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A general free bosonic system with a pairing term is described by a bosonic Bogoliubov-de Gennes (BdG)
Hamiltonian. The representation is given by a pseudo-Hermitian matrix, which is crucially different from the
Hermitian representation of a fermionic BdG Hamiltonian. In fermionic BdG systems, a topological invariant of
the whole particle (hole) bands can be nontrivial, which characterizes the Andreev bound states (ABS), including
Majorana fermions. In bosonic cases, on the other hand, the corresponding topological invariant is thought to be
trivial, owing to the stability condition of the bosonic ground state. In this paper, we consider a two-dimensional
model that realizes a bosonic analogy of the ABS at the boundaries. The boundary states of this model are located
outside the bulk bands and are characterized by a nontrivial Berry phase (or polarization) of the hole band.
Furthermore, we investigate the zero-energy flat-band limit in which the Bloch Hamiltonian is defective, where
the particle and hole states are identical to each other. In this limit, the Berry phase is Z2 quantized thanks to an
emergent parity-time symmetry induced by the defective nature. This is an example of a topological invariant that
uses the defective nature as a projection structure. Thus, boundary states in our model are essentially different
from Hermitian topological modes and their variants. We also discuss the entanglement entropy of the system
with bosonic Andreev bound states, motivated by the relationship between our model and the continuous variable
surface codes.
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I. INTRODUCTION

The bosonic excitations from a Bose-Einstein condensate
are well described by a quadratic Hamiltonian called the
bosonic Bogoliubov-de Gennes (BdG) Hamiltonian [1–4]. As
well as the systems that consist of bosons such as photons
[5,6] and bosonic atoms [3], the bosonic BdG Hamiltonian
can describe emergent bosonic quasiparticles in ordered states
such as magnons [7] and phonons [8]. Unlike the fermionic
counterpart, its excitation spectrum is related to the eigen-
spectrum of a pseudo-Hermitian Hamiltonian matrix with a
particle-hole symmetry [9] if there exists a paring term, which
breaks the particle-number conservation. This is an example
of the non-Hermitian system whose non-Hermiticity origi-
nates not from an open quantum nature but from the linear
approximation of a nonlinear equation.

Recently, a lot of concepts in topological physics [10,11]
have been generalized to bosonic BdG Hamiltonians even
though the representation matrix is pseudo-Hermitian [7]. For
example, the Chern number is defined by using a paraunitary
matrix, and it characterizes the bulk-boundary correspondence
[12] as in the case of Hermitian topological physics [13].
Similar generalizations for other topological numbers such as
the Z2 invariant have been extensively studied [14]. In the lan-
guage of non-Hermitian topological physics [15–17], this is a
manifestation of the line-gap topology, which is adiabatically
connected to the Hermitian topology without closing the gap
and changing the symmetry [18].
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One interesting direction is to seek topological boundary
states that reflect the BdG nature. In fermionic cases, a topo-
logical number of the whole particle (hole) bands can be
nontrivial, and it describes the Andreev bound states (ABS)
including Majorana fermions [19,20]. In bosonic cases, on
the other hand, the corresponding topological invariant can
not be nontrivial if we limit our discussion to a topological
phase transition in Kitaev’s periodic table [21,22], which re-
quires a nontrivial band inversion process. For the stability
of the ground state, the bosonic excitation energies should
be nonnegative. Owing to this stability condition, the BdG
Hamiltonian is adiabatically connected to a trivial Hamilto-
nian without closing the gap between the particle and hole
bands [12].

In this paper, we investigate a BdG Hamiltonian on the
two-dimensional square lattice and find a bosonic analogy of
ABS at the boundaries that are induced by a nontrivial Berry
phase of the particle (hole) bands defined in an unconventional
manner. In an extreme limit, the Berry phase is Z2 quantized,
owing to an emergent parity-time symmetry. This quantization
can be understood as the non-Hermitian topology that uses
the defective nature as a projection structure. We also discuss
the entanglement entropy of our model, motivated by the
similarity with continuous variable surface codes.

