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There are two different pairing potentials for the superconductivity of doped Weyl semimetals, i.e., the
internode BCS pairing and the intranode Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing. We show that the
superconducting pairing potentials can be clearly distinguished from the frequency characteristics of optical
conductivity. The pairing-dependent optical conductivities for the BCS and FFLO pairings are calculated. The
optical conductivities exhibit two types of distinct resonances, the Van Hove resonance for the BCS pairing
and the resonance with a threshold for FFLO pairing. The result provides a method of identifying the pairing
potential in superconducting Weyl semimetals.
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I. INTRODUCTION

The superconductivity in Weyl semimetals (WSMs) has
attracted a great deal of attention since the discovery of WSMs
[1]. It has been predicted that the superconducting Weyl
semimetals (SWSMs) exhibit unconventional superconductiv-
ity [2–6]. The energy gap created by the pairing of electrons
is the most important parameter of a superconductor. Due to
the presence of even pairs of Weyl nodes at the Fermi level,
the nodes give rise to a rich phase space for electrons to
pair so that the preferred superconducting pairings become an
enigmatic concept in the SWSMs [2–9]. The first-principle
calculations have shown that even pairs of Weyl nodes at
the Fermi level participate in the formation of the condensate
and result in a nodal superconducting phase. Correspondingly,
two pairing mechanisms have been proposed theoretically for
realizing the superconductivity in doped WSMs. The intern-
ode BCS pairing (the BCS pairing mechanism) is formed by
two fermions from two nodes with different chiralities, while
the intranode Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pair-
ing (the FFLO pairing mechanism) [10] is formed by two
fermions in the same node with the same chirality. The Cooper
pair associated with BCS pairing has zero momentum. The
Cooper pair formed by the FFLO pairing has a finite total mo-
menta, and the superconducting order parameter is spatially
nonuniform [11,12]. Disconnected sheets of the Fermi surface
due to the nodes can result in different superconducting en-
ergy gaps. Previous studies showed that the BCS paired states
are topologically nontrivial with gapless nodes in the energy
dispersion and the FFLO paired state is topologically trivial
with a full gap [13]. It has been shown that in WSM/SWSM
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hybrid structures, the transport characteristics of SWSMs are
closely correlated to the microscopic origin of the pairing
symmetry [14–17]. Although a variety of theoretical investi-
gations on the properties of superconducting states in SWSMs
have been carried out, definitive experimental identification of
the pairing potential is still lacking.

A superconductor is usually characterized by a super-
conducting energy gap created by the pairing of electrons.
Probing the structure of the energy gap is a central chal-
lenge for elucidating the mechanism of superconductivity.
Various indirect methods have been carried out with the aim
of determining the superconducting energy gap in conven-
tional and unconventional superconductors, such as Josephson
interferometry [18], optical spectroscopy [19], and Andreev-
reflection spectroscopy [20].

Among these, optical detection methods have been used
to obtain and identify information on the pairing symmetry
and characteristics of the superconducting gap [21]. Infrared
(IR) spectroscopy has been used to obtain the energy gap
information [22–24]. It can reveal the dynamical properties of
superconductors and the quasiparticle information that might
be difficult to explore by other means. Besides the electronic
structure, the optical response is directly related to the optical
self-energy or memory function, which describes the function
of the mass enhancement factor and unrenormalized scattering
rate [25–28]. In recent years, the IR technique has been exten-
sively used to study unconventional superconductors [29–32],
high-Tc superconductors [33–35], iron-based superconductors
[36–43], and topological superconductors [44]. Superconduc-
tors [32,45,46] with breaking inversion symmetry and the
optical properties of the related parent materials, such as
Dirac and Weyl semimetals [47–51], have been studied. IR
behavior without momentum conservation [52] is described
by the Mattis-Bardeen formula in the dirty limit [52–54]. This
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method has been used to study the optical response with the
topological characteristic of superconducting gaps [55–57] in
SWSMs.

In this work we demonstrate that the different supercon-
ducting pairings (FFLO and BCS) in SWSMs can be clearly
identified in optical conductivity because the FFLO and BCS
ground states are topologically different. The theoretical cal-
culations show signatures of node point symmetries on the
superconducting energy gap. Different from the isotropic
characteristics of the FFLO energy gap, the BCS gap man-
ifests anisotropy due to node-dependent pairing in Weyl
superconductors. It is found that the optical response has a
close correlation with the formation of BCS and FFLO pair-
ings. Under the BCS pairing the gap function goes to zero
at certain points in momentum space. On the other hand, the
gap under the FFLO pair is momentum dependent. These two
different gaps lead to significant differences in the optical
response. We analyze the optical conductivity of SWSMs with
two different pairings for the bulk (clean limit) and the surface
(thin film or dirty) states. For the bulk states, the momentum is
conserved in the scattering so that the optical conductivity in
the clean limit can be calculated with the Kubo formula [58].
However, there is a lack of momentum conservation in the thin
film or dirty SWSM. By assuming that the Mattis-Bardeen
theory applies to SWSMs, infrared behaviors without momen-
tum conservation will be analyzed using the Mattis-Bardeen
formula [52–54].

