(i)(�).

Figures 7(c) and 7(d) show the imaginary part of the
photocurrent conductivity σ

y;yx
PC with the same parameters as

Figs. 7(a) and 7(b). Unlike �[σ x;xx
PC ] in Figs. 7(a) and 7(b),

the existence of a large peak around � = 2ψ is pronounced
in �[σ y;yx

PC ]. At μ = −3.2, the photocurrent conductivity is
broadly distributed in the region 2|ψ − h| < � < 2ψ . These
behaviors are also consistent with the above discussions
based on the JDOS. The differences from �[σ x;xx

PC ] are at-
tributed to the relative contributions of J̃B2(i)(�) and J̃B2(ii)(�).
For �[σ x;xx

PC ], although J̃B2(ii)(�) is tiny, the contribution of
J̃B2(ii)(�) is dominant because it is remarkably enhanced by
quantum geometry. Later this enhancement is discussed in
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FIG. 8. Photocurrent conductivity �[σ x;xx
PC ] with varying the magnetic field h. (a), (b) The angle of the magnetic field is varied by fixing the

magnitude h = 0.05. (c), (d) The magnitude of the magnetic field is varied by fixing the angle θ = 0◦. The chemical potential is close to the
Dirac point as (a), (c) μ = −3.2 while (b), (d) μ = −3.12.

detail (Sec. VI). For �[σ y;yx
PC ], the contributions of J̃B2(i)(�)

and J̃B2(ii)(�) are comparable and may have an opposite sign.
Note that the large peaks in the photocurrent conductivity

at 2|ψ − h| < � < 2ψ for μ = −3.12 and μ = −3.08 are
not expected from J̃B2(ii) but from J̄B(�). This means a sub-
stantial contribution from the k space where |ξk||gk| � ψh.

B. Magnetic field dependence

As shown in the previous subsection, the photocurrent con-
ductivity is related to the JDOS. Therefore, we also expect a
unique magnetic field dependence of the photocurrent con-
ductivity. That is verified below.

First, we discuss the angle θ of the magnetic field h =
(0, h cos θ, h sin θ ). Figures 8(a) and 8(b) plot the real part
of the photocurrent conductivity σ x;xx

PC for various angles.
Here, we see a consequence of the symmetry constraint. The
photocurrent conductivity disappears under the perpendic-
ular magnetic field with θ = 90◦ because the C2z rotation
symmetry prohibits the second-order optical responses. For
angles different from θ = 90◦, we see qualitatively the same
frequency dependence. In Fig. 8(a) with μ = −3.2, the pho-
tocurrent conductivity is enhanced between � = 2|ψ − h| (=
2|

√
μ̃2 + ψ2 − h|) and � = 2ψ . Figure 8(b) for μ = −3.12

shows sharp peaks around � � 2|
√

μ̃2 + ψ2 − h| for various
angles. Given the total momentum of Cooper pairs 2q, these
estimations are corrected so that the peaks are predicted to
be at lower frequencies due to the correction to the effective
magnetic field heff . The momentum qy is roughly propor-
tional to hy when we fix ψ . Therefore, the frequency shift
of the photocurrent conductivity is expected to be larger in
the result with hy = cos 0◦ than that with hy = cos 60◦. In
agreement with this expectation, we see a larger peak shift to
the low-frequency side with a smaller angle θ in Fig. 8(b).
The qualitative behaviors of the photocurrent conductivity

remain unchanged with varying the angle θ of the magnetic
fields unless we set θ = 90◦. Therefore, the effect of the total
momentum of Cooper pairs, namely, the helical superconduc-
tivity, on the photocurrent conductivity can be ignored when
we neglect the small shift of frequency dependence. Natu-
rally, the magnitude of the photocurrent conductivity becomes
smaller when the angle approaches θ = 90◦.

Next, we show the change in the photocurrent conduc-
tivity when varying the magnitude of the magnetic field.
Figures 8(c) and 8(d) plot the real part of the photocurrent
conductivity σ x;xx

PC with varying the magnetic field h. For
μ = −3.2 on the Dirac point [Fig. 8(c)], the photocurrent
conductivity begins rising at a lower frequency with a larger
magnetic field. This is consistent with the JDOS, which is
finite above � � 2|ψ − h| and attributed to the contribu-
tion of J̃B2(ii)(�). For μ = −3.12 slightly above the Dirac
point [Fig. 8(d)], the peak of the photocurrent conductiv-
ity shifts to a lower frequency with enlarging the magnetic
field. These peaks have been identified as a contribution
from the k space region where |ξk||gk| � ψh is satisfied,
and the magnetic field dependence is consistent with this
interpretation.

However, the above peculiar behaviors of the photocur-
rent conductivity disappear when the chemical potential is far
away from the Dirac point. This is expected from the analysis
of the JDOS. Because the unique contribution in the in-gap
region � < 2ψ disappears at μ = −3.0, we expect that the
contribution of J̃B2(i) is dominant. In Fig. 9, where we plot
�[σ x;xx

PC ] for μ = −3.0, the photocurrent conductivity shows a
peak around � = 2ψ , and the position of the peak does not
significantly change with varying the angle and magnitude
of the magnetic field. These results are consistent with the
above expectation that the photocurrent conductivity is mainly
related to the JDOS J̃B2(i)(�) when the chemical potential is
not close to the Dirac point.
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FIG. 9. Photocurrent conductivity �[σ x;xx
PC ] for μ = −3.0 away from the Dirac point. (a) We fix h = 0.05 and change the angle of the

magnetic field θ . (b) We fix the angle θ = 0◦ and varies the magnitude of the magnetic field h.

We summarize the results in this subsection. For chemical
potentials near the Dirac point, a component of the JDOS
from the region k � 0, namely J̃B2(ii)(�), gives significant
contributions to the photocurrent conductivity in the super-
conducting state. Since these contributions are sensitive to
magnetic fields, the photocurrent conductivity shows charac-
teristic parameter dependence in the low-frequency regime
� < 2ψ . On the other hand, the contribution of J̃B2(i)(�) is
dominant when the chemical potential is not in the vicinity of
the Dirac point. This contribution gives a sharp peak around
� = 2ψ , which is robust against the change in the magnetic
field. Thus, the discussions in Sec. III B, such as the decom-
position of the JDOS to the approximate JDOS J̃B2(i)(�) and
J̃B2(ii)(�), are useful to elucidate the photocurrent conduc-
tivity in noncentrosymmetric superconductors in the in-gap
frequency range � � 2ψ .