This paper is organized as follows. In Sec. II, we review
the basics of the free bosonic BdG Hamiltonian and intro-
duce notations in this paper. In particular, we focus on the
non-Hermitian nature of the bosonic BdG Hamiltonian. In
Sec. III, we define a model with bosonic boundary states,
which are characterized by the nontrivial Berry phase defined
in an unconventional manner. In Sec. IV, we consider the
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zero-energy flat-band limit in which the Hamiltonian is de-
fective. In this limit, we define the Z2 topological number
protected by the effective parity-time symmetry and the
Z topological number for non-Hermitian defective struc-
ture. In Sec. V, we discuss the entanglement structure of
the system with bosonic Andreev bound states. In con-
tinuous variable surface codes, there exist boundary states
similar to our model. Motivated by this similarity, we
investigate the topological entanglement entropy of our
model.

II. BASICS OF BOSONIC BDG HAMILTONIAN

First, we review the basic properties of BdG Hamiltoni-
ans and define some notations. A translation-invariant lattice
BdG Hamiltonian with N internal degrees of freedom is given
by [12]

Ĥ = 1

2

∑
k

(a†
k, a−k)Hk

(
ak

a†
−k

)
, (1)

where a†
k = (a†

1,k, · · · , a†
N,k) denote creation operators of

bosons with crystal momentum k. Hk is a 2N × 2N Hermitian
matrix with the following form [12]:

Hk =
(

hk sk

s∗
−k h∗

−k

)
, (2)

where hk and sk are N × N matrices that represent the normal
term and pairing term (anomalous term), respectively. Due to
the Hermiticity of H , h and s are Hermitian and symmetric
matrices, respectively. It is well known that the excitation
spectrum of the bosonic BdG Hamiltonian is not given by
the eigenspectrum of Hk if the pairing term is nonzero, unlike
in the case of fermions [1–4]. This is because unitary trans-
formation for the bosonic Nambu spinor destroys the bosonic
commutation relation under the pairing term. Thus, the naive
unitary diagonalization does not work for the bosonic BdG
Hamiltonian. Interestingly, the true excitation spectrum is re-
lated to the eigenspectrum of a pseudo-Hermitian matrix with
a particle-hole symmetry [9]:

Hσ
k := σzHk, (3)

σz
[
Hσ

k

]†
σz = Hσ

k , (4)

σx
[
Hσ

−k

]∗
σx = −Hσ

k , (5)

where σ ′s denote the Pauli matrices in Nambu space. This
pseudo-Hermitian matrix is diagonalized by a paraunitary ma-
trix Pk [12]:

P−1
k Hσ

k Pk =
(

Ek 0
0 −E−k

)
, (6)

PkσzP
†
k = P†

k σzPk = σz. (7)

Here, Ek is the diagonal matrix whose elements {εk,a | a =
1, · · · , N} are the excitation energies. An explicit construction
of the paraunitary matrix P is given in the Appendix. Note

that the excitation energies can be negative or complex with-
out further assumptions. Since the former/latter leads to the
Landau/dynamical instability of the ground state [3], the pos-
itive semidefiniteness of the Hermitian matrix Hk is assumed
to realize the nonnegative excitation energies in conventional
condensed matter physics [23]. In the following, we call {εk,a}
and {εk,−a := −ε−k,a} the particle and hole bands, respec-
tively. Owing to the non-Hermiticity (nonnormality), the bra
(left) eigenvectors are not always the hermitian conjugate of
the ket (right) eigenvectors:

〈〈k, i|Hσ
k = εk,i〈〈k, i|,

Hσ
k |k, i〉 = εk,i |k, i〉 , (8)

where i takes both a and −a. If we take the biorthonormal
convention, the bra and ket eigenvectors are in the following
relations [18,24]:

|k, i〉〉 = sgn(i)σz|k, i〉, (9)