We found that in the clean limit, the optical conductivity
has an extra transition which is absent in normal metals.
This transition is induced by the charge conjugation of quasi-
particles in the conduction and valence bands. The optical
conductivity is symmetrical about the charge transport direc-
tion and the light polarization direction. In the BCS case, the
real and imaginary parts of the optical conductivity have the
same exponential relationship to the photon energy when the
photon energy is lower than the pairing potential [59]. How-
ever, in the thin film or dirty SWSM, the optical response can
be described by the dirty-limit Mattis-Bardeen-type response
with an isotropic gap for FFLO pairing. For the BCS pairing,
the optical response is described by an angle-dependent ver-
sion of the Mattis-Bardeen formula. We show that the real part
of the optical conductivity of SWSMs with FFLO pairing has
a threshold value for the photon energy due to the fully gapped
band structure. The optical conductivity of SWSMs with BCS
pairing starts from zero photon energy. The optical conductiv-
ity for dirty SWSMs can be directly probed in experiment. We
find that the frequency dependence of the optical conductivity
has a very close correlation with the topological band structure
in SWSMs. This finding provides an experimental method to
identify the pairing potential in SWSMs.

II. MODELS AND HAMILTONIAN

A WSM with broken time-reversal symmetry is described
by the Hamiltonian

H =
∑

κ

ξ
†
kκ ,κ

hκ (k, b)ξkκ ,κ − μξ
†
kκ ,κ

ξkκ ,κ + HI , (1)

where hκ (k, b) = vF σ · kκ and kκ = (kx, ky, κkz − b). The
two Weyl nodes are located at Q± = (0, 0,±b) with a

chirality of κ = ±, σ are the Pauli matrices in the spin space,
vF is the Fermi velocity, and ξkκ ,κ = (dkκ ,κ,↑, dkκ ,κ,↓)T , with
T being a transpose operation for a Weyl spinor, in which
the annihilation (creation) operator of the Weyl fermions with
momentum kκ = k + Qκ dkκ ,κ,σ (d†

kκ ,κ,σ ) is dependent on
several quantum numbers due to their dependence on node
points and spins. HI is the electron-electron interaction. Under
the assumption of an s-wave short-range pairing potential
between Weyl fermions [3], HI can be written as [13]

HI =
∑

κ,κ ′,κ ′′,κ ′′′

∫
dkdk′

(2π h̄)6 δκ+κ ′−κ ′′−κ ′′′

× Vκκ ′d†
kκ ,κ,↑d†

−k−κ′ ,κ ′,↓d−k′
−κ′′ ,κ ′′,↓dk′

κ′′′ ,κ ′′′,↑, (2)

where δ(··· ) represents a constraint on the nodes where
interacting electrons reside. An electron can interact with
electrons in the same node (κ = κ ′ = κ ′′ = κ ′′′; we refer
to this as FFLO pairing) or with electrons from a different
node (κ + κ ′ = κ ′′ + κ ′′′ = 0) with the opposite chirality
(we refer to this as BCS pairing). As a consequence, the
interaction strength Vκκ ′ depends on not only the momenta
of interacting fermions but also the nodes to which the
interacting electrons belong. For a δ function with four
variables, three would be arbitrary. However, in the present
case in which each κ can take only a value of ±1, the
constraint imposed by the δ function leaves only two
arbitrary κ . To make a distinction between the intranode
and internode interactions we denote VF = Vκ,κ for the
intranode interaction and VB = Vκ,−κ the for internode
interaction. Then HI consists of HF

I and HB
I , where HF

I =
(2π h̄)−6 ∑

κ

∫
dkdk′VF c†

kκ ,κ,↑d†
−k−κ ,κ,↓d−k′−κ ,κ,↓dk′

k ,κ,↑, with
the same momentum shift related to the node, and HB

I =
(2π h̄)−6 ∑

κ,κ ′
∫

dkdk′VBd†
kκ ,κ,↑d†

−kκ ,−κ,↓d−kκ ′′,−κ ′,↓dkκ ′′,κ ′,↑,
with the Cooper pair having zero total momentum.

