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Josephson diode effect in topological superconductors

Zhaochen Liu,1,2 Linghao Huang ,1,2 and Jing Wang 1,2,3,4,*

1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

3Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
4Hefei National Laboratory, Hefei 230088, China

(Received 18 March 2024; revised 25 June 2024; accepted 16 July 2024; published 29 July 2024)

We investigate the Josephson diode effect (JDE) in topological Josephson junctions. By both analytic and
numerical calculations, we find that while a Josephson junction in the topological phase may exhibit higher
diode efficiency compared to that in the trivial phase, this behavior is not universal. The presence of Majorana
bound states is not a sufficient condition for a large diode effect. Furthermore, the diode efficiency undergoes
substantial changes only in specific regions along the topological phase transition boundary, and a significant
diode effect does coincide with the topological phases. Thereby our paper suggests the utilization of topological
superconductivity for enhanced JDE, and also the Josephson diode effect may serve as an indicator for topo-
logical superconductor phase. These results suggest a nuanced relationship between the topological aspects of
Josephson junctions and Josephson diode effect.
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I. INTRODUCTION

Superconductivity, a fascinating macroscopic quantum
phenomenon with profound physical significance and diverse
practical applications, has been the focus of extensive research
for decades [1]. In recent years, the burgeoning field of topo-
logical superconductivity has emerged as an exciting frontier
in condensed matter physics [2–6]. Topological supercon-
ductors are predicted to host exotic quasiparticles, Majorana
bound states (MBS) [7–9], which are topologically protected
and exhibit non-Abelian exchange statistics [10], and have
potential applications in topological quantum computation
[11–13]. One of the most promising avenues for realizing
topological superconductivity is through the Josephson junc-
tions [14–19], which are composed of two superconductors
interconnected by a weak link. When a junction is expected to
transition into a topological superconducting phase, unpaired
MBS will emerge at the junction interfaces. So far substan-
tial theoretical studies have investigated the exotic properties
that MBS may exhibit in the topological Josephson junctions
[3,20–35].

Recently, a diode effect has been proposed and discov-
ered in Josephson junctions, termed as the Josephson diode
effect (JDE) [36–45]. A Josephson diode has asymmetric
critical currents in the forward (I+

c ) and backward (I−
c ) di-

rections [46]. Therefore, it manifests superconductive in one
direction while resistive in the other direction when the
magnitude of current falls within the range min{I−

c , I+
c } <

I < max{I−
c , I+

c }. In comparison to superconducting diode
effect in bulk systems [47–56], Josephson junctions may
attain higher diode efficiency due to the suppression of
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kinetic energy, and thereby the enhancement of the influence
of interactions [57]. Additionally, the supercurrent within a
Josephson junction can be more controllable by adjusting the
phase difference between the two superconductors [58], facil-
itating a deeper understanding of the underlying mechanism
in diode effect.

Since the appearance of MBS in topological superconduc-
tors induces alterations in the energy spectrum of Josephson
junctions, it further modifies the current-phase relation. This
prompts the consideration of the potential impact of MBS on
the JDE. However up to date, there is less focus on the feature
of JDE in the presence of MBS [57,59–65]. These studies
provide some insights into the relationship between diode
effect and topological phase transitions, but the influence of
MBS on JDE as well as the relation between topological
superconductors and JDE still needs more investigations.

Here we study the JDE in two representative systems
consisting of topological superconductors. Specifically, we
consider a proximitized semiconducting nanowire with strong
Rashba spin-orbital coupling (SOC), and a two-dimensional
magnetic topological insulator (TI) thin film proximity
coupled to s-wave superconductivity. By employing the
Bogoliubov–de Gennes (BdG) mean-field calculation, we find
that the presence of MBS in the topological phase strongly
affects the asymmetry of the Andreev spectrum, which leads
to JDE. Moreover, the topological phase can exhibit higher
diode efficiency compared to the trivial phase under certain
conditions, specifically the diode efficiency undergoes sub-
stantial changes only in specific regions along the topological
phase transition boundary, and a significant diode effect does
coincide with the topological phases. Our paper suggests the
utilization of topological superconductivity for enhanced JDE,
while it also suggests JDE may serve as an indicator for
topological superconductors in experiments.
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FIG. 1. (a) Sketch of a Josephson junction along the x axis with
normal state region of finite length L. The SOC is along the y axis
and external magnetic field has both y and z components. (b) Band
structure of normal state in Rashba nanowire. mz term opens an
energy gap while my asymmetrizes the band structure. The system
consists of a pair of outer modes and a pair of inner modes, and
the induced s-wave superconducting pairing acts within each pair of
modes. (c) and (d) The ABS spectrum with respect to different mz

for my/� = 0 and my/� = 0.5, respectively. The red (blue) lines are
spectrum of outer (inner) modes, and the dashed lines mark the upper
bound energy for inner modes.