〈〈k, i|k, j〉 = sgn(i) 〈k, i| σz|k, j〉 = δi, j . (10)

In topological physics of bosonic BdG systems, the topo-
logical invariants are usually defined by using both the right
and left eigenvectors. For example, the Berry connection de-
fined in Refs. [12,24,25] is rewritten as follows:

ALR
i,ν (k) : = iTr[�iσzP

†
k σz(∂kν

Pk)]

= iTr
[
�iP

−1
k (∂kν

Pk)
]

= i〈〈k, i|∂kν
|k, i〉 , (11)

where �i is a diagonal matrix taking +1 for the ith diagonal
component and zero otherwise. We have used the paraunitary
condition (7) and assumed the biorthonormal convention. The
Chern number is defined by using ALR

i,ν , which describes the
topological physics of the bulk-boundary correspondence. As
mentioned in the introduction, these topological invariants
cannot be nontrivial for the whole particle (hole) bands if
we assume the positive definiteness of Hk, which ensures
the positivity of the excitation energies. This is because the
Hamiltonian Hσ

k under this condition is adiabatically con-
nected to 1N×N ⊗ σz without closing the gap between the
particle and hole bands [12]. In the following, we seek another
possibility: the boundary states induced by the polarization of
the particle (hole) bands.

III. MODEL WITH NONTRIVIAL BERRY PHASE

According to the “modern theory” of polarization [26], the
bulk polarization is given by the Berry phase (divided by 2π )
that is defined as the integration of the Berry connection on a
noncontractible loop in the Brillouin zone. In one dimension,
the Berry phase is given by

γi = i
∫ π

−π

dk 〈k, i| ∂k |k, i〉 , (12)

where k is the one-dimensional crystal momentum with lattice
constant a = 1. In recent topological physics, bulk polariza-
tion is known as another route to induce the boundary states.
We here generalize this idea to the particle (hole) bands of a
bosonic BdG Hamiltonian.
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FIG. 1. (a) Band structure for r = 0.8 and ky-resolved dispersion on a cylinder (open/periodic boundary condition in the x/y direction) for
various r. The system size is 32 × 32. A π flux is inserted in the cylinder to avoid ky = 0, π . (b) Berry phases γ RR and γ LR of the hole band
for various r. Upper panel: Calculation using a Bloch wave that is a continuous function of k. Lower panel: The remainder of the Berry phase
divided by 2π . The momenta ky = 0, π are avoided. The system size is 200 × 50. For numerical integration, the size in the x direction is taken
much larger than that in the y direction.

Let us consider the following two-dimensional bosonic BdG Hamiltonian:

Hσ
k =2t (1 − cos kx cos ky)σz + 2i t r[(cos ky − cos kx )σx + sin kx sin kyσy], (13)

where r � 0 describes the strength of the paring term. In the following, we set the hopping parameter t to unity. This Hamiltonian
satisfies Eqs. (4) and (5). The eigenspectrum is calculated as

E±(k) = ±2
√

(1 − cos kx cos ky)2 − r2[(cos ky − cos kx )2 + (sin kx sin ky)2]

= ±2
√

1 − r2(1 − cos kx cos ky), (14)

where ± denotes particle and hole bands [Fig. 1(a)]. From this
expression, we further assume r � 1 to ensure the nonnegativ-
ity of particle energies, E+(k) � 0, which is the condition for
the stable ground state. At the extreme limit r = 1, the energy
spectrum becomes flat. At this limit, Hσ

k is defective except
for k = (0, 0) and (π, π ), which physically corresponds to
the infinite squeezing limit in the original Hamiltonian (1).
Since the particle and hole bands do not experience the band
crossing between the r = 0 (obviously trivial case) and r = 1,
one cannot find any conventional topological number such as
the Chern number.