To calculate the response of light, we define the
node-dependent Green’s function Gκ (k, τ − τ ′) =
−〈Tτ dk,κ (τ )d†

k,κ (τ ′)〉 and the correlation functions

Fλ,κ (k, τ − τ ′) = 〈Tτ d̃−k,κ (τ )dT
k,λκ (τ ′)〉 and F †

λ,κ (k, τ −
τ ′) = 〈Tτ d†T

−k,λκ (τ )d̃†
−k,κ (τ ′)〉, where Tτ is the time-ordering

operator in imaginary time τ , d̃k,κ = (dk,κ,↓, dk,κ,↑)T ,
the subscript λ = F for the intranode pairing, and
λ = B for the internode pairing. The correlation
functions have the following symmetry properties:
FB,−κ,↓↑(k, 0) = −FB,κ,↑↓(−k, 0) = −FB,κ,↑↓(k, 0) and
FF,κ,↓↑(k, 0) = −FF,κ,↑↓(−k, 0) = −FF,κ,↑↓(k, 0). The
gap functions for the BCS and FFLO pairings are
given by 	B = −∑

κ ′ (2π h̄)−3
∫

dkVBFB,−κ ′,↓↑(k, 0) and
	F = −(2π h̄)−3

∫
dkVF FF,κ,↓↑(k, 0), respectively.

The equations of motion for the Green’s function and the
correlation functions are written as

δ(τ − τ ′) = [−h̄∂τ − (hκ (k, b) − μ)]Gλ,κ (k, τ − τ ′)

+ 	λσzF
†
λ,κ (k, τ ′ − τ ), (3)

0 = [−h̄∂τ − (hκ (k, b) + μ)]F †
B,−κ (k, τ ′ − τ )

+ 	∗
BσzGB,κ (k, τ − τ ′), (4)
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FIG. 1. Energy spectra and density of states for SWSMs with the
FFLO and BCS pairings. (a) Energy spectrum for the FFLO pairing.
(b) Energy spectrum for the BCS pairing. (c) The density of states
for the FFLO pairing. (d) The density of state for the BCS pairing.

and

0 = [−h̄∂τ − (h−κ (k,−b) + μ)]F †
F,κ (k, τ ′ − τ )

+ 	∗
F σzGF,κ (k, τ − τ ′), (5)

with λ = 1 (−1) for the FFLO (BCS) pairing. By applying
the Fourier transformation to Eqs. (3)–(5), we can obtain the
Green’s function and correlation functions for FFLO and BCS
pairings, respectively. The energy spectra for FFLO pairing
(	B = 0 and 	F �= 0) and for BCS pairing (	B �= 0 and
	F = 0) are found to be

Eη,γ

κ,ζ (k)

=

⎧⎪⎪⎨⎪⎪⎩
ηβ

√
(vF kκ − ζμ)2 + 	2

F , γ : F,

ηβ

√
	2

B + v2
F k2 + μ2 − 2ζvF

√
	2

Bk2
z + k2μ2, γ : B,

(6)

and the densities of states are nF (E ) = (E/

√
E2 − 	2

F )n0 and

nB(E ) = (E/2	B) Re[ln(E + 	B)/(E − 	B)]n0, where η =
+ (−) denotes electrons (holes), ζ = + (−) denotes the con-
duction (valence) band, and n0 = μ2/(2π2h̄3v3

F ). Figure 1(a)
shows that the spectrum for SWSMs with FFLO pairing is
gapped and isotropic. Correspondingly, the density of states
vanishes within the gap but diverges at the edge of the gap,
as shown in Fig. 1(c). Figure 1(b) shows that the spectrum
for SWSMs with BCS pairing is anisotropic and gapless at

(0, 0,±
√

	2
B + μ2). The density of states is nonzero except at

E = 0 and has a sharp peak at E = 	B, as shown in Fig. 1(d).
Comparing SWSMs to a regular superconductor with FFLO
pairing [60], the densities of states are qualitatively different.
In SWSMs the FFLO pairing is intranode pairing from the
same Weyl node. The order parameter in Ref. [60] is an
oscillatory function in real space changing from zero to 	F .
As a result, the density of states is nonzero everywhere. In the

present SWSM, the order parameter is nonzero everywhere
in momentum space. The gap opens uniformly, as shown in
Fig. 1(a). Therefore, the quasiparticle density of states van-
ishes within the gap E < 	F .