C. Comparison between normal and superconducting states

At the end of this section, we compare the photocurrent
conductivity between the normal and superconducting states.
We again focus on the resonant components. When we choose
the parameter μ = −3.2, the resonant component is negli-
gible in the normal state under the in-plane magnetic field.
Therefore, we conclude that the resonant component of the
photocurrent conductivity originates from superconductivity.

To study a qualitatively different case, we calculate the
photocurrent conductivity of the model at the chemical po-
tential μ = −0.8, which is equivalent to the energy of Dirac
points at k = (π, 0) and (0, π ). Therefore, the low-frequency
photocurrent conductivity mainly comes from the region k �
(π, 0) and � (0, π ) in the Brillouin zone. First, we discuss the
difference between μ = −0.8 and μ = −3.2. Figures 10(b)
and 10(d) show the real part of the photocurrent conduc-
tivity σ x;xx

PC in the superconducting state for μ = −0.8. The
photocurrent conductivity is enhanced and changes the sign
around � � 2ψ . This behavior is different from the results
for μ = −3.2 (Fig. 8) and owing to the cancellation of
contributions from k � (π, 0) and � (0, π ). As we show
the k-resolved contribution within the Supplemental Material
[60], the regions k � (π, 0) and � (0, π ) give opposite con-
tributions to the photocurrent conductivity. Thus, the sign of
the photocurrent conductivity depends on the frequency, and
indeed the sign reversal occurs. A detailed discussion on the
sign reversal is given within the Supplemental Materials [60].

Next, we compare the normal state and superconducting
state for μ = −0.8. As shown in Fig. 10, the photocurrent
conductivity shows qualitatively different behaviors between
the normal and superconducting states. Figure 10(a) shows
that the photocurrent conductivity in the normal state has a
sharp peak around � = 2h for angles of the magnetic field
30◦ � θ � 60◦. However, the peak is broadly rounded at θ =
0◦. Contrary to the normal state, the qualitative behaviors of
the photocurrent conductivity remain unchanged with varying
the angle θ in the superconducting state, and we observe char-
acteristic frequency dependence around � = 2ψ [Fig. 10(b)].
Note that the photocurrent conductivity generally decreases
with increasing the angle of the magnetic field and disappears
at θ = 90◦. The normal state photocurrent also shows non-
monotonic magnetic field dependence. Figure 10(c) with the
inset shows that the peak position shifts to a higher frequency
with a larger magnetic field from h = 0.025 to h = 0.035,
consistent with � = 2h. However, in the range 0.04 � h �
0.05, we do not find the peak around � = 2h probably be-
cause the peak is smeared out by another contribution that
grows with a magnetic field. Contrary to the normal state,
the photocurrent conductivity in the superconducting state
shows the peaks with sign reversal around � = 2ψ without
the change of qualitative behaviors as increasing h.

VI. ENHANCEMENT OF PHOTOCURRENT GENERATION
BY QUANTUM GEOMETRY

Here, we highlight the effect of quantum geometry on the
photocurrent conductivity. In Sec. V, we have shown that a
component of the JDOS J̃B2(ii) gives dominant contribution to
the photocurrent conductivity when the Fermi level lies near
the Dirac point [for example, see Figs. 8(a) and 8(c)]. How-
ever, the value of J̃B2(ii) is tiny and much smaller than J̃B2(i)

(Fig. 3), and the discussion of the JDOS is not sufficient to
explain the large resonant photocurrent in the low-frequency
regime. In this section, we focus on the quantum geometric
properties of Bogoliubov bands because it has been shown
that quantum geometry gives colossal nonlinear responses
in some normal states [15]. Indeed, we show that quantum
geometry plays a key role in enhancing the superconducting
nonlinear responses in the low-frequency in-gap regime.

When the Fermi level is close to the Dirac point, the
magnetic injection current mechanism gives a dominant con-
tribution to the real part of the photocurrent conductivity
�[σ x;xx

PC ] (Appendix B). The formula of the magnetic injection
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FIG. 10. The left panels (a) and (c) show the photocurrent conductivity �[σ x;xx
PC ] in the normal state (ψ = 0), while the right panels

(b) and (d) show the superconducting state (ψ = 0.09). In the upper panels (a) and (b), the angle θ of the magnetic field is varied with fixing
h = 0.025, while in the lower panels (c) and (d), the magnitude of the magnetic field h is changed with fixing θ = 30◦. We set the chemical
potential μ = −0.8.

current [Eq. (25b)] contains the quantum metric (gαβ

ab ), where
α means λα for shorthand notation. The JDOS JB2(�), which
originates from the transition between the hole E2 and particle
E3 bands, is dominant in the low-frequency regime � � 2ψ ,
and thus we focus on the magnetic injection current originat-
ing from the B2 transition σ x;xx

Minj(B2) defined as

σ x;xx
Minj(B2) = − π

4η

∑
k

(
Jx

22 − Jx
33

)
gxx

32( f2 − f3)δ(� − E32).

(53)

This formula implies that the band-resolved quantum metric
gxx

32 affects the photocurrent conductivity in the low-frequency
regime.

We show the distribution of the quantum metric gxx
32 in the k

space in Fig. 11. The parameters in Fig. 11(a) are the same as
Fig. 8(a) with θ = 0◦. The color map shows the huge quantum
metric gxx

32 around k = 0, as is generally expected for Dirac
electrons. As shown by the contour lines of E32 = E3 − E2,
the quantum metric enhances the photocurrent conductivity
in the low-frequency regime � < 2ψ = 0.18. These results
indicate that the quantum metric selectively enhances the pho-
tocurrent conductivity originating from the JDOS J̃B2(ii).

Next, we discuss the effect of the quantum metric when
the Fermi level slightly deviates from the Dirac point. For
μ = −3.12, the enhancement by gxx

32 is prominent on the peaks
of the photocurrent conductivity in Fig. 8(b) around � �
0.12 < 2ψ . As shown in Fig. 4(b), the JDOS JB2(� = 0.12)
originates from the region k < π

16 , where gxx
32 is large as shown

in Fig. 11(b). Therefore, the photocurrent conductivity in the
in-gap region is cooperatively enhanced by the JDOS and
quantum metric and shows a large peak around � = 0.12.