The Bloch Hamiltonian (13) describes a system with pe-
riodic boundary conditions in both the x and y directions.
To discuss the corresponding boundary states, we impose
the open/periodic boundary condition in the x/y direction.
For a fixed ky, the real-space representation of the Hamil-
tonian becomes a one-dimensional nearest-neighbor hopping
Hamiltonian in the x direction. We define the open bound-
ary by erasing the hopping at the left and right boundaries.
In Fig. 1(a), we plot the eigenspectrum with respect to the
momentum in the y direction, ky. While there are no isolated

modes for r = 0, we find the isolated modes outside the bulk
particle and hole bands for a large r. This behavior is very
different from that of Hermitian boundary states, which are
located inside the band gap.

In the following, we discuss the physical origin of the out-
of-gap boundary modes. The paring term is proportional to an
effective model of the quadratic band touching in Hermitian
topological physics. In Hermitian physics, the quadratic band
touching has been discussed in terms of the geometry-induced
surface states [27] and the Euler number [28–30]. In our
case, the pairing term has zero-energy boundary modes, which
means that the pairing order parameter is broken at the bound-
ary. In the case of fermionic superconductors, the pairing term
causes the level repulsion between the particle and hole bands,
and the breakdown of the order parameter means the emer-
gence of in-gap states called the Andreev bound states (ABS).
In our bosonic case, on the other hand, the pairing term causes
the level attraction due to the non-Hermitian aspect, and the
breakdown of the order parameter means the emergence of the
“out-of-gap” bound states. We call the present bound states at
the boundaries the bosonic ABS.
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At some ky, the isolated modes are absorbed into the bulk
bands. The isolated modes do not degenerate at each momen-
tum ky and are localized at one boundary. The side of this
localization depends on the sign of ky and the particle-hole
band index. At the extreme limit r = 1, the low-energy dis-
persion of the boundary states becomes linear and gapless,
and the boundary states are connected to the bulk states at
momenta ky = 0, π . In other words, the boundary states look
like chiral boundary modes around these symmetric points.

These boundary modes are induced by the bulk polar-
ization defined for the Bloch states. In the non-Hermitian
(pseudo-Hermitian) cases, however, one can define two types
of Berry connections at each momentum ky:

γ LR
i (ky) = i

∫ π

−π

dkx〈〈k, i|∂kx |k, i〉 , (15)

γ RR
i (ky) = i

∫ π

−π

dkx〈k, i|∂kx |k, i〉 . (16)

The former definition [24,25], which uses both the right
and left eigenvectors, reflects the conventional manner in the
line-gap topology. In this definition, we have assumed the
biorthonormal conventions (9) and (10). The latter definition,
which uses only the right eigenvectors, looks like the Hermi-
tian Berry phase. The crucial difference from the Hermitian
one is that the set of the right eigenvectors can not span the
whole Hilbert space if the paring term is nonzero. In this defi-
nition, we have assumed the normalization 〈k, i| k, i〉 = 1. The
Berry connections in both definitions take real values under
the present biorthonormal/normal conventions. Owing to the
gauge degree of freedom, the Berry phases (15) and (16) are
determined modulo 2π . In Fig. 1(b), we plot two types of the
Berry phases of the hole band at each ky, defined by Eqs. (15)
and (16). In the calculation, we have used a Bloch wave
that is a continuous function of momentum. The bare values
that are not always in [0, 2π ) are plotted in the upper panel,
while the values modulo 2π are plotted in the lower panel.
As r is increased, γ RR converges to ±π for positive/negative
ky. In Hermitian topological physics, the value π indicates
the emergence of the boundary states, which indicates that
γ RR can characterize the observed boundary states. Another
definition γ LR, on the other hand, diverges as for the increase
of r. Moreover, one cannot define it at the extreme limit r = 1
because 〈k, i| σz |k, i〉 = 0, which leads to the failure of the
biorthonormal convention. Thus, we conclude that γ RR is the
true definition to characterize the present boundary states.