That the FFLO pairing HF
I in SWSM is significantly dif-

ferent from the FFLO pairing in conventional superconductor
could be due to the following effects. (1) The first is special
Fermi surfaces. In the Weyl semimetal, the Fermi surface
consists of two disconnected sheets around the Weyl nodes.
The effective low-energy theory of a Weyl semimetal corre-
sponds to electrons located close to Weyl nodes. The intranode
pairing is created between electrons from the opposite parts
of each Fermi surface sheet at individual Weyl nodes; i.e., the
momentum of each Cooper pair is equal to the momentum of
the Weyl node center such that the FFLO state has a center
of momentum twice the position vector of the Weyl node. (2)
In the linear dispersion relation, the density of states goes to
zero at the Weyl point compared to a system with parabolic
dispersion. As a consequence of the vanishing density of
states, a minimum interaction strength is required to nucleate
quasiparticles. The system is gapped as expected. (3) Another
effect is the spin-momentum locking in SWSMs for pairing
of opposite spin states. The differences between the FFLO
states on Zeeman-split Fermi surfaces (regular superconduc-
tor) and those on SWSM with spin-momentum locking is also
due to the spin texture picture. Each momentum state on the
Weyl cone has a definite spin direction, a property known
as spin-momentum locking. (4) When there is only intranode
coupling, HF

I does not couple different Weyl nodes.

III. OPTICAL CONDUCTIVITY

The optical conductivity is calculated by using the Kubo
formula σαγ (q,�) = (i�−1)Kαγ (q,�). Kαγ (q, i�) is the
current-current correlation function,

Kαγ (q, i�) = − 1

V

∫ h̄β

0
dτei�τ/h̄Tr〈 jα (q, τ ) jγ (−q, 0)〉.

(7)

The current operator is given as

jα (q, τ ) = − 1

(2π h̄)3

∑
κ

∫
d3kevF ξ

†
k+q,κ (τ )σα,κξk,κ (τ ),

(8)

with σα,κ = (1 − 2δκ,−1δα,z )σα . V is the volume of the sys-
tem, and β = (kBT )−1. Kαγ (q, i�) can be written in the form

Kαγ (q, i�) = K (G)
αγ (q, i�) + K (C)

αγ (q, i�), (9)

where K (χ )
αγ (q, i�) with χ = G (C) is the Green’s

(correlation) function. We now transform these
functions into the Matsubara frequency space ωn =
[(2n + 1)π/β], with n = 0,±1,±2, . . ., Gκ (k, iωn)
= ∫ h̄β

0 dτeiωnτ/h̄Gκ (k, τ ), and Fλ,κ (k, iωn) =∫ h̄β

0 dτeiωnτ/h̄Fλ,κ (k, τ ). We obtain K (χ )
αγ (q, i�) =

(2π h̄)−3(evF )2β−1 ∑
κ

∑
n

∫
dkTr�(χ )(k, q, iωn,�), with

�(G)(k, q, iωn,�) = − [Gκ (k + q, iωn + i�)

× σα,κGκ (k, iωn)σγ ,κ ] (10)

014515-3



FANG, ZHANG, LIN, AND MA PHYSICAL REVIEW B 110, 014515 (2024)

and

�(C)(k, q, iωn,�) = [
F †,T

λ,κ (−k − q, iωn + i�)

× σxσα,κσxFλ,κ (−k, iωn)σ ∗
γ ,κ

]
, (11)

where the sum is over the Matsubara frequencies.
The optical conductivity of superconductors consists of

two parts: the bulk contribution and the surface contribution.
They are spatially different. We will first discuss the bulk
optical conductivities for SWSMs with the FFLO and BCS
pairings.

(1) FFLO pairing. For FFLO pairing, εF
ζ (k) =√

	2
F + (vF kκ + ξμ)2. For small |q|, |k + q| ≈ k + q · k̂,

and εF
ζ (k + q) ≈ εF

ζ (k) + δεF,1
ζ + δεF,2

ζ , where δεF,1
ζ = vF q ·

k̂κ (vF kκ + ζμ)/εF
ζ (k), δεF,2

ζ = (vF q · k̂κ )2	2
F /2[εF

ζ (k)]3,

and k̂ is the direction of k. In the infrared and low-temperature
regime, � ≈ 	F/B, and kBT 
 � 
 μ. For ζ = +, the
energy is much higher than 2	F , so that only the ζ = −
state contributes to the infrared absorption. Under these
considerations, the optical conductivity is given as

σ F
αα (q,�) = i(evF )2h̄

�

∫
d3k

(2π h̄)3
k̂2
α tanh

βεF
−(k)

2

× 2	2
F (vF q · k̂)2

εF−(k)�3

(
1

�̃ + 2εF−(k)
+ 1

�̃ − 2εF−(k)

)
,

(12)

where �̃ = � + i0. For the conductivity of SWSMs in a clean
limit described by Eq. (12), the electron-impurity scattering
is absent, and the scattering time is infinitely long. In other
words, the optical conductivity is not related to the drift ve-
locity but is governed by the direct band-to-band transition.

