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Squeezed and nascent vortices in a thin normal layer with proximity induced superconductivity
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It is theoretically found that in-plane vortices may exist in a thin normal metal (N) layer (with thickness
dN much smaller than the coherence length ξN ) that covers a superconductor (S). Vortices enter the N layer
with proximity-induced superconductivity at a sufficiently large in-plane magnetic field. These vorticies have
squeezed cores and are located (pinned) near the SN interface. At large magnetic fields, we find a nascent vortex
state, which is a spatially modulated state along the finite length N layer with zero vorticity. This state does not
exist in a finite length single S layer.
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I. INTRODUCTION

The normal metal layer (N) covering the superconducting
material (S) [see Fig. 1(a)] behaves in many respects like
an ordinary superconductor. It screens weak magnetic field
[1–8] and can carry a superconducting current density js
comparable to the depairing current density of the adjacent
superconductor [9,10]. Superconducting correlations pene-
trate into the N layer up to a distance of about ξN , which
at low temperatures can be much larger than the magnetic
field penetration depth λN [1–4]. This makes the N layer with
proximity-induced superconductivity a type I superconductor.
In the experiment, an abrupt breakdown of the induced super-
conductivity at a magnetic field Bb, its recovery at a return
field Br < Bb, and magnetic hysteresis have been observed
[2–4], which are typical magnetic properties of type I super-
conductors.

Previous theories on the superconducting and magnetic
properties of the N layer were based on a one-dimensional
model where the superconducting characteristics depend only
on the longitudinal (in direction of the normal metal) coordi-
nate [1,3,5–8]. This approach is explained by the simplicity of
the 1D model and the presumption of type I superconductivity,
where the presence of vortices is not expected. In the present
work, we address the question of the existence of vortices in a
finite length N layer with thickness dN � ξN , λN while the S
layer is a type II superconductor with thickness dS � ξS � λS .
These conditions mean that the magnetic field almost does not
vary across the SN bilayer. In comparison with Refs. [2–4],
where micron thick N layers have been studied, this limit
can be realized for small dN (about dozens of nanometers)
leading to a small mean free path � ∼ dN and relatively high
resistivity, which results in both dN � ξN and dN � λN even
at low temperatures (so-called dirty limit).

Our main result is that vortices may exist in the N layer
despite its small thickness dN � ξN in the case of a relatively
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large proximity-induced superconducting order parameter �.
In some sense, it is a surprising result because even in a
single S layer, vortices do not exist if its thickness is less than
∼1.84ξS [11]. Vortices enter the N layer at the field Bb and exit
at the return field Br < Bb, which is accompanied by a sud-
den change in magnetization, hysteretic magnetization curve
M(B), and a spatial oscillations of � along the N layer in the
vortex state. Vortices enter the S layer at a much larger field
Bs � Bb when the edge barrier for vortex entry is suppressed,
while at B < Bs they are located near the SN interface with
cores extending into both the superconductor and the normal
layer. Due to dN � ξN , vortex cores are squeezed in the N
layer.

When the proximity-induced � is small, we find a non-
hysteretic M(B) and gradual suppression of � at B > Bb. In
this case, the oscillations of � along the N layer [along the
x axis in Fig. 1(a)] appear at B > Bb despite zero vorticity
Nv = ∮ ∇φdl/2π = 0 (φ is the phase of superconducting
order parameter). Minima in the dependence �(x) could be
considered as weak places where vortices enter the N layer
at a larger field, and we call this state the nascent vortex
state. A similar state has been predicted [12,13] for a single
S layer placed in a magnetic field just below the field of
suppression of the Bean-Livinston barrier for vortex entry
[14], but it turned out to be an unstable saddle point state
[15]. We have recently found that it can be stabilized in a
current-carrying SN bridge [16], and we extend this result
here to a finite-length SN bilayer in an in-plane magnetic field.
We find that, in addition to nascent vortices there are also
ordinary vortices that can enter and exit the N layer reversibly.
We argue that this behavior resembles the properties of a thin
finite length single S layer at a magnetic field exceeding the
third critical magnetic field Bc3 [17], when superconductivity
survives mainly near the ends of the S layer.