Note that these boundary states are essentially different
from the bosonic topological boundary modes in previous
studies that are defined for the gap between the particle bands.
In our case, the boundary states are characterized by a quantity
that is defined for the gap between the particle and hole bands.

IV. NON-HERMITIAN TOPOLOGY AT FLAT-BAND LIMIT

For general r, the bosonic ABS is geometrical rather than
topological because the Berry phase γ RR varies continuously
and is adiabatically connected to zero. At the extreme limit
r = 0, however, one can find a non-Hermitian topology in the
following sense. In this limit, the band becomes completely
flat, and its energy is exactly zero. Owing to the particle-
hole symmetry, σx |−k, i〉∗ is an eigenstate of Hσ

k with an

eigenenergy −ε−k,i. In the present case, both |k, i〉 and
σx |−k, i〉∗ are the zero-energy states. Moreover, the Hamil-
tonian Hσ

k is defective (i.e., not diagonalizable), and the hole
eigenstate is identical to the particle one, except for at k =
(0, 0) and (π, π ). Thus, |k, i〉 is identical to σx |−k, i〉∗ up
to the phase, which means that the particle-hole symmetry
effectively acts as if the time-reversal symmetry is at r = 1.
In addition, Hσ

k is invariant under the inversion k → −k. In
total, we can define an effective parity-time symmetry, and
|k, i〉 is identical to σx |k, i〉∗ up to the phase. It is known that
the Berry phase under this type of antiunitary symmetry is
Z2 quantized [31]. In the present case, it is checked by the
following calculation:

γ RR
i (ky) ≡ i

∫ π

−π

dkx〈k, i|∗σx∂kx σx |k, i〉∗ (mod 2π )

= −γ RR
i (ky). (17)

From this relation, the Berry phase is quantized to 0 or π . The
bosonic ABS corresponds to γ RR

i = π .
Thanks to the two-band nature, the above physics is also

explained by a Z topology of the Hamiltonian itself. The
Bloch Hamiltonian in the defective region takes the following
form:

Hσ
k ∝

(
1 ih∗

k

ihk −1

)
, (18)

where hk ∈ C is on the unit circle in the complex plane. In
other words, the degree of freedom of the Bloch Hamiltonian
is limited to U(1) if we impose that the matrix is defective.
Thus, one can define the winding number on a closed loop C
in the Brillouin zone:

W = 1

2π i

∮
C

d ln h. (19)

This winding number (19) characterizes two related proper-
ties. First, it describes the polarization at each ky:

W (ky) = 1

2π i

∫ π

−π

dkx
d ln h

dkx
=

∫ π

−π

dkx

2π
θk, (20)

where θk = arg(hk). At special points ky = ±π/2, the wind-
ing number is ±1, which is easily calculated by θk = ±kx. At
general ky except for ky = 0, π , W (ky) = sgn(ky). Remark-
ably, the Z topological number can distinguish ±1, while
the Berry phase cannot. Second, the winding number (19)
detects the nondefective points in the Brillouin zone. Near
the nondefective point k = (0, 0), the Hamiltonian takes the
following form:

Hσ
k � (

k2
x + k2

y

)
σz + i

(
k2

x − k2
y

)
σx + 2ikxkyσy

∝
(

1 ie−i2φ

iei2φ −1

)
, (21)

where k = k(cos φ, sin φ) with k = |k|. Thus, k = (0, 0) is
characterized by W = +2. Similarly, k = (π, π ) is char-
acterized by W = −2. The total winding number around
nondefective points is zero, which is a non-Hermitian analogy
of the Nielsen-Ninomiya theorem [32]. These nondefective
points correspond to the quadratic band touching points of the
non-Hermitian part of the Hamiltonian, or the pairing term.
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FIG. 2. (a) The Bogoliubov spectrum of the physical CVSC [33] on the cylinder. s is the squeezing parameter. The system size is 32 × 32.
(b) Size dependence of the entanglement entropy of the ground state of the model (13) on the cylinder.