It is found that in the lowest order, σαα vanishes as q goes
to zero. This behavior is different from that of normal metals
because σ F,(G)

αα (0,�) = −σ F,(C)
αα (0,�). From the microscopi-

cal point of view, the quasiparticles of hole and electron states
with the same chirality have the opposite charges, so that a
quasiparticle cannot jump to the higher energy level simply
by absorbing a photon. Because optical conductivity is an
odd function of k, the terms in the first order of q do not
contribute to σαα . As a result, the leading order of the nonzero
contribution to σ F

αα is proportional to q2.
Because the energy spectrum is isotropic with FFLO

pairing, σ F
zz = σ F

yy = σ F
xx. As an example, we consider a

system under linearly polarized light along the x di-
rection propagating along the y-z plane. We then re-
place the integration of k with ε = εF

−. We find that
the real part of σxx(q,�) consists of four parts: 1/�,

2μ2ε/

√
ε2 − 	2

F , e2v2
F sin θ2 cos φ2, and 	2

F (vF q · k̂)2/4ε4.

Because σαα (q,�) = (ih̄/�) Im KR
αα (q,�), the first three

terms, like for normal optical conductivity, are due to the re-
lation of the electron field and vector potential, the density of
states, and the current coupling, respectively. The fourth term
is specific to SWSMs. As we previously discussed, due to the
opposite charges of quasiparticles in hole and electron states
with the same chirality, the quasiparticle transition from a hole
state to an electron state with the same k is forbidden. On the

FIG. 2. The optical conductivity for SWSMs with the FFLO
pairing. The dashed blue curve shows Re σ F (�), and the red solid
curve shows Im σ F (�).

other hand, there is a finite overlap between the electron state
with momentum k + q and the hole state with momentum k.
The transition probability between these two states is found
to be proportional to 	2

F (vF q · k̂)2/4[	2
F + (vF k − μ)]2. In

addition, such a transition is forbidden if q is perpendicular to
k. Therefore, only the component of q parallel to k contributes
to the optical conductivity. After using the dispersion relation
for the photon, � = cq, we finally find σ F

xx(q,�):

σ F
xx(�) = 2e2	2

F μ2vF

15π h̄2c2

arctan

(√
4	2

F −�2

�

)
+ π

2

π�2
√

(�/2)2 − 	2
F

. (13)

Figure 2 shows the optical conductivity in the FFLO case,
σ0,F/B = e2μ2vF /4π h̄2c2	F/B. When � < 2	F , there is no
available energy band for the electronic transition. As a re-
sult, Re σ F (�) = 0. Im σ F (�) is divergent at � = 0 and
� = 2	F because the densities of states at the edges of the
conduction and valence bands are divergent. For � > 2	F ,
Im σF decreases from a finite value, while Re σF decays from
infinity. The real part of the optical conductivity has a fre-
quency threshold at � = 2	F . The singular response at the
threshold in Re[σ F

xx(q,�)] provides a direct signature of the
FFLO pairing.

We mentioned above that the conductivity in the clean limit
does not involve any type of impurity scattering. In clean
single-band superconductors, the combination of particle-hole
and inversion symmetries prevents momentum-conserving
transitions, and the conductivity vanishes. For SWSMs, there
are multiple bands, and the bulk conductivity is nonzero in
the clean limit; as a result, the optical transition is possible via
direct band-to-band transition, and momentum relaxation is
not required. The physical meaning of the optical conductivity
in the clean limit is that it probes the interband transition, not
the center of mass drifting. For graphene in the clean limit, the
universal conductance is obtained by calculating the optical
conductivity without any impurities [61,62].

(2) BCS pairing. Because of the anisotropy of the energy
dispersion with the BCS pairing, the gap function goes
to zero for certain directions imposed by symmetry. As a
result, the optical conductivity exhibits anisotropic behavior
and depends on the directions of light polarization and
propagation (k̂α and q̂). However, the energy spectrum shows
a rotational invariance around kz, and the optical conductivity
depends on the orientation of the light. For light polarized in
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FIG. 3. The optical conductivity for SWSMs with the BCS pair-
ing. (a) σ B,x

zz and (b) σ B,y
xx . The red solid curves show the real parts

of the optical conductivities, and the blue dashed curves show the
imaginary parts of the optical conductivities.

the direction k̂α and propagating in the direction q̂, the optical
conductivity has the same form as Eq. (12), σ

B,̂q
αα (q,�) =

(2π h̄)−3
∫

d3kg(k)(q · k̂)2k̂2
α , if we replace 	F with

	B sin θ and replace εF
−(k) by εB

−(k). Here θ = cos−1 kz/k,

and εB
−(k) =

√
	2

B + v2
F k2 + μ2 − 2vF

√
	2

Bk2
z + k2μ2.