II. RASHBA NANOWIRE

A. Model

We start from a paradigmatic system of Josephson junc-
tions: a Rashba nanowire with proximity-induced pairing
correlation, see Fig. 1(a). The BdG Hamiltonian for this sys-
tem is given by [15,16]

Ĥ1d = 1

2

∫
dx�̂†(x)H1d�̂(x) (1)

with �̂(x) ≡ (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓)T , and

H1d =
(

k2

2m
− μ + mzσz

)
τz + myσy + αkσyτz + �(x),

where k ≡ −ih̄∂x, the Zeeman coupling my and mz are induced
by the external magnetic field, μ is the chemical potential, α

is the SOC strength and �(x) is the s-wave pairing potential.
σi and τi (i = x, y, z) are Pauli matrices for spin and Nambu
space, respectively. For the Josephson junction with phase dif-
ference φ between two superconductors, the pairing is �(x) =
�σyτy for x � 0 and �(x) = �eiφσy(τy − iτx )/2 + h.c. for
x > L, with L as the length of the junction. We focus on the
experimentally important case of short junction.

In general, the Josephson current can be divided into two
parts: one comes from the Andreev bound states (ABS) and

the other is contributed from the continuum states [38,62,66].
The Josephson current is related to the spectrum of H1d by
[67]

I (φ) = 2e

h̄

∂E

∂φ
, E = −1

2

∑
En�0

En(φ), (2)

where the summation includes both the ABS and continuum
states. Hereafter, we set e = 1 and h̄ = 1.

B. Symmetry analysis

Before explicit calculation, we first analyze the role of
symmetries on the critical current I±

c [39,40,52], denoting the
maximum amplitude of the Josephson current for forward and
backward directions, respectively. Without loss of generality,
we assume that the Josephson current flows along the x axis,
then the operations of time reversal (T ), mirror reflection with
respect to the x axis (Mx), and space inversion (P) can reverse
the current direction, whereas the other two mirror reflection
operations (My and Mz) cannot. Taking T as an example,
if a system exhibits T symmetry when no Josephson current
flows across the junction (with its Hamiltonian denoted as
H (0)), then the system with forward current H (I0x̂) is related
to the system with backward current H (−I0x̂) via T oper-
ation. Therefore, the forward and backward critical current
are equal: I+

c = I−
c , indicating the absence of a diode effect.

Similarly, Mx (P) also ensure I+
c = I−

c . Conversely, My and
Mz symmetries impose no constraints on I±

c . Hence symme-
tries like T , Mx, P , or combined symmetries such as T My,
T Mz, MxMy, MxMz, PMy, PMz and T MyMz can
enforce the vanishing of JDE. In the system under consider-
ation, T = −iσyK where K is complex conjugate, Mx = σx,
My = σy, Mz = σz and P = σ0τ0. The P symmetry requires
PH (k)P−1 = H (−k), which has been broken by the SOC
term, αkσyτz. Without the Zeeman term, the system exhibits
T , Mx, T My, MxMy, and PMz symmetries, thus has no
diode effect. If mz �= 0 and my = 0, T and Mx are broken
but there remain T My, MxMy, and PMz, giving rise to a
zero diode effect. For mz = 0 and my �= 0, all of the above
symmetries are broken. However, there is a hidden symme-
try with U (x)PU (x)†, where U (x) = exp(−iαmxσy/2) is the
spin twist operator [39]. U (x) eliminates SOC, and P sym-
metry requires I+

c = I−
c . Therefore, to obtain JDE, both the

Zeeman terms my and mz are necessary.
As a side note, in this system, zero supercurrent is reached

at φ = 0. If an anomalous phase shift occurs, zero supercur-
rent will arise at a finite phase difference φ = φ0. Therefore,
the symmetry analysis should be done at φ − φ0 = 0, and
the property of φ0 under symmetry transformations should be
considered in the symmetry analysis. However, the symmetry
requirement itself does not change; all the symmetries men-
tioned above should still be broken.