Note that the above “topological invariant” is not defined for
the spectral gap. In the present case, the “gapped” and “gap-
less” structures correspond to the defective and nondefective
structures, respectively.

V. ENTANGLEMENT ENTROPY OF A MODEL WITH
BOSONIC ANDREEV BOUND STATES

Another interesting issue is the entanglement property of
the ground state of a model with the bosonic ABS. In free
bosonic systems, the entanglement entropy of the ground state
is induced only by the paring term. Such a term is naturally
introduced by squeezed states of light and plays an important
role in continuous-variable (CV) quantum computing [6]. In
our calculation [Fig. 2(a)], boundary states similar to those
in our model (but with degeneracy) are found in the CV
surface codes (CVSC) [33–36]. Reference [33] claims that
topological entanglement entropy [37,38] is not quantized in
a physical CVSC. In the following, we investigate the entan-
glement structure of the ground state of the model (13) by
using the formula in Ref. [39] and find behaviors similar to
those in CVSC. Motivated by these facts, we investigate the
entanglement entropy of our model (13). We here investigate
the cylindrical configuration (x: open, y: periodic) and mea-
sure the entanglement entropy S of the ground state for half
of the system with Lx = 2Ly. A formula for the entanglement
entropy of the quantum harmonic oscillator, which is identical
to the bosonic BdG system, is given in Ref. [39]. Using this
formula with the Fourier transform, we calculate the size
dependence of the entanglement entropy [Fig. 2(b)]. While
the dominant term obeys the area law [i.e., Sdom ∝ Ly], there
is a negative constant subleading term. The value depends on
the model parameter r, which is similar to the behavior of
the physical CVSC. In gapped systems, this type of sublead-
ing term is called topological entanglement entropy because
it characterizes the topological order [37,38]. Unlike in the
gapped systems, the constant subleading term is not quantized
in the physical CVSC and our model.

VI. DISCUSSION

We here discuss the bosonic ABS in other dimensions. In
one dimension, the realization of a model with one positive-
and one negative-energy boundary states localized at opposite
boundaries seems to be difficult. If possible, these boundary
states are related to each other by the particle-hole symme-
try, which does not act on real-space coordinates. Thus, the
boundary states are localized at the same boundary, which
conflicts with the localization at the opposite boundaries. In
our two-dimensional model, the particle-hole symmetry is
absent at each ky except for 0, π , and the localization at
the opposite boundary is allowed in each momentum sector.
Instead, one can consider the bosonic ABS in a model with a
unitary symmetry. For example, let us consider the following
one-dimensional model:

Hσ
k = 12×2 ⊗ σz + ir(cos kτx + sin kτy) ⊗ σy, (22)

where τ ′s are the Pauli matrices in orbital space, and 0�r�1.
This model commutes with τz ⊗ σz and is block diagonalized
into τz ⊗ σz = ±1 sectors. Each block is given by(

1 ire∓ik

ire±ik −1

)
, (23)

which is the nontrivial polarization. A generalization of the
bosonic ABS may be an interesting future work.
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APPENDIX: EXPLICIT CONSTRUCTION OF
PARAUNITARY MATRIX

We here describe an explicit construction of the paraunitary
matrix in Eq. (7). See Ref. [12] for details. The first step is to
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decompose Hk by the Cholesky decomposition:

Hk = K†
k Kk, (A1)

where Kk is an upper triangle matrix. The next step is diago-
nalization of the Hermitian matrix Wk := KkσzK

†
k :

U †
k WkUk =

(
Ek 0

0 −E−k

)
, (A2)

where Uk is a unitary matrix. The diagonal matrices Ek and
−E−k give the particle and hole spectrum, as shown below.
By using the above matrices, we construct the following
matrix:

Pk = K−1
k Uk

⎛
⎝E

1
2

k 0

0 E
1
2
−k

⎞
⎠. (A3)