Like in the analysis of FFLO pairing, the real
part also consists of four contributions. By defin-
ing q = q(sin θ ′ cos φ′, sin θ ′ sin φ′, cos θ ′) and k̂ =
(sin θ cos φ, sin θ sin φ, cos θ ), the relation σ B,x

zz (q,�) =
σ B,z

xx (q,�) can be confirmed. This is the exchange
symmetry for the orientations of q and α in optical
conductivity. σ

B,q̂
αα (q,�) can be expressed in the form

σ
B,̂q
αα (�) = (2π h̄)−3

∫
d3kg(k)(q · k̂)2 (̂eα · k̂)2, where êα

is the unit vector of the direction α. By using the photon
dispersion relation, � = cq, we finally find σ

B,̂q
zz (�) and

σ
B,̂q
xx (�):

σ
B,̂q
zz(xx)(q,�) = vF e2	2

Bμ2

(π h̄)2c2

∫ arcsin �
2	B

0
dθ�zz(xx)(θ, θ ′)

×
π
2 − i arctanh

(√
�2−4	2

B sin θ2

�

)
�2

√
�2 − 4	2

B sin θ2
, (14)

where �zz(θ, θ ′) = cos2 θ sin5 θ and �xx(θ, θ ′) =
sin7 θ sin2 θ ′/4 + cos2 θ sin5 θ cos2 θ ′.

We show the conductivities of two special cases,
σ B,̂ex

zz (�) and σ
B,̂ey
xx (�), in Fig. 3. The general case

σ
B,̂q
xx (�)|̂q=(0,sin θ ′,cos θ ′ ) can be obtained with the combination

σ
B,̂q
xx (�)|̂q=(0,sin θ ′,cos θ ′ ) = sin2 θ ′σ B,̂ey

xx (�) + cos2 θ ′σ B,̂ex
zz (�)

for q̂ = (0, sin θ ′, cos θ ′). Figure 3(a) shows the optical
conductivity σ B,̂x

zz (�). The light is polarized along the z
direction, and the transport direction is x. Figure 3(b) shows
the optical conductivity σ

B,ŷ
xx (�). The light is polarized

along the x direction, and the transport direction is y.
When � < 2	B, the real and imaginary parts of the
optical conductivity, σ

B,̂y
xx and σ B,̂x

zz (�), start from zero and
follow power law behaviors ∝ �5 and ∝ �3, respectively.
Both reach peak values at � slightly below 2	B. σ

B,̂y
xx

is sharply peaked around 2	B. Around � = 2	B, both
Re σ

B,̂y
xx and Re σ B,̂x

zz (�) give rise to a maximum response,
as observed in the experiment. In particular, the Van Hove
resonance in Re σ

B,̂y
xx provides a direct signature of the BCS

pairing in SWSMs. The quite different frequency
characteristics of Re σ

B,̂y
xx and Re σ B,̂x

zz (�) are closely related
to the optical transition rate governed by the band dispersion
along the x and z directions. The peaks near 2	B for
Re σ B,̂x

zz (�) and at 2	B for Re σ
B,̂y
xx are due to the resonant

transition between the bottom of the lower band and the top
of the upper band. Along the x direction, the dispersion is
flat for both the lower and upper bands, which leads to a
resonant transition. As a result, Re σ

B,̂y
xx is sharply peaked at

2	B. Along the z direction, the bands are more dispersive,
although they can also be viewed as flat at one point (highest
and lowest). The more dispersive bands result in a much
broader peak whose height is also lower.

Different from the clean limit where the energy and mo-
mentum are conserved, there are many cases in which the
momentum conservation could be broken due to the reflection
of electrons by the interface and the scattering of electrons by
impurities near the interface, such as in dirty superconductors
and thin films. The carrier mean free path or film thickness
d is much smaller than the coherence length. The optical
conductivity in superconductors without momentum conser-
vation can be calculated using the Mattis-Bardeen formula
[52]. Despite the presence of gapless Weyl points, the bulk
response is reminiscent of the Mattis-Bardeen result for s-
wave superconductors, as the order parameter can be averaged
to zero by sufficiently strong scattering around the Fermi
surface. The conductivity is related to the surface electrody-
namic properties of the superconductor such as the surface
impedance, penetration depth, and anomalous skin effect. By
assuming the Mattis-Bardeen theory is applicable to SWSMs,
we calculate the optical conductivity in SWSMs in the dirty
limit. At zero temperature, the optical conductivity can be
written as

σαβ = e2

h̄�

∑
k

vαvβ

[(
1 − ξ+

E+

)(
1 + ξ−

E−

)
− 	+	−

E+E−

]

× 1

h̄� − E+ − E− + i0+ , (15)

where E± =
√

(vF k± − μ)2 + 	2±, ξ± = vF k± − μ, k± =
k ± q/2, and 	± is the energy gap corresponding to momenta
k±. Since qvF 
 	, we use Abrikosov’s replacement

∑
k →

[N (0)/(4qvF )]
∫

dξ+dξ− [63].
For the FFLO pairing in dirty SWSMs and thin films,

the superconducting energy gap is isotropic, and the

014515-5



FANG, ZHANG, LIN, AND MA PHYSICAL REVIEW B 110, 014515 (2024)

FIG. 4. FFLO and BCS cases in the dirty limit. (a) and (b) Op-
tical conductivity; the dashed blue curve shows Re σ (�), and the
red curve shows Im σ (�). (c) and (d) Penetration depth l . (e) and
(f) Surface impedance Z∞,S/Z∞,N . (a), (c), and (e) are for the FFLO
case, while (b), (d), and (f) are for the BCS case.