C. Results

In what follows, we discuss the JDE and topological phase
transition in this system by analyzing the Andreev spectrum.
The ABS can be determined using the wave function match-
ing condition in the short junction limit (i.e., junction length
L � ξ superconducting coherence length). For simplicity of
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analytical calculation, we first consider the short junction limit
with L = 0 and choose μ = 0. Assuming that SOC domi-
nates mα2 � �, my, mz, then the linearized Hamiltonian for
the low-energy physics of inner and outer modes [Fig. 1(b)]
can be obtained near kin = 0 and kout = ±2mα, respectively
[63,68]

Hin = αkσyτz + mzσzτz + myσyτ0 + �(x),

Hout = −αkσyτz + myσyτ0 + �(x). (3)

For Hout, σy = ∓ corresponds to kout = ±2mα modes. We
assume that the intermode scattering at the junction interface
is neglected, and thus treat different modes independently.
The Hamiltonian with mz = 0 resembles pervious results on
the finite momentum pairing [38], which can be seen from
the gauge transformation ψ (x) → exp(∓imyx/α)τzψ (x) for
inner and outer modes, respectively. Then the my term is
eliminated, while the pairing term carries an additional phase
factor e∓i2myx/α , which means Cooper pairs in two modes get
opposite momentum. Then the Andreev spectrum of outer
modes are

Eout
1 = � cos(φ/2) + my, Eout

2 = −� cos(φ/2) − my.

(4)
The current-phase relation is obtained from Eq. (2) as
Iout = � sin(φ/2)sgn(� cos(φ/2) + my)/2. Thus the con-
tribution from ABS to JDE is I+

c − I−
c = sgn(my)�(1 −√

1 − (my/�)2)/2. For inner modes, when mz = 0, the spec-
trum is exactly symmetric to the outer modes, which can
be seen from the corresponding Hamiltonian and Andreev
spectrum

E in
1 = � cos(φ/2) − my, E in

2 = −� cos(φ/2) + my. (5)

This means the contributions of two modes exactly compen-
sate each other. Besides, the Josephson current created by
continuum states is independent of φ [38]. As a consequence,
no JDE occurs, which is consistent with the previous symme-
try analysis.

Including nonzero mz does not influence the outer modes,
yet the inner modes are no longer symmetric to the outer
ones. The corresponding equations become too complicated
for analytical solution with nonzero mz and my, we solve the
spectrum numerically. As shown in Figs. 1(c) and 1(d), the
spectrum is symmetric about φ = π when my �= 0, mz = 0.
With nonzero mz, the inner modes get suppressed, and their
contribution to Josephson current would no longer compen-
sate for the outer ones. Thus the imbalance between these
two modes generates nonzero JDE. It is expected that the effi-
ciency factor of JDE, η ≡ (|I+

c − I−
c |)/(I+

c + I−
c ), increases as

mz approaches the topological phase boundary due to further
suppression of the inner modes. Furthermore, we notice that
the inner modes are upper bounded by � −

√
m2

z + m2
y , so

they disappear after the topological transition for m2
z + m2

y >

�2 and only the outer modes solely contribute to the Joseph-
son current.

The topology comes from the single Fermi surface con-
dition. In the trivial region, two band inversions occur at the
inner and outer Fermi points. While for the topological region,
only the band inversion at the outer ones remains. On the other
hand, the diode effect is suppressed due to the compensation

FIG. 2. (a) Energy spectrum of one-dimensional short junction
near Fermi energy with respect to φ at different (my, mz ). The dashed
lines are the analytical results in Eq. (4). (b) Current-phase relation.
(c) η vs my for typical mz. For mz/� < 1, the star symbol marks
the boundary between topological and trivial gapped phases. (d) η vs
mz for several my. The star symbol marks the phase boundary when
my/� < 1. (e) and (f) The dependence of η and Iavg on (my, mz ),
where I0 ≡ e�/h̄. The red dashed lines indicate the phase boundary.
The green dashed lines delineate the boundary between gapped and
gapless regions.

of these two modes. Thus, coincidence of these two different
phenomena could be expected. However, as we can see in the
numerical results below, this dose not mean that topology is a
sufficient condition for a large diode effect.