When the chemical potential is far away from the Dirac
point, the contribution of J̃B2(ii) vanishes in the low-frequency
regime � < 2ψ . The quantum metric for μ = −3.0 is shown
in Fig. 11(c). In contrast to the cases of μ = −3.2 and −3.12
[Figs. 11(a) and 11(b)], the quantum metric gxx

32 enhances the
contribution of J̃B2(i) around � = 2ψ . However, the value of
the photocurrent conductivity for μ = −3.0 is smaller than

FIG. 11. Distribution of the quantum metric gxx
23 in the k space.

We fix h = 0.05, θ = 0◦, and ψ = 0.09 and set (a) μ = −3.2,
(b) μ = −3.12, and (c) μ = −3.0. Colored lines plot contour lines
of �E23. Note that the mapping range of the color plot is different
between the figures because the typical values of the quantum metric
are vastly different among (a)–(c).
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that for chemical potentials near the Dirac point [compare
Fig. 9(a) with Figs. 8(a) and 8(b)]. Optical responses tend to
decrease as the Fermi level moves away from the Dirac point
due to the suppression of quantum geometric quantities. The
photocurrent conductivity �[σ x;xx

PC ] is also reduced because of
the decrease in the size of the quantum metric gxx

32.
From the above results, we conclude that the quantum

metric enhances the photocurrent conductivity in the low-
frequency in-gap region. This is the reason why we have ob-
served the pronounced photocurrent conductivity below � �
2ψ in the previous sections. Here, we note that both magnetic
field and spin-orbit coupling are necessary for a finite quantum
metric gαβ

32 . The gαβ

32 is given by the current operator as

gαβ

32 = 1

E2
23

�[
Jα

32Jβ

23

]
. (54)

Thus, the matrix element of the paramagnetic current operator
Jα

32 needs to be finite for a nonzero quantum metric gαβ

32 . When
the magnetic field is absent, Jα

23 and gαβ

32 vanish. Moreover,
a finite g vector of spin-orbit coupling gk is also necessary
even when the derivative ∂αgk is not zero. This indicates that
gαβ

32 (k) vanishes at k = 0 where the g vector is zero. This is
consistent with our numerical results in Fig. 11, where we see
gxx

32 = 0 at k = 0.
We have shown the enhancement of the photocurrent

conductivity in the superconducting state due to the giant
quantum metric gxx

32. In the normal state, the quantum metric
diverges at the Dirac point due to the energy degeneracy.
Although the superconducting gap E23 
= 0 prevents the di-
vergence of the quantum metric, the large quantum metric
appears when the Fermi level lies near the Dirac point. It is
implied that the large quantum metric in the superconducting
states inherits peculiar geometric properties of Dirac states.
The magnetic field and spin-orbit coupling are essential not
only for satisfying the symmetry constraint but also for realiz-
ing the quantum-geometrically enhanced optical responses in
noncentrosymmetric superconductors.

VII. NONLINEAR CONDUCTIVITY AROUND
TOPOLOGICAL TRANSITION

Next, we investigate the relation between superconducting
nonlinear responses and topological superconductivity. We
show that the photocurrent conductivity and the second har-
monic generation coefficient dramatically change when the
system becomes a topological superconducting state.

In this study, we have considered s-wave Rashba super-
conductors with the Zeeman field. This model is a candidate
for the realization of topological superconductivity hosting
Majorana zero modes. The s-wave superconductor becomes
a topological superconductor with a nonzero Chern number
when the Zeeman field h is larger than the critical value hc

[61–63]. The critical value is given as hc =
√

μ̃2 + ψ2 when
we set the magnetic field perpendicular to the plane. Note
that we assume Eqs. (37) and (38) when we estimate hc.
Much effort has been devoted to the search for topological
superconductivity, as it attracts much attention from view-
points ranging from fundamental science to engineering [30].
However, no firm evidence for topological superconductivity

has yet been obtained. This is partly because the physical
phenomena manifesting the signature of topological super-
conductivity are limited. The existence of the Majorana edge
mode is a unique characteristic of topological superconduc-
tivity and some theoretical works propose the optical probe
for the Majorana edge mode [64–66]. On the other hand, the
exploration of bulk probes for topological superconductivity
has also been awaited. Therefore, it is highly desirable to
elucidate the optical responses that signal the transition to the
topological superconducting phase.

First, we investigate the photocurrent conductivity around
the topological transition between the topologically trivial
and nontrivial superconducting phases. In the previous papers
[61–63], it was shown that the topological transition occurs
under the magnetic field perpendicular to the plane. In the fol-
lowing, we consider tilted magnetic fields to the plane because
the photocurrent conductivity vanishes under the perpendicu-
lar magnetic field. We set the angle θ as θ = 60◦. Because
the topological property is robust against small changes in the
Hamiltonian, the topological transition occurs even though the
tilted magnetic fields. Gap closing is one of the characteriza-
tions of the topological transition. Figure 12 shows the energy
band around k = 0 when we set μ = −3.2 and ψ = 0.09.
As we enlarge the magnitude of the magnetic field in 0.04 �
h � 0.08, the energy gap becomes smaller [Fig. 12(a)]. On
the other hand, the energy gap opens as the magnetic field
is further increased in 0.09 � h � 0.13 [Fig. 12(b)]. These
results indicate that the gap closing and topological transition
occur in the region 0.08 < h < 0.09. Note that the critical
value hc is estimated to be 0.09 when we ignore the total mo-
mentum of Cooper pairs. In fact, the critical value is obtained
as hc = 0.09 when we set the angle θ = 90◦. When the total
momentum of Cooper pairs is finite, the effective magnetic
field �heff slightly shifts the critical value hc.

Figure 13 shows the photocurrent conductivity σ x;xx
PC for the

magnetic fields (a) 0.04 � h � 0.08 and (b) 0.09 � h � 0.13.
We focus on the resonant components in the low-frequency
region � < 2ψ . In the topologically trivial region 0.04 �
h � 0.08, the photocurrent conductivity begins to increase at
a lower frequency with a larger magnetic field [Fig. 13(a)].
When the magnetic field is further increased in the topological
superconducting phase, the photocurrent conductivity is neg-
atively enhanced and shows peaks at a higher frequency with
a larger magnetic field [Fig. 13(b)]. The drastic changes in
frequency dependence and sign are associated with the closing
of the energy gap around k = 0 (Fig. 12). It is naturally ex-
pected that these low-frequency contributions originate from
the JDOS J̃B2(ii). We would like to emphasize the sign change
of the resonant photocurrent before and after the topological
transition. Below we discuss the impact of the topological
transition and attribute the origin of the sign change to the
band inversion, which plays a key role in various topological
transitions.