This matrix satisfies the paraunitary condition

PkσzP
†
k = K−1

k Uk

(
Ek 0

0 −E−k

)
U †

k

(
K−1

k

)†

= K−1
k KkσzK

†
k

(
K−1

k

)†

= σz. (A4)

The paraunitary matrix Pk diagonalizes the non-Hermitian
bosonic BdG Hamiltonian Hσ

k := σzHk. This can be easily
checked:

P−1
k σzHkPk

=
⎛
⎝E

− 1
2

k 0

0 E
− 1

2
−k

⎞
⎠U †

k KkσzK
†
k KkK−1

k Uk

⎛
⎝E

1
2

k 0

0 E
1
2
−k

⎞
⎠

=
⎛
⎝E

− 1
2

k 0

0 E
− 1

2
−k

⎞
⎠U †

k WkUk

⎛
⎝E

1
2

k 0

0 E
1
2
−k

⎞
⎠

=
(

Ek 0

0 −E−k

)
. (A5)

[1] N. Bogoliubov, On the theory of superfluidity, J. Phys. 11, 23
(1947).

[2] J. Colpa, Diagonalization of the quadratic boson Hamiltonian,
Physica A 93, 327 (1978).

[3] Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates,
Phys. Rep. 520, 253 (2012).

[4] A. Altland and B. D. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, 2010).

[5] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg et al.,
Topological photonics, Rev. Mod. Phys. 91, 015006 (2019).

[6] S. L. Braunstein and P. V. Loock, Quantum information with
continuous variables, Rev. Mod. Phys. 77, 513 (2005).

[7] P. A. McClarty, Topological magnons: A review, Annu. Rev.
Condens. Matter Phys. 13, 171 (2022).

[8] L. Zhang, J. Ren, J.-S. Wang, and B. Li, Topological na-
ture of the phonon Hall effect, Phys. Rev. Lett. 105, 225901
(2010).

[9] S. Lieu, Topological symmetry classes for non-Hermitian mod-
els and connections to the bosonic Bogoliubov–de Gennes
equation, Phys. Rev. B 98, 115135 (2018).

[10] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[11] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[12] R. Shindou, R. Matsumoto, S. Murakami, and J.-I. Ohe, Topo-
logical chiral magnonic edge mode in a magnonic crystal, Phys.
Rev. B 87, 174427 (2013).

[13] Y. Hatsugai, Chern number and edge states in the integer quan-
tum Hall effect, Phys. Rev. Lett. 71, 3697 (1993).

[14] H. Kondo, Y. Akagi, and H. Katsura, Z2 topological invariant
for magnon spin Hall systems, Phys. Rev. B 99, 041110(R)
(2019).

[15] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[16] N. Okuma and M. Sato, Non-Hermitian topological phenom-
ena: A review, Annu. Rev. Condens. Matter Phys. 14, 83 (2023).

[17] R. Lin, T. Tai, L. Li, and C. H. Lee, Topological non-Hermitian
skin effect, Front. Phys. 18, 53605 (2023).

[18] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry
and topology in non-Hermitian physics, Phys. Rev. X 9, 041015
(2019).

[19] Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and topology
in superconductors–odd-frequency pairing and edge states–,
J. Phys. Soc. Jpn. 81, 011013 (2011).

[20] M. Sato and S. Fujimoto, Majorana fermions and topology in
superconductors, J. Phys. Soc. Jpn. 85, 072001 (2016).

[21] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[22] A. Kitaev, Periodic table for topological insulators and super-
conductors, in AIP Conference Proceedings (American Institute
of Physics, 2009), Vol. 1134, pp. 22–30.

[23] In some isolated cold atomic systems, negative- or complex-
energy states are relevant in physics. See Refs. [3,24].

[24] T. Ohashi, S. Kobayashi, and Y. Kawaguchi, Generalized Berry
phase for a bosonic Bogoliubov system with exceptional points,
Phys. Rev. A 101, 013625 (2020).