As studied previously, the contribution from the continuum
states is important for determining the magnitude of the asym-
metry between the critical currents in opposite directions [38].
In Fig. 2, we numerically calculate the low-energy spectrum,
the diode efficiency factor η, and current-phase relation by
taking the contribution from continuum of states into account.
We discretize Eq. (1) on the lattice, and set � = 1 meV,
α = 100 meV nm, m = 2.5 × 10−3 nm−2 meV−1, a = 10 Å,
and L = 2a. Here mα2/� = 25 ensures that SOC dominates
over superconducting pairing and Zeeman field. We set the
total length of nanowire as 1000a. To get rid of finite size
effects, the total DC Josephson current and diode efficiency
η are calculated by the Green’s function method [69,70]. The
low-energy spectrum is plotted in Fig. 2(a), where the dashed
lines represent the analytical results for the ABS spectrum,
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which match well with the numerical results. When my = 0,
the spectrum is symmetric with respect to φ = π , and a sim-
ilar situation also occurs for mz = 0. Only if both my and mz

are nonzero, the spectrum can be asymmetric, giving rise to
JDE. The current-phase relation for several typical parameters
is shown in Fig. 2(b). The discontinuity in the current-phase
relation is due to the ABS changing direction at corresponding
points.

To better understand JDE, we calculate the evolution of
η versus (my, mz ). For fixed mz �= 0 shown in Fig. 2(c), η

increases as my approaches the phase boundary from trivial
side, which accounts for the suppression of ABS from inner
modes. When mz/� � 1, the system is in the topological
phase for my < � and η first increases, and then it enters
into gapless phase for my � � with η dramatically decreasing.
The my term is regarded as the momentum of Cooper pairs
under the gauge transformation. Therefore, when my/� < 1,
the Doppler shift in energy becomes larger as my increases,
and the asymmetry between the critical currents becomes
larger, resulting in higher η. The region my/� � 1 corre-
sponds to gapless superconductivity, where quasiparticles at
zero-energy exist and introduce complexity into the behavior
of the Josephson current, and η shows nonmonotonic depen-
dence on mz. For fixed nonzero my in Fig. 2(d), η grows as
mz increases before the phase transition, also resulting from
the suppression of inner modes. η exhibits a crossover from
the trivial to the topological phase. After the phase transition,
only outer modes of ABS contribute to Josephson current,
and η decreases slowly in mz. Interestingly, η has a kink at
the phase boundary between topological and trivial gapped
superconductor.

The dependence of η and the averaged critical current
Iavg = |I+

c + I−
c | on (my, mz ) are shown in Figs. 2(e) and 2(f),

respectively. We can see that η changes significantly along
my/� = 1 and part of the phase transition boundary, then JDE
seems to be a weak indicator for topological phase transition.
Iavg decreases to be a small value when my > �, where the
critical current I±

c is also small, thus JDE in this region has
little practical significance. We emphasize that in this model,
η is continuous but has a kink near the topological phase
transition. Thus when (my, mz ) are slightly smaller than its
critical value for the topological transition, a large η can be
still reached, where no MBS exists. On the other hand, not all
the topological region in Fig. 2(e) exhibits a large η. These
observations suggest that the emergence of MBS may not be
the essential factor for enhancing JDE, at least not always.
Moreover, when my is small, η changes little as mz increases,
indicating that in this region, the topological phase transition
does not have a significant impact on η.

III. MAGNETIC TI HETEROSTRUCTURE

Now we study JDE in 2D topological superconductivity,
which consists of a magnetic TI thin film proximity coupled to
an s-wave superconductor [71–73]. The BdG Hamiltonian is
described by two surface Dirac fermions with superconduct-
ing pairing,

H2d =
(
H0(k) �

�† −H∗
0(−k)

)
, (6)

where H0(k) = v(kyσx − kxσy)ξz + m(k)ξx + m · σ − μ,
� = �(x, y)(ξ0 + ξz )/2 is the superconducting pairing
induced on the top layer with �(x, y) = �(x). We consider
the planar Josephson junction [74–77] with �(x) = i�σy for
x � 0 and �(x) = i�eiφσy for x > L. σi and ξi (i = x, y, z)
are Pauli matrices for spin and layer, respectively. v is Dirac
velocity, m(k) = m0 + m1(k2

x + k2
y ) represents the interlayer

coupling, m is the Zeeman term, and μ is the chemical
potential. We focus on the short junction.

We then analyze the symmetry constraints of JDE in this
system. Without the Zeeman and pairing terms, the system
has time-reversal symmetry T = −iσyK, mirror symmetries
Mx = σx, My = σy, Mz = σzξx and inversion symmetry
P = ξx. To obtain a nonzero JDE with Josephson current
along the x direction, we need to break symmetries such as
T , Mx, P , T My, T Mz, MxMy, MxMz, PMy, PMz,
and T MyMz. Therefore, an asymmetric pairing term is in-
troduced to break P , T Mz, MxMz and PMy. The other
symmetries are broken by the Zeeman term my. Here we
consider the external magnetic field is applied along both the
y and z axis.