Mattis-Bardeen equation at zero temperature [64,65] can be
simplified to

σ F (�, 0)

σN
= − 1

�

∫ 	F

	F −h̄�

dE
E2 + 	2

F + h̄�E

DF (E , 0)DF (E ,�)
, (16)

where σN is the real part of the conductivity of the normal

state and DF (E ,�) =
√

(h̄� + E )2 − 	2
F . Since we are in-

terested in only the regime near the Fermi surface, � ≈ 	F ,
k± = μ/vF , and v2

α replaces v2
F /3 in the integration.

Because the gap is anisotropic for the SWSM with BCS
pairing, we expand the general Mattis-Bardeen equation to

anisotropic cases. E± =
√

v2
F k2± −

√
μ2 + 	2

B cos2 θ± is an-

gle dependent, where θ± are the angles between k± and k.
The angle-dependent extension of the Mattis-Bardeen equa-
tion [54] at zero temperature is given by

σ B(�, 0)

σN

= − 1

�

∫ 0

−h̄�

dE

〈
E

DB(E , 0, θ )

〉
θ

〈
Re

h̄� + E

DB(E ,�, θ ′)

〉
θ ′

− 1

�

∫ 0

−h̄�

dE

〈
	B sin θ

DB(E , 0, θ )

〉
θ

〈
Re

	B sin θ ′

DB(E ,�, θ ′)

〉
θ ′
,

(17)

where 〈 f (θ )〉θ = (1/π )
∫ π

0 dθ sin θ f (θ ) and DB(ε,�, θ ) =√
(h̄� + ε)2 − 	2

B sin2 θ .
The optical properties in the dirty limit are shown in Fig. 4.

Figure 4(a) shows the optical conductivity for FFLO pair-
ing, where the red solid curve shows Im σ F (�) and the blue
dashed curve shows Re σ F (�). If the photon energy is lower
than 2	F , Re σ F (�) vanishes. Starting from 2	F , it increases

gradually to nearly 1 due to the quasiparticle excitations
across the energy gap. This is significantly different from that
in the clean limit. The imaginary part of optical conductivity
is proportional to �−1 for � < 2	F and changes to a power
law behavior ∝ �−2 for � > 2	F . Such behavior agrees
with many experimental results for s-wave superconductors
[23,24]. The optical conductivity for BCS pairing is shown
in Fig. 4(b). Both the real and imaginary parts of the optical
conductivity are zero at � = 0. The real part increases with
a power law behavior of �4 for � < 2	B, then saturates to 1
for � > 2	F . The imaginary part of the optical conductivity
is proportional to �2 for � < 	B. After reaching a maximum
for 	B < � < 2	B, it drops to zero for � > 2	B.

The surface optical conductivity is related to other physical
quantities of superconductors, for example, the penetration
depths l (�) and the surface impedances. The penetra-
tion depth is related to the optical conductivity as l (�) =
{�μ0[|σ (�)| + Imσ (�)]/2} −1/2, where μ0 is the vac-
uum permeability. The surface impedance in the extreme
anomalous limit can be used to interpret the anomalous
skin effect through the function of surface optical con-
ductivity [52]. The impedance is given as Z∞,S/Z∞,N =

3
√{Re[σS (�)] − i Im[σS (�)]}/σN , where Z∞,S/N is the surface
impedance of superconducting/normal states. In Figs. 4(c)
and 4(d), we show the penetration depth as a function of fre-
quency. It is found that due to a large phase difference between
the field and carriers under BCS pairing (or the delayed carrier
response), the field can penetrate much deeper than in the
case of FFLO pairing. As frequency increases, more scattering
phase space opens up, the response delay decreases, and the
penetration decreases. A similar analysis applies to the FFLO
case. Figures 4(e) and 4(f) show the surface impedance as a
function of frequency. Both the real and imaginary parts of the
surface impedance for FFLO pairing decrease as � increases.
The trend of surface impedance for BCS pairing is similar to
the surface optical conductivity.