The structure of the paper is as follows. In Sec. II we
describe our model. In Sec. III we present our results for the
finite-length SN bilayer, and in Sec. IV for the superconduct-
ing layer. In Sec. V we discuss our results and in Sec. VI we
make conclusions.
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FIG. 1. (a) A superconductor-normal metal bilayer of finite
length L in an in-plane magnetic field. We assume that there is no
dependence of superconducting properties in the z direction. (b) Our
results should also be applicable to a finite length superconducting
strip with an N region near the edge, placed in an out-of-plane
magnetic field.

II. MODEL

The calculations are based on the numerical solution of the
two-dimensional Ginzburg-Landau equation for the supercon-
ducting order parameter � = �eiφ ,

π h̄DS,N

8kBTcS

(
∇ + i

2πA

	0

)2

� +
(

1 − T

TcS,cN
− �2

�2
GL

)
� = 0,

(1)

where DS,N is the diffusion coefficient in the S and N lay-
ers, respectively, �GL = 3.06kBTcS,cN , and A is the vector
potential. The N layer is modeled as a superconductor with a
critical temperature TcN < TcS while the temperature is chosen
from the interval TcN < T < TcS . At the SN interface, we use
the boundary condition DSd�/dy = DN d�/dy, and at the
boundaries with the vacuum, d�/dn = 0. We do not solve the
Maxwell equation for the vector potential because we assume
that dN + dS is much less than the London penetration depth,
and we choose A = (−By, 0, 0).

Technically, we solve Eq. (1) by adding the time derivative
d�/dt to the right-hand side and using the Euler method
for the numerical solution of the first order time-dependent
equation. For any value of the magnetic field B we search for
a time-independent state with d�/dt → 0. The method used
allows us to automatically check the stability of the static state
and find transient states with entering/exiting vortices. For
sweeping the field up/down, we use the static state found at
the previous value of B as the initial condition.

In the framework of this model, the coherence lengths
in S and N layers are ξS = ξc

√
π/8(1 − T/TcS ) and ξN =

ξc
√

π/8(T/TcN − 1)
√

DN/DS , where ξc = √
h̄DS/kBTcS .

The one-dimensional version of the GL equation has been
widely used to study proximity-induced superconductivity in
the N layer [1,3,8] and has demonstrated its applicability
in describing experimental results, at least qualitatively. The
system we consider here is shown in Fig. 1(a)—this is a finite
thickness and length SN bilayer placed in an in-plane field
[our results could also be applied to a finite width and length
SN strip in an out-of-plane magnetic field shown in Fig. 1(b)].

We calculate the magnetic moment of the SN bilayer M as

M = 1

2c

∫∫
[r × js]dxdy, (2)

FIG. 2. (a) Magnetization curve of the SN bilayer at T/TcN =
1.05. In the inset, we show the change in the vortex number with
sweeping up and down of the magnetic field. (b) Spatial variation
of � along the SN bilayer on the SN interface at different magnetic
fields. Minima in �(x) correspond to the locations of vortex cores
at B < 0.08Bc2, while at larger fields the number of minima is larger
than the number of vortices. Red circles indicate minima of �(x)
occupied by vortices at B/Bc2 = 0.1. (c), (d) Two-dimensional distri-
bution of � in the SN bilayer at two magnetic fields: B = 0.032Bc2

(just before transition to the vortex-free state when sweeping field
down) and B = 0.1Bc2.

where the superconducting current density

js = − 1

ρS,N |e|
π |�|2q

4kBTcS
= − c

4πλ2
S,N

(	0∇φ/2π + A), (3)

where ρS,N = 1/(2e2DS,N N (0)) is the resistivity of the S and
N layers [N (0) is a density of states of electrons on the Fermi
level, which is taken to be the same in the S and N layers to
reduce the number of free parameters], q = ∇φ + 2πA/	0,
	0 = π h̄c/|e| is the magnetic flux quantum.

In our calculations, we choose T/TcS = 0.8 (which gives
ξS ∼ 1.4ξc), the ratio DN/DS = 100, and two values for
T/TcN = 1.05 (ξN ∼ 28ξc) and T/TcN = 1.2 (ξN ∼ 14ξc).
These values correspond to cases with relatively large and
small induced � in the N layer. The other parameters
are as follows: dS = 10ξc ∼ 7ξS , dN = 3ξc � ξN , and L =
200ξc. The magnetic moment is normalized in units of M0 =
ξ 3

c jdep/2c, where jdep is the depairing current density in the
superconductor. The magnetic field is given in units of Bc2 =
	0/2πξ 2

S .
If we consider Al as a normal metal with resistivity ρN �

2 µOhm · cm at low temperatures for films with dN � 50 nm
[18] then we find λN ∼ ρ

1/2
N /� ∼ 21ξc for T/TcN = 1.05,

and λN ∼ 43ξc for T/TcN = 1.2 at B = 0. Therefore, for the
chosen parameters, we have type II superconductivity in the
N layer.