The phase diagram of underlying system has been studied
previously [71], where the phase boundaries are determined
by the bulk BdG gap closing at k = 0. For my = 0 and
μ = 0, the phase boundary is given by ±�mz + m2

z = m2
0.

Each gapped phase is characterized by a BdG Chern num-
ber N . N = 0 for |mz| < (

√
�2 + 4m2

0 − �)/2, N = sgn(mz )
when (

√
�2 + 4m2

0 − �)/2 < |mz| < (
√

�2 + 4m2
0 + �)/2,

and N = 2sgn(mz ) for |mz| > (
√

�2 + 4m2
0 + �)/2. When

my �= 0 and μ �= 0, the phase diagram is obtained through
adiabatic evolution to that when my = 0 and μ = 0. The
N = 0 and N = 2 phases are adiabatically connected to trivial
insulator and quantum anomalous Hall insulator without gap
closure, respectively. N = 1 phase is the nontrivial topologi-
cal superconductor which has a single chiral Majorana edge
mode, and we will see below the influence of topology on
JDE.

We numerically calculate JDE in Fig. 3, and set m0 =
−14 meV, a = 20 Å, v = 3.2 eV Å, m1 = 9.405 eV Å2, � =
1 meV, L = 2a. Furthermore, we set μ = 5 meV since a
finite chemical potential would enhance the proximity effect
and enlarge N = 1 phase [71,78]. With periodic boundary
condition along the y axis, the Josephson current can be ex-
pressed as I (φ) = ∫

dky/2π I (ky, φ). In Fig. 3(a), we present
the low-energy spectrum of the planar Josephson junction at
ky = 0 for typical parameters, where the junction length in
the x direction is set as 5000a. For my = 0, the spectrum is
symmetric with respect to φ = π [14,79]. The introduction
of a nonzero my leads to an asymmetry in the bound state
spectrum. Moreover, when the Zeeman term predominantly
lies in the x-y plane [second row of Fig. 3(a)], there is a clear
imbalance between the two branches, and their dispersion can
be fitted into Eq. (4). Then JDE is expected. However, for
regions where either the interlayer hybridization or Zeeman
terms dominates [first row of Fig. 3(a)], the system does not
develop superconducting correlation and the ABS is absent,
resulting in a vanishing JDE. The η vs my and mz are plotted
in Figs. 3(c) and 3(d), respectively. It is evident that when
mz/� < 9 is small, the system undergoes two topological
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FIG. 3. (a) Energy spectrum of 2D magnetic TI heterostructure
near Fermi energy with respect to φ at different (my, mz ). (b) Current-
phase relation. (c) η vs my. (d) η vs mz. The blue star symbol marks
the phase boundary between trivial and N = 1 phase, and the red
marks boundary between N = 1 and N = 2 phase. (e) and (f) η and
Iavg vs (my, mz ), respectively. The dashed yellow lines indicate the
phase boundary.

phase transitions as my increases. JDE almost vanishes in
the N = 0 phase. In contrast, both N = 1 and N = 2 phases
manifest finite η. When the system is deep inside the N = 2
phase, η almost vanishes for the Zeeman terms dominate.

In Figs. 3(e) and 3(f), we present η and Iavg as functions of
(my, mz ). Here Iavg serves as an indicator of the dominance of

superconducting correlation. Thus η only has a nonzero value
within the region where Iavg �= 0. Similar to the nanowire case,
η changes significantly along part of the phase boundary, and
not all the topological region exhibits a large η. However,
the largest η resides in the topological N = 1 phase. With
combined η and Iavg, we can identify large part of N = 1
phase by JDE, namely large JDE is an indicator for N = 1
topological phase. However, the identification of the phase
boundary by JDE is not obvious.

IV. CONCLUSION

We have analyzed the JDE in two representative models
consisting of topological superconductors in one and two
dimensions. Our results indicate that, in general, the diode
efficiency can be high but not always in the topological phase.
A Josephson junction in the trivial phase can also achieve
relative high diode efficiency. This suggests that the existence
of MBS is not a sufficient condition for realizing a large JDE.
On the other hand, a significant diode effect does coincide
with the topological phases, and the distinct change in diode
efficiency occurs alongside some segments of the topological
phase transition boundaries. In this sense, JDE with combined
η and Iavg can serve as an indicator for topological supercon-
ductor phase. We hope the theoretical work here could aid the
identification of topological superconductivity by using JDE.

Note added. Recently, we learned of an independent work
on a similar problem [80]. However, their model and conclu-
sion are different from our results.
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