In the low-frequency regime, the magnetic injection
current originating from the B2 transition σ x;xx

Minj(B2) gives dom-
inant contributions to the photocurrent conductivity σ x;xx

PC . In
the zero temperature limit, σ x;xx

Minj(B2) is given by

σ x;xx
Minj(B2) = − π

4η

∑
k

(
Jx

22 − Jx
33

)
gxx

32δ(� − E32). (55)
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FIG. 12. The energy band of Bogoliubov quasiparticles around the � point [k = (0, 0)] with varying the magnitude of the magnetic field.
We set μ = −3.2, ψ = 0.09, and θ = 60◦.

The quantum metric gxx
32 is finite and positive. Thus, the sign of

σ x;xx
Minj(B2) is determined by the difference of the paramagnetic

current Jx
22 − Jx

33. The sign of Jx
22 − Jx

33 around k = 0 is oppo-
site between the trivial state [Fig. 14(a)] and the topological
state [Fig. 14(b)]. This behavior causes the sign change of the
photocurrent conductivity σ x;xx

PC .
The sign change of Jx

22 − Jx
33 is caused by the band inver-

sion. At the � point (k = 0), the eigenenergies of Bogoliubov
quasiparticles E2k and E3k are obtained as

(E2k, E3k) =
{

(E (−), E (+) ) (
√

μ̃2 + ψ2 > h)

(E (+), E (−) ) (
√

μ̃2 + ψ2 < h)
, (56)

where we define E (−) and E (+) as

E (−) = −
√

ξk=0
2 + ψ2 + h, E (+) =

√
ξk=0

2 + ψ2 − h.

(57)

This indicates the band inversion between the E (−) band and
the E (+) band at the topological transition. Note that the sub-
script a of Eak is defined as E1k � E2k � 0 � E3k � E4k. For
the E (−) and E (+) bands, the Jα

aa is obtained as

Jα
aa = ∂αξk + ∂αgk · ĥ (E (−) band), (58)

Jα
aa = ∂αξk − ∂αgk · ĥ (E (+) band). (59)

Thus, Jx
22 − Jx

33 is given by

Jx
22 − Jx

33 =
{

2(∂xgk · ĥ) (
√

μ̃2 + ψ2 > h)

−2(∂xgk · ĥ) (
√

μ̃2 + ψ2 < h).
(60)

Because the E (−) and E (+) bands are inverted at the topolog-
ical transition, the sign of Jx

22 − Jx
33 changes resulting in the

sign change of the photocurrent conductivity.

In the normal state, the diagonal element of the paramag-
netic current operator Jα

aa is equivalent to the group velocity.
With the Hellmann-Feynman theorem, the group velocity vα

a
is given by vα

a = ∂αEa = Jα
aa. In the superconducting state,

the Hellmann-Feynman relation fails in the Bogoliubov de-
Gennes formalism. However, the Jα

aa is closely related to the
group velocity of electron and hole bands in the normal state.
Below, we discuss the origin of Jα

22 − Jα
33 from the perspective

of the normal state band structure. Around k = 0, the Jα
aa in

the superconducting state is written as

Jα
aa = w−vα

e+ − w+vα
h− (E (−) band), (61)

Jα
aa = w+vα

e− − w−vα
h+ (E (+) band), (62)

where we define w± as

w− = −ξk + u

2u
, w+ = ξk + u

2u
, (63)

with u =
√

ξ 2
k + ψ2 (Appendix C). We introduce vα

e± and
vα

h± as the group velocity of the electron band εe±
k = ξk ±

|gk + h| and the hole band εh±
k = −εe±

−k in the normal state,
respectively. In the normal state (ψ = 0), Eqs. (61) and (62)
reproduce the Hellmann-Feynman relation. The difference
|Jα

22 − Jα
33| is rewritten with vα

e± and vα
h± as∣∣Jα

22 − Jα
33

∣∣ = ∣∣w−
(
vα

e+ + vα
h+

) − w+
(
vα

e− + vα
h−

)∣∣. (64)

The difference between the effective currents of the electron
and hole bands, which leads to evα

e± 
= −evα
h±, is essential

for finite |Jα
22 − Jα

33|. Note that we write the charge e = 1
explicitly here.

From the above discussion, we notice that the nonreciproc-
ity in the band structure, namely εe±

k 
= εe±
−k, is essential for the

difference |Jα
22 − Jα

33|. Indeed, when we assume εe±
k = εe±

−k,

FIG. 13. The photocurrent conductivity for various magnitudes of the magnetic field. We show �[σ x;xx
PC ] for (a) 0.04 � h � 0.08 and

(b) 0.09 � h � 0.13.
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FIG. 14. Distribution of Jx
22 − Jx

33 in the k space. (a),(b) We fix the angle of the magnetic field θ = 60◦ and set the magnitude (a) h = 0.06
and (b) h = 0.1 below and above the topological transition, respectively. (c) We set θ = 90◦ and h = 0.05. We see that Jx

22 − Jx
33 vanishes.

the group velocity of the hole bands is obtained as

vα
h± = ∂α

(−εe±
−k

) = −∂αεe±
k = −vα

e±, (65)

and the difference |Jα
22 − Jα

33| vanishes as shown in Eq. (64).
The nonreciprocity �ε±

k in the normal state is given by

�ε±
k ≡ 1

2

(
εe±

k − εe±
−k

) = gk · h√
g2

k + h2
+ O((gk · h)2). (66)

When we set the magnetic field perpendicular to the plane,
the gk is normal to the magnetic field in the Rashba system.
Consistent with this fact, the Jα

22 − Jα
33 vanishes when we set

the angle θ = 90◦ [Fig. 14(c)].
In this section, we have shown the characteristic behavior

of the photocurrent conductivity σ x;xx
PC around the topological

transition. Corresponding to the gap closing, the peak position
shifts to a lower frequency with approaching the topological
transition. More interestingly, we predicted the sign change
of the resonant photocurrent conductivity before and after the
topological transition. This sign change is due to the band
inversion. Because the occupied band (E2) and the unoccu-
pied band (E3) are inverted, the sign of Jα

22 − Jα
33 and that

of the magnetic injection current σ x;xx
Minj(B2) change. The close

relationship between topological transition and photocurrent
conductivity may allow the detection of topological supercon-
ductivity by optical measurements. The background of such
a relationship is the fact that the velocity difference is an
essential ingredient of the injection current. Therefore, the
magnetic injection current, which is dominant in our setup, is
sensitive to the band inversion, and in turn, useful for detecting
the topological transition. The sign of the bulk photocurrent
conductivity has been measured by experiments [67,68]. Ap-
plication to superconductors is highly anticipated. A model
of class DIII topological superconductor also shows a similar
sign change of photocurrent conductivity between trivial and
time-reversal invariant topological superconducting phases
[69]. Thus, the sign change may be a universal characteristic
of topological superconductors. However, the mechanism of
the sign change in the class DIII topological superconductors
must be different from the case of our results for class D be-
cause the magnetic injection current vanishes in T -symmetric
systems. The mechanism of the sign change in the class DIII
system has not been elucidated and is left for future study.