III. VORTICES IN A THIN N LAYER

In Fig. 2 we show our results for the SN bilayer when
T/TcN = 1.05. With increasing field, a vortex chain consisting
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FIG. 3. (a) The magnetization curve of the SN bilayer with the
same parameters as in Fig. 2 and T/TcN = 1.2. In the inset we show
the dependence Nv (B). (b) Variation of � along the SN bilayer
at the SN interface at different magnetic fields. Minima in �(x)
correspond to the location of nascent vortices at B < 0.063Bc2. For
B > 0.063Bc2 there are two vortices located in the minima closest to
the ends of bilayer. (c), (d) The two-dimensional distribution of �

across the SN bilayer at two magnetic fields: B = 0.038Bc2 (at this
field strong suppression of proximity-induced superconductivity in
the N layer starts) and B = 0.1Bc2.

of six vortices enters the N layer at B = Bb � 0.064Bc2, lead-
ing to a sharp increase in M [see Fig. 2(a)]. Vortices cannot
enter the S layer because there is an energy barrier similar
to the Bean-Livingston barrier [14], due to the difference in
� in the S and N layers. This barrier is suppressed only
at B = Bs � 0.34Bc2, and vortices remain pinned at the SN
interface. Because of the vortices, there are spatial oscillations
of � along the SN bilayer, as shown in Figs. 2(b)–2(d). With
increasing magnetic field, the number of vortices increases up
to eight, then two vortices exit, and at high fields, vortices
enter in pairs. At B/Bc2 > 0.08, the number of oscillations
of � is larger than the number of vortices. Minima in �(x)
that are “empty” of vortices act as potential entry points for
ordinary vortices entry at higher fields, and we refer to these
as nascent vortices.

At sweeping field down, vortices exit the N layer one by
one at B < 0.064Bc2 and in pairs at larger fields. The last vor-
tex exits at the field Br � 0.03Bc2. The magnetization curve is
hysteretic in the field range Br < B/Bc2 < 0.064, and M(B)
is nonhysteretic in the field range 0.064 < B/Bc2 < Bs, where
vortex entry/exit is reversible. Due to small thickness of the N
layer, the vortices have squeezed cores as shown in Figs. 2(c)
and (d). Partially, their cores are located in the S layer, where
they are much smaller in size, as can be seen in Fig. 2(c).

In Fig. 3 we show results when T/TcN = 1.2, which corre-
sponds to a much smaller induced � (almost half compared to
T/TcN = 1.05) in the N layer. In this case, the magnetization
curve is reversible [see Fig. 3(a)] at all fields up to Bs �
0.34Bc2 when vortices enter the S layer. Strong suppression of
superconductivity in the N layer starts at B = Bb � 0.038Bc2,
leading to an increase in magnetization. Up to the field

FIG. 4. (a) The magnetization curves of the finite length super-
conducting layer with a thickness dS = 1.8ξS and different lengths
L at large magnetic fields are shown. In the inset, we plot the field-
dependent number of vortices Nv . (b) Dependence �(x) in the center
of the S layer with length L = 36ξS at different magnetic fields is
depicted. Minima in �(x) correspond to the locations of the vortex
cores. (c), (d) Dependencies �(x, y) in the S layer with L = 36ξS

at B = 2.26Bc2 (just below B∞
c ), see (c); and at B = 2.48Bc2, when

there are six vortices in the S layer, see (d).

B = 0.068Bc2, there are no vortices, but � oscillates along
the N layer as shown in Fig. 3(b). For B > 0.068Bc2, vortices
enter the N layer in pairs via local minima in �(x) which
are closest to the layer ends. Their entry/exit is reversible.
The number of oscillations of � is larger than the number
of vortices, resembling the situation with nascent vortices
considered above.