IV. DISCUSSION AND CONCLUSION

We obtained the frequency-dependent conductivity of
SWSMs with FFLO and BCS pairing. Different pairings result
in distinct frequency characteristics of the optical conductivity
in both the clean and dirty limits. The calculated conductivity
can be used to derive other useful physical quantities. For ex-
ample, by comparing the calculated conductivity to the Drude
formula for conductivity, σ (�) = iω2

p/[4πλ(� + iτ−1)], we
can deduce the effect of relaxation, where ω2

p is the oscilla-
tor strength, λ is the mass enhancement factor, and τ−1 is
the scattering rate, with λ(�) = (ω2

p/4π�) Im[1/σ (�)] and
1/τ (�) = −(ω2

p/4π h̄) Re[1/σ (�)]. In the following, we dis-
cuss some other points related to our model and results.

The node in the band dispersion is not unique in SWSMs.
The result presented here should be distinguished from that in
a regular superconductor with nodes. In a topologically trivial
one-band superconductor, the dissipative part of the bulk
optical conductivity vanishes in the clean limit. This is due to
the orthogonality of positive- and negative-energy bulk states
and the lack of a matrix structure for the current operator,
despite the particle-hole hybridization induced by pairing.
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In contrast to regular superconductors, the Fermi surface
breaks up into disconnected sheets which enclose one Weyl
node. The unusual band structure of SWSMs around the Weyl
point results in different contributions to the current response.
Specifically, it can be seen from the flow correlation in
conductivity calculations. The operator σα,κ = (1 −
2δκ,−1δα,z )σα in the current operator in Eq. (8) reflects
the difference from conventional current operators.
Correspondingly, the response kernel Kαγ (q, i�) takes
the form

Kαγ (q, i�)

= − (evF )2

V

∑
κ,κ ′

∫∫
dkdk′

(2π h̄)6

∫ h̄β

0
dτei�τ/h̄

× {
δ(k′ − hk − q)δκ,κ ′Tr[Gκ (k + q,−τ )

× σα,κGκ (k, τ )σ ∗
γ ,κ ] − δ(k′ + k)δκ,λκ ′Tr

× [
F †T

λ,κ (k′ − q,−τ )σxσα,κσxFλ,κ (−k, τ )σ ∗
γ ,λκ

]}
, (18)

where λ = ±1 for the FFLO pairing and the BCS pairing,
respectively, and the Green’s function Gκ (k, τ ) and the cor-
relation functions Fλ,κ (k, τ ) are node dependent.

It is not straightforward to measure what type of potential
is responsible for the superconducting pairing. The optical
conductivity is not the only way to distinguish the pairing
potentials. Since the pairing potential correlates the density
of states, one can also measure other quantities (electronic or
magnetic) that are closely correlated to the density of states to
identify pairing in SWSMs. In terms of sensitivity, the optical
conductivity measured through transmission (or reflection)
spectroscopy usually has an uncertainly of less than 10%.
This sensitivity should enable a distinction of the two types
of conductivity resonances.

SWSM materials may have multiband structures and can
be described by more than one order parameter. There also
could be order parameters with different symmetries in one
material. The nature of the pairing counterparts (s wave
or p wave) in SWSMs has not been unambiguously deter-
mined either. Some studies suggest that the p-wave states
are thermodynamically indistinguishable from s-wave states

and the parallel-spin triplet states are much more resilient to
externally applied magnetic field. Probes for p-wave super-
conductivity have not been settled. Our result does not address
whether the s-wave phase or p-wave phase dominates, which
is a separate topic to be studied theoretically and experimen-
tally. The problem we solved is limited to the s-wave pairing
state, and our conclusion does not extend to systems with
other symmetries.

Finally, we would like to mention some possible SWSM
candidates for measuring the optical conductivity. Recently,
superconductivity was studied in several Weyl semimetal
materials such as MoTe2, which exhibits superconductivity
with a transition temperature of 0.10 K [1]. The super-
conductivity arising from a Weyl semimetal normal phase
in MoTe1.85Se0.15 makes it a promising candidate for re-
alizing topological superconductivity [66]. Experimentally,
superconductivity has been reported in the B phase of UPt3

[67], SrPtAs [68], and praseodymium-based compounds (e.g.,
PrOs4Sb12 and PrPt4Ge12 [69]). These systems in which su-
perconductivity has been detected are possible candidates for
optical measurement.

In summary, the optical response of SWSMs provides
valuable information about the symmetry of the super-
conducting energy gap for FFLO and BCS pairings. The
photon response process includes contributions from the
quasiparticle, photon, and Cooper pair. We showed that the
resonance at the threshold and the Von Hove resonance in
the optical conductivity are distinct signatures of FFLO and
BCS pairings in SWSMs. Based on the exhibited charac-
teristics of different light absorption behaviors