Finally, we investigate the second harmonic generation by
focusing on the change at the topological transition. Figure 15
shows the imaginary part of the second harmonic genera-
tion coefficient σ x;xx

SHG for magnetic fields (a) 0.04 � h � 0.08
(trivial phase) and (b) 0.09 � h � 0.13 (topological phase).
We see that the sign of the resonant component in the low-
frequency region � < 0.1 is reversed between the trivial and
topological superconducting phases. Although the mechanism
of the sign change has not been elucidated, the second har-
monic generation can also be an indicator of topological
superconductivity. Time-resolved optical measurement can
resolve the experimental difficulty of detecting the sign of
high harmonic generation. The ultrafast pump-probe spec-
troscopy is expected to access the sign of second harmonic
generation coefficients because the method can detect the sign
of the linear response with sub-100 fs time resolution [70].

VIII. DISCUSSION

We have shown the superconducting nonlinear optical re-
sponses in the noncentrosymmetric s-wave superconductors
under the magnetic field. Before summarizing the paper, in
this section, we discuss the role of the magnetic field in the
superconducting nonlinear responses from several points of
view, such as symmetry, quantum geometry, and topological
superconductivity. We also discuss candidate superconduc-
tors. The presence of magnetic fields broadens the range of
candidate materials for superconducting nonlinear optics.

We would like to emphasize that the magnetic field or
the Zeeman field induced by the ferromagnetic proximity
effect plays an essential role in the existence of supercon-
ducting nonlinear responses, as discussed below. First, we
refer to the effect of T -symmetry breaking. In our previous
paper, the nonlinear responses in T -symmetric superconduc-
tors were investigated, and it was shown that the nonlinear
superconducting responses vanish in the single-band s-wave
superconductors [47]. Consistent with this fact, the quan-
tum metric gαβ

32 and the matrix elements of the paramagnetic
current operator Jα

23, which correspond to the type B tran-
sition unique to superconductors, vanish in the absence of
the magnetic field (Appendix D 2). It is also known that the
linear optical response through the transition between electron
and hole bands is forbidden in the T -symmetric single-band
s-wave superconductors [50]. Thus, T -symmetry breaking is
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FIG. 15. The second harmonic generation coefficient for various magnitudes of the magnetic field. We show �[σ x;xx
SHG] for (a) 0.04 � h �

0.08 and (b) 0.09 � h � 0.13.

required for the emergence of linear and nonlinear super-
conducting responses unless unconventional Cooper pairing
exists. Next, the crystal symmetry reduction due to the mag-
netic field is also essential for the nonlinear responses. In
this paper, we assume the two-dimensional C4v crystal struc-
ture. In such models with the C2z twofold rotation symmetry,
the second-order optical responses are prohibited. In gen-
eral, nonlinear responses are strictly forbidden under some
crystal symmetries, regardless of the properties of Cooper
pairing [49]. However, the magnetic field can break the crystal
symmetries and induce finite-nonlinear responses as we have
demonstrated in this paper. Summarizing, the magnetic fields
enable superconducting nonlinear responses to be finite even
in the conventional s-wave superconductors by breaking T
symmetry and crystal symmetry simultaneously. Therefore,
the effect of magnetic fields significantly broadens classes of
candidate materials for superconducting nonlinear responses
because neither unconventional Cooper pairing such as spin-
triplet pairing nor low-symmetry crystal structure is needed.

Here, we discuss platforms of the second-order optical
responses in superconductors. Space inversion symmetry has
to be broken for the second-order responses. There are various
mechanisms of parity violation in superconductors. The most
typical and ubiquitous class is the superconductors lacking
the inversion symmetry in the crystal structures. Such non-
centrosymmetric superconductors exist in a broad range from
surfaces and heterostructures [32–36,71–74] to bulk com-
pounds [28,29]. Given the stability of superconductivity, the
s-wave pairing is expected to be dominant in typical super-
conductors. Thus, our study analyzing such superconductors
would be helpful for the investigation of nonlinear optics in a
wide range of superconductors. In particular, atomically thin
two-dimensional superconductors under in-plane magnetic
fields are a promising setup for the observation of nonlin-
ear responses originating from the quasiparticle dynamics,
which we have discussed, because the vortex production is
suppressed.

Besides the symmetry constraints, the magnetic fields
induce the characteristic contribution to the resonant
photocurrent in the low-carrier-density superconductors. It ap-
pears in the low-frequency region below the superconducting
gap at the zero magnetic fields. We have attributed this com-
ponent of the photocurrent to the JDOS J̃B2(ii) by decomposing
the JDOS to the two components, J̃B2(i) and J̃B2(ii). Al-
though the JDOS component J̃B2(ii) is tiny, this low-frequency

photocurrent is significantly enhanced by the quantum geom-
etry of Bogoliubov quasiparticles and is dominant in some
tensor elements of the photocurrent conductivity. It is known
that the photocurrent generation in the normal state is closely
related to the quantum geometric property of Dirac fermions
[59,75] and Weyl fermions [67,76,77]. In this paper, the con-
cept of quantum-geometrically enhanced optical responses is
extended to superconductors.