[25] G. Engelhardt and T. Brandes, Topological Bogoliubov exci-
tations in inversion-symmetric systems of interacting bosons,
Phys. Rev. A 91, 053621 (2015).

[26] N. A. Spaldin, A beginner’s guide to the modern theory of
polarization, J. Solid State Chem. 195, 2 (2012).

[27] B.-J. Yang and N. Nagaosa, Emergent topological phenomena
in thin films of pyrochlore iridates, Phys. Rev. Lett. 112, 246402
(2014).

014516-6

https://doi.org/10.1016/b978-0-08-015816-7.50020-1
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1146/annurev-conmatphys-031620-104715
https://doi.org/10.1103/PhysRevLett.105.225901
https://doi.org/10.1103/PhysRevB.98.115135
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.87.174427
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevB.99.041110
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1146/annurev-conmatphys-040521-033133
https://doi.org/10.1007/s11467-023-1309-z
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevA.101.013625
https://doi.org/10.1103/PhysRevA.91.053621
https://doi.org/10.1016/j.jssc.2012.05.010
https://doi.org/10.1103/PhysRevLett.112.246402


BOSONIC ANDREEV BOUND STATE PHYSICAL REVIEW B 110, 014516 (2024)

[28] J. Ahn, S. Park, and B.-J. Yang, Failure of nielsen-ninomiya
theorem and fragile topology in two-dimensional systems with
space-time inversion symmetry: Application to twisted bilayer
graphene at magic angle, Phys. Rev. X 9, 021013 (2019).

[29] A. Bouhon, Q. Wu, R.-J. Slager, H. Weng, O. V. Yazyev, and T.
Bzdušek, Non-Abelian reciprocal braiding of Weyl points and
its manifestation in ZrTe, Nat. Phys. 16, 1137 (2020).

[30] A. S. Morris, A. Bouhon, and R.-J. Slager, Andreev reflection
in Euler materials, New J. Phys. 26, 023014 (2024).

[31] Y. Hatsugai, Quantized Berry phases as a local order parameter
of a quantum liquid, J. Phys. Soc. Jpn. 75, 123601 (2006).

[32] H. B. Nielsen and M. Ninomiya, No-go theorum for regular-
izing chiral fermions, Tech. Rep., Science Research Council,
1981.

[33] T. F. Demarie, T. Linjordet, N. C. Menicucci, and G. K.
Brennen, Detecting topological entanglement entropy in a

lattice of quantum harmonic oscillators, New J. Phys. 16,
085011 (2014).

[34] J. Zhang, C. Xie, K. Peng, and P. van Loock, Anyon statistics
with continuous variables, Phys. Rev. A 78, 052121 (2008).

[35] D. F. Milne, N. V. Korolkova, and P. van Loock, Universal quan-
tum computation with continuous-variable Abelian anyons,
Phys. Rev. A 85, 052325 (2012).

[36] T. Morimae, Continuous-variable topological codes, Phys. Rev.
A 88, 042311 (2013).

[37] A. Kitaev and J. Preskill, Topological entanglement entropy,
Phys. Rev. Lett. 96, 110404 (2006).

[38] M. Levin and X.-G. Wen, Detecting topological order in
a ground state wave function, Phys. Rev. Lett. 96, 110405
(2006).

[39] T. F. Demarie, Pedagogical introduction to the entropy of entan-
glement for gaussian states, arXiv:1209.2748.

014516-7

https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1038/s41567-020-0967-9
https://doi.org/10.1088/1367-2630/ad1d74
https://doi.org/10.1143/JPSJ.75.123601
https://doi.org/10.1088/1367-2630/16/8/085011
https://doi.org/10.1103/PhysRevA.78.052121
https://doi.org/10.1103/PhysRevA.85.052325
https://doi.org/10.1103/PhysRevA.88.042311
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://arxiv.org/abs/1209.2748