IV. VORTICES IN A THIN SINGLE S LAYER

Before discussing our results, it makes sense to consider
vortex states in a finite length thin single S layer. It is known
that when dS � 1.84ξS , there are no vortices in the infinitely
long S layer at any magnetic field [11], up to B∞

c /Bc2 �
2
√

3ξS/dS , at which point superconductivity vanishes [19].
Because of absence of the vortices, the magnetization curve
of such a superconductor is nonhysteretic. However, we find
that in the finite length S layer, vortices may exist up to
dS ∼ 1.4ξS , and their entry/exit is reversible. In Fig. 4 we
show typical magnetization curves of the superconducting
layer with a thickness dS = 1.8ξS and different lengths. The
superconductivity survives at B > B∞

c due to the presence of
corners at the layer ends, which makes the effective thickness
of the superconductor smaller [20], leading to a larger critical
magnetic field according to the expression for B∞

c . Note that
the same effect exists in superconducting wedges, squares, or
triangles [20–24].

Above B∞
c , vortex pairs enter the S layer in the middle (one

vortex from each edge) where � is minimal, and then they
relocate toward the ends of the layer. The longer the layer, the
larger the number of vortices that can enter the superconductor
before its transition to the normal state. This vortex entry/exit
process is reversible, providing nonhysteretic M(B).
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The same effect exists in an S layer of finite length
with dS > 1.84ξS at a magnetic field exceeding third critical
magnetic field of an infinitely long S layer B∞

c3 (dS ) (B∞
c3 �

1.695Bc2 when dS � ξS [17]). At B > B∞
c3 superconductivity

survives near the ends of the S layer, and vortex entry/exit is
reversible in the field range B∞

c3 < B < BL
c3 (BL

c3(dS � ξS ) ∼
2Bc2 [24]). In this case the number of vortices scales with the
length of the superconductor.

V. DISCUSSION

Let us start the discussion of our results concerning the
effects associated with the finite length of the N layer. The
finite length is responsible for the appearance of ordinary
and nascent vortex states at large magnetic fields, when
proximity-induced superconductivity in the N layer is strongly
suppressed. This corresponds to fields B > Bb for both cases
(T/TcN = 1.05 and 1.2) considered in Sec. III. At these fields
vortex entry and exit are reversible (when B < Bs � 0.34Bc2

and vortices do not enter the S layer), M(B) is nonhysteretic,
and it resembles the properties of a finite length S layer at
B > B∞

c (1.4ξS � dS � 1.84ξS) or B > B∞
c3 (dS � 1.84ξS).

The new feature, which is absent in a single S layer, is
the existence of nascent vortices in the N layer due to the
influence of the adjacent superconductor. Indeed, in a single
S layer, � exponentially decays far from the ends at large
B [see Figs. 4(b) and 4(d)], while in the N layer, the ampli-
tude of oscillations of � rapidly decays but � saturates [see
Figs. 3(b) and 3(d)]. In a single S layer, the number of vortices
scales with the length [see Fig. 4(b)], while in the N layer the
sum of ordinary and nascent vortices scales with L (this has
been verified for lengths L = 100 − 300ξc). Nascent vortices
could be considered as an analog of ordinary vortices, which
cannot fully enter the N layer at large B due to relatively large
proximity-induced �.

Properties of the N layer with a large induced � (case with
T/TcN = 1.05) in the field range Br < B < Bb resemble the
properties of a single S layer with dS � 1.84ξS at B < B∞

c3 . As
in the S layer, the vortex entry and exit are irreversible, M(B)
is hysteretic, nascent vortices are absent, and the number of
vortices scales with the length of the N layer (this is veri-
fied for lengths L = 100 − 300ξc). However, in the N layer,
vortices may exist even when dN � ξN due to the adjacent
superconductor with ξS � ξN , where part of the vortex core is
located.

We find similar results for different values of T/TcN . Hys-
teresis in M(B) appears at T/TcN � 1.15 (this value is not
universal and depends on the ratio DN/DS and dN ). With
increasing T/TcN the value of � decreases in the N layer,
leading to a smaller Bb above which nascent and ordinary vor-
tices appear in the N layer. With decreasing T/TcN , hysteresis
increases and in the field range Br < B < Bb there are only
ordinary vortices in the N layer, while nascent vortices exist
at large fields when � becomes strongly suppressed.