One of the candidate superconductors for observing this
unique photocurrent generation is FeSe thin films grown on
SrTiO3(001) [78], where an electron pocket appears at M
point [79,80]. Although the bulk FeSe is centrosymmetric
[81], the inversion symmetry is broken in thin films due to
the effects of the substrate. Indeed, a large spin-orbit coupling
with the inversion symmetry breaking has been reported [82].
Significant quantum geometry of normal electrons has also
been pointed out in FeSe [83–85]. Thus, it is expected that
unique behaviors of photocurrent conductivity can be found
in the superconducting state of FeSe/SrTiO3 and related
materials. The interface of superconductors and topological
insulators is another intriguing platform, where the interplay
between superconductivity and surface Dirac/Weyl states has
been recognized [12,86,87]. Transition metal dichalcogenides
[32–35,88,89] are also expected to show giant superconduct-
ing nonlinear optical responses due to pronounced quantum
geometry. In particular, monolayer WTe2 is a centrosymmet-
ric topological insulator [90,91], which can be gate-tuned to
the superconducting state [88,89]. The electrically induced
nonlinear response has been demonstrated in the topological
insulating state [92], while the effect of nontrivial topology
and quantum geometry in the superconducting state has not
been uncovered. The evaluation of linear and nonlinear optical
responses in these fascinating superconductors will be a future
work of interest.

Finally, we comment on the vertex correction for the opti-
cal conductivity in the superconductors. Vertex correction is
a key step in maintaining the gauge invariance and consis-
tency with the gap equation [48,93–95]. The vertex correction
method has been adopted in the research on the linear and
nonlinear responses of superconductors, where the P sym-
metry is broken by the finite Cooper pairs’ momentum
[48,93,94]. As a result of the vertex correction, the mag-
nitude of the second-order responses is reduced, and some
components reverse the sign, while the frequency dependence
is qualitatively unchanged [48]. Therefore, the characteristic
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TABLE III. Classification of the normal and anomalous photocurrent responses. Parities under the T − and PT −symmetry operations
are denoted by ±. “Linear” and “Circular” indicate the polarization of light. Electric conductivity derivative term σECD and nonreciprocal
superfluid density term σNRSF show the divergent behavior in the low-frequency regime. We introduce the electric and magnetic conductivity
derivative terms, σECD and σMCD, as the imaginary and real part of the conductivity derivative term derived in Ref. [46].

Mechanism Notation T PT Polarization Low-frequency divergence

(Normal photocurrent)
Injection current (electric) σEinj + – Circular
Injection current (magnetic) σMinj – + Linear
Shift current σshift + – Linear
Gyration current σgyro - + Circular
(Anomalous photocurrent)
Conductivity derivative (electric) σECD + – Circular O(�−1)
Conductivity derivative (magnetic) σMCD – + Linear
Nonreciprocal superfluid density σNRSF – + Linear O(�−2)

frequency dependence of our results is expected to appear
even after the vertex correction. The contribution from col-
lective modes is included in the vertex correction. How the
contribution of collective modes changes before and after the
topological transition will be interesting future work.

IX. SUMMARY

This paper elaborated on the second-order nonlinear opti-
cal responses of noncentrosymmetric superconductors in the
magnetic field. We showed that the magnetic field is essential
for the nonlinear responses in broad classes of superconduc-
tors. In particular, T -symmetry breaking nullifies the selection
rule forbidding the optical transition between electron and
hole bands in T -symmetric s-wave superconductors. There-
fore, the nonlinear responses due to Bogoliubov quasiparticles
can occur in conventional superconductors under magnetic
fields. In addition, we found a component of superconducting
photocurrent generation that emerges under the magnetic field
and is closely related to the Dirac point of normal electrons.
We ascribed the characteristic dependence on magnetic fields
and chemical potentials to this component. This photocurrent
characterizes low-carrier-density superconductors which are
candidates for class D topological superconductors.

The low-carrier-density Rashba superconductors have been
intensively studied for the realization and detection of topo-
logical superconductivity. However, it has been challenging
to search for signatures in bulk properties because the DOS
and JDOS resulting from gap closing are tiny and difficult
to observe. However, we have shown that the characteristic
photocurrent generation is significantly enhanced by quantum
geometry arising from the k space around the Dirac point. The
band-resolved quantum metric of Bogoliubov quasiparticles
inherits peculiar geometric properties of Dirac electrons. The
photocurrent originating from the low-energy quasiparticles
due to gap closing can be much larger than other compo-
nents. In this sense, the optical response is a bulk property
sensitive to the topological transition in superconductors. Fur-
thermore, the sign reversal of the photocurrent conductivity
occurs associated with the gap closing and band inversion at
the topological transition. A similar sign reversal also appears
in the second harmonic generation coefficient. The longitudi-
nal component of linear conductivity does not show the sign

reversal and this characteristic behavior is unique to the non-
linear responses. Therefore, the nonlinear superconducting
optics can provide a bulk probe for the detection of topo-
logical superconductivity in Rashba systems. The nonlinear
responses yield rich information on attractive materials. Ex-
ploring other superconducting nonlinear responses will also
be a promising route for future research.
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APPENDIX A: FINITE-MOMENTUM COOPER PAIRS
IN THE SUPERCONDUCTING STATE

In the calculation of the electric current under the irradia-
tion of light, we need to determine the momentum of Cooper
pairs in the equilibrium state. In the setup of our model, both
T and P symmetries are broken, and therefore, the Cooper
pairs may acquire total momentum 2q, which is determined
by minimizing the free energy F in Eq. (14). To this end, we
calculate the qx dependence of the free energy with the fixed
chemical potential μ and magnetic field h. The free energy F
is symmetric with respect to qy ↔ −qy because of the T my

symmetry at hx = 0. Thus, the free energy F is expected to
have a minimum at qy = 0 when the higher-order terms of qy

are suppressed. In our numerical results, F actually has the
minimum at qy = 0. We substitute the obtained q to Eq. (22)
and numerically calculate the photocurrent conductivity and
second harmonic generation coefficient.

APPENDIX B: CLASSIFICATION OF PHOTOCURRENT
CONDUCTIVITY

Classification of the photocurrent conductivity based on
the mechanism and parity under the T and PT operations
is summarized in Table III. Figure 16 plots the contributions
stemming from each photocurrent generation mechanism un-
der the in-plane magnetic field θ = 0◦. We see that the
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FIG. 16. Each component of the photocurrent conductivity σ
y;yx
PC in the in-plane magnetic field: the real part (a) and the imaginary part

(b). The calculation is performed with h = 0.025 and μ = −3.2, which are the same as Fig. 6. The T -odd components are colored, while the
T -even components are shown in black and revealed to disappear.

magnetic injection current and gyration current dominate the
real and imaginary parts of the photocurrent conductivity,
respectively. These dominant contributions are T -odd terms.
In all the components with hyperscripts α, β, γ , the T -even
contributions vanish consistent with the symmetry constraints
in Table II. On the other hand, the T -even contributions are
allowed to be finite in some components when the mag-
netic field is tilted (0◦ < θ < 90◦). Figure 17 shows that the
T -even mechanisms, such as the shift current and electric
injection current, give significant contributions to σ

x;yx
PC . Note

that σ x;xx, σ x;yy, and σ y;yx do not have finite T -even con-
tributions even for the field angle 0◦ < θ < 90◦ due to the
symmetry constraint. Thus, the constraints in Table II are
useful for the identification of leading photocurrent generation
mechanisms.

APPENDIX C: DIAGONAL ELEMENTS
OF PARAMAGNETIC CURRENT OPERATOR AND GROUP

VELOCITIES

In this Appendix, we discuss the relationship between the
diagonal elements of the paramagnetic current and the group

velocities. In the normal state, the group velocity vα
a is closely

related to the paramagnetic current operator Jα . With the
Hellmann-Feynman theorem, the group velocity is obtained
as

vα
a = ∂

∂kα

Ea = Jα
aa. (C1)

In contrast to the normal state, the Hellmann-Feynman
relation fails in the superconducting state. In the Bogoliubov
de-Gennes formalism, particles with opposite charges, that is
electron and hole, are treated on equal footing. Thus, a naive
treatment based on the minimal coupling p → p − qA is not
justified. However, the group velocity of electrons and holes
is closely related to the diagonal elements of the paramagnetic
current operator. The detailed calculation is presented within
the Supplemental Material [60].

1. Diagonal elements of paramagnetic current operator

First, we derive the diagonal elements of the paramagnetic
current operator Jα

aa at k = 0. We obtain the eigenenergies of
Bogoliubov quasiparticles Ea (E1 � E2 � E3 � E4) and the
diagonal elements of the paramagnetic current operator Jα

aa,

(E1, E2, E3, E4) =
{

(−u − h,−u + h, u − h, u + h) (
√

ξ 2 + ψ2 > h)

(−u − h, u − h,−u + h, u + h) (
√

ξ 2 + ψ2 < h)
, (C2)

(
Jα

11, Jα
22, Jα

33, Jα
44

) =
{(

∂αξ − ηα
z , ∂αξ + ηα

z , ∂αξ − ηα
z , ∂αξ + ηα

z

)
(
√

ξ 2 + ψ2 > h)(
∂αξ − ηα

z , ∂αξ − ηα
z , ∂αξ + ηα

z , ∂αξ + ηα
z

)
(
√

ξ 2 + ψ2 < h)
. (C3)

where we define ηα ≡ (ηα
x , ηα

y , ηα
z ) as

(
ηα

x
ηα

y

)
= −

(
∂αgx

∂αgy

)
+ ∂αg · h + h∂αgz

h(h + hz )

(
hx

hy

)
, ηα

z = ∂αg · ĥ,

(C4)

u =
√

ξ 2 + ψ2 and, η̃α = (ηα
x ,−ηα

y , ηα
z ). We have introduced

the unit vector ĥ = (hx, hy, hz )�/h.
As we explained in the main text, Jx

22 − Jx
33 is an important

factor for the magnetic injection current in the low-frequency
regime. Therefore, we explicitly show the formula of Jx

22 − Jx
33

as

Jx
22 − Jx

33 =
{

2(∂αg · ĥ) (
√

ξ 2 + ψ2 > h)

−2(∂αg · ĥ) (
√

ξ 2 + ψ2 < h)
. (C5)

The condition
√

ξk=0
2 + ψ2 < h is closely related to the topo-

logical superconductivity. Indeed, we show that around the
topological transition the photocurrent conductivity drasti-
cally changes accompanied by the sign reversal due to the
sign change of Jx

22 − Jx
33 (Sec. VII). From this property, we

propose that the photocurrent conductivity is a bulk probe of
topological superconductivity.
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FIG. 17. Each component of the photocurrent conductivity σ
x;yx
PC in the tilted magnetic field (θ = 45◦). (a) Real part and (b) imaginary

part. The parameters other than the angle θ are the same as Figs. 6 and 16. The T -even components are dominant in contrast to σ
y;yx
PC

(Fig. 16).

2. Group velocity

Next, we discuss the relation between the paramagnetic current operator in the superconducting state and the group
velocity in the normal state. In the normal state, we approximately obtain the energies of hole and electron bands around
k = 0, (

εe+
k , εe−

k , εh+
k , εh−

k

) = (ξk + h + gk · ĥ, ξk − h − gk · ĥ,−ξk − h + gk · ĥ,−ξk + h − gk · ĥ). (C6)

The group velocity is obtained as(
vα

e+, vα
e−, vα

h+, vα
h−

) = (∂αξk + ∂αgk · ĥ, ∂αξk − ∂αgk · ĥ,−∂αξk + ∂αgk · ĥ,−∂αξk − ∂αgk · ĥ). (C7)

The electron and hole have an opposite charge and we set the unit charge e = 1.
Here we consider an approximate current operator J̃α defined as

J̃α = diag
(
vα

e+, vα
e−,−vα

h+,−vα
h−

)
, (C8)

where we ignore the off-diagonal elements of the paramagnetic current operator. We define the effective current of Bogoliubov
quasiparticles with energies Ea by the approximate paramagnetic current operator as jαa ≡ J̃α

aa. Here, we focus on jα2 and jα3
because the transition between the E2 and E3 bands dominantly contributes to the photocurrent conductivity in the low-frequency
regime. The effective currents jα2 and jα3 are obtained as

(
jα2 , jα3

) =
{(

w−vα
e+ − w+vα

h−, w+vα
e− − w−vα

h+
)

(
√

ξ 2 + ψ2 > h)(
w+vα

e− − w−vα
h+, w−vα

e+ − w+vα
h−

)
(
√

ξ 2 + ψ2 < h)
, (C9)

w+ = u + ξ

2u
, w− = u − ξ

2u
. (C10)

With Eq. (C7), the effective current jαa is coincident with Jα
aa at k = 0. Under the charge conjugate transformation (e± ↔ h±),

the effective current jα2 and jα3 changes to each other. The exchange of formula between jα2 and jα3 at h =
√

ξ 2 + ψ2 in Eq. (C10)
corresponds to the band inversion between electrons and holes.