Similar nascent vortices were found theoretically in a
current-carrying SN bridge with normal or superconducting
leads [16] where the name “nascent vortex” was adopted
from Ref. [13] (see discussion in Ref. [16]). In [16] it
was proven that the nascent vortex state is a finite length
effect and appears in an inhomogeneous superconductor.

Additionally, it was argued that nascent vortices have
similarities with different types of saddle point states in
current-carrying superconductors or superconductors placed
in a magnetic field. This statement is also valid for the system
considered here.

When N is a true normal metal with TcN = 0 or a supercon-
ductor with TcN � TcS , the change of T/TcN at a fixed T/TcS

corresponds to the change of the temperature when T � TcS ,
and the superconducting parameters of the S layer are almost
temperature independent. From the Usadel and Eilenberger
models, it follows that with lowering T , the induced � (or
anomalous Green function) increases in the N layer, and ξN =√

h̄DN/6πkBT (dirty limit) or ξN = h̄vFN/2πkBT (pure limit)
increases too. Therefore, we expect that at high temperature,
the magnetization of the N layer will be reversible with no
ordinary or nascent vortices—if we neglect finite length effect,
as in the case of a superconducting cylinder covered by thin
normal layer. At low T the magnetization curve will be hys-
teretic, with squeezed vortices located near the SN interface
in the field range Br � B � Bb.

Our calculations show that to observe the predicted effect,
one needs DN � DS (ρN � ρS). This provides a large differ-
ence in � in the S and N layers, which favors vortex pinning
at the SN interface. Dirty superconductors like NbN, MoSi,
and NbTiN, and low resistive thin films of Au, Ag, Al, and Cu
with thicknesses of about dozens of nanometers are preferable
candidates.

There is an interesting question about how the results
would change when the thickness of the N layer greatly ex-
ceeds λN , but we still have dN � ξN , which means that the N
layer is a type I superconductor. When vortices enter the N
layer, they strongly suppress � there [see Figs. 2(b) and 2(c)].
Because λN ∼ 1/� in the Ginzburg-Landau model (which
assumes a local relation between the superconducting current
and the vector potential), the magnetic field penetrates deeper
into the N layer in the vortex state. This makes the system
closer to the model studied here, at least for not extremely
small Ginzburg-Landau parameter κ . Note that the nonlocal
relation between current density and vector potential in the
N layer, which has been considered in several works [5–7],
makes the problem more complex from the point of view of
the appearance of vortices.

Nevertheless, we speculate that our results could be con-
sidered as a possible mechanism for the peculiar diamagnetic
and paramagnetic responses of the normal metal layer found
in Refs. [25,26], which covers the superconducting cylinder.
These results were observed at extremely low temperatures,
when the thickness of the N layer is comparable with ξN .
At such a low T , one may expect a relatively large value
of the induced � in the N layer needed for the appearance
of vortices. The superconductor was a dirty Nb which has a
short coherence length ξS ∼ 10 nm � ξN ∼ 5 − 10 µm, diffu-
sion coefficient DS � DN and a large pinning current density,
which assumes large intrinsic inhomogeneity. The last prop-
erty may provide pinning of the vortex cores that partially
penetrate the superconductor, according to our results. In the
experiment, M(B) was hysteretic at low temperature and non-
hysteretic at high temperature. Therefore, we suppose that
frozen (pinned) vortices may appear at the SN interface at low
T when the magnetic field is swept up and down, leading to a
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paramagnetic response of the N layer. Indeed, we found that
a local defect in the superconductor placed close to the SN
interface (modeled as a local suppression of TcS) decreases
Br . However, to make a quantitative comparison with an ex-
periment, one needs to consider the minimal model where the
N layer is a superconductor with a small London penetration
depth λN � ξN , thickness dN � ξN , and the S layer is a type
II superconductor with a small coherence length ξS � ξN .

VI. CONCLUSION

We theoretically find that at sufficiently large in-plane mag-
netic field, vortices may exist in a thin N layer that covers the

superconductor. The cores of the vortices are located in both
the superconductor and the normal metal, and in the N layer
they are strongly squeezed due to its small thickness dN � ξN .
At large magnetic fields, nascent vortices may exist in a finite
length N layer, leading to a state with spatial oscillations of �

along the N layer and zero vorticity.
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