Finally, we clarify the condition for the finite difference between jα2 and jα3 . The difference is obtained as

jα2 − jα3 =
{

w−
(
vα

e+ + vα
h+

) − w+
(
vα

e− + vα
h−

)
(
√

ξ 2 + ψ2 > h)

−w−
(
vα

e+ + vα
h+

) + w+
(
vα

e− + vα
h−

)
(
√

ξ 2 + ψ2 < h)
. (C11)

When the energy bands εk has the symmetry εk = ε−k in the
normal state, the group velocity of the hole bands −ε−k is
given by

vα
h = ∂α (−ε−k) = −∂αεk = −vα

e . (C12)

With Eqs. (C10) and (C11), the asymmetry εe±
k 
= εe±

−k is nec-
essary for the finite jα2 − jα3 , indicating that the nonreciprocity
in the normal state band structure is essential for the mag-
netic injection current and its sign-reversal at the topological
transition.

Although the Hellmann-Feynman relation breaks down
in the superconducting state, the diagonal elements of the
paramagnetic current operator Jα

aa are closely related to the
group velocity of electron and hole bands in the normal state.
Thus, the diagonal elements Jα

22 and Jα
33 are sensitive to the

band inversion between the electron and hole bands, and
this property is useful for detecting the topological transition
in the superconducting state. In the photocurrent conductiv-
ity, the difference Jα

22 − Jα
33 gives a profound effect on the

magnetic injection current, which would be a probe of topo-
logical superconductivity. The asymmetric dispersion εe±

k 
=
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εe±
−k in the normal states is essential for the finite difference

Jα
22 − Jα

33.

APPENDIX D: CONDITION FOR THE FINITE QUANTUM
METRIC OF THE B2 TRANSITION

In this Appendix, we elucidate the condition for the finite
quantum metric gαβ

32 . We show that both the magnetic field and
spin-orbit coupling are needed for the quantum metric gαβ

32 to
be finite. The gαβ

32 is given by

gαβ

32 = 1

E2
23

�[
Jα

32Jβ

23

]
. (D1)

Thus, we have only to evaluate the matrix element of the
paramagnetic current operator Jα

32. When the Jα
32 is zero, the

quantum metric gαβ

32 must be zero.

1. Quantum metric in the absence of spin-orbit coupling

First, we investigate the quantum metric gαβ

32 at the �

point (k = 0) where the spin-orbit coupling vanishes. We
have already diagonalized the BdG Hamiltonian H (k = 0) in
Appendix C 1. After the appropriate unitary transformation,
we obtain the diagonalized Hamiltonian

H (k = 0) = diag(
√

ξ 2 + ψ2 − h,−
√

ξ 2 + ψ2 − h,√
ξ 2 + ψ2 + h,−

√
ξ 2 + ψ2 + h), (D2)

=
{

(E3, E1, E4, E2) (
√

ξ 2 + ψ2 > h)

(E2, E1, E4, E3) (
√

ξ 2 + ψ2 < h)
, (D3)

where ξ means ξk=0 for short hand notation. Note that the
subscript of Ea is defined as E1k � E2k � E3k � E4k. Under
the same transformation as the diagonalization of the Hamil-
tonian, the paramagnetic current operator is represented as

Jα =
(

∂αξ − ηα
z

(
ηα

x + iηα
y

)
σz(

ηα
x − iηα

y

)
σz ∂αξ + ηα

z

)
, (D4)

with ηα
x , ηα

y , and ηα
z introduced in Eq. (C4). With Eqs. (D3) and

(D4), the matrix element Jα
23 is zero. Thus, the quantum metric

gαβ

32 vanishes at the � point (k = 0). This result indicates that
the g-vector of spin-orbit coupling is essential for the finite
quantum metric gαβ

32 even when the derivative of g-vector ∂αg
is finite.

2. Quantum metric at the zero magnetic field

Next, we evaluate the quantum metric of Rashba supercon-
ductors at the zero magnetic field. The BdG Hamiltonian in
the coordinate ẑ ‖ g has the form

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

ξ + g 0 0 ψ

0 ξ − g −ψ 0

0 −ψ −ξ + g 0

ψ 0 0 −ξ − g

⎞
⎟⎟⎟⎟⎟⎠. (D5)

Then, the paramagnetic current operator is obtained as

Jα =

⎛
⎜⎜⎝

∂αξ + ∂αgz ∂αgx − i∂αgy 0 0
∂αgx + i∂αgy ∂αξ − ∂αgz 0 0

0 0 ∂αξ − ∂αgz −∂αgx − i∂αgy

0 0 −∂αgx + i∂αgy ∂αξ + ∂αgz

⎞
⎟⎟⎠. (D6)

By an appropriate permutation of the bases, the BdG Hamiltonian and the paramagnetic current operator are rewritten as

H (k) =

⎛
⎜⎜⎝

ξ + g ψ 0 0
ψ −ξ − g 0 0
0 0 ξ − g −ψ

0 0 −ψ −ξ + g

⎞
⎟⎟⎠ =

(
C 0
0 D

)
, (D7)

Jα =
(

(∂αξ + ∂αgz )σ0 (∂αgx − i∂αgy)σz

(∂αgx + i∂αgy)σz (∂αξ − ∂αgz )σ0

)
. (D8)

We can diagonalize the diagonal block C and D by using unitary operators UC and UD, respectively. We introduce UC and UD as

UC = 1√
2uC (uC + ξ + g)

(ψ, 0, uC + ξ + g) · σ, uC =
√

(ξ + g)2 + ψ2, (D9)

UD = 1√
2uD(uD + ξ − g)

(−ψ, 0, uD + ξ − g) · σ, uD =
√

(ξ − g)2 + ψ2. (D10)

Under the unitary transformation, we obtain the Hamiltonian as

H (k) = diag(
√

(ξ + g)2 + ψ2,−
√

(ξ + g)2 + ψ2,
√

(ξ − g)2 + ψ2,−
√

(ξ + g)2 + ψ2) (D11)

=
{

(E4, E1, E3, E2) (ξ > 0)
(E3, E2, E4, E1) (ξ < 0) . (D12)
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Under the same unitary transformation, the paramagnetic current operator is given by

Jα =
(

(∂αξ + ∂αgz )σ0 (∂αgx − i∂αgy)UC
†σzUD

(∂αgx + i∂αgy)UD
†σzUC (∂αξ − ∂αgz )σ0

)
. (D13)

With Eqs. (D12) and (D13), we find Jα
23 = 0 and gαβ

32 = 0. Therefore, the magnetic field is essential for a finite-matrix element
of the quantum metric gαβ

32 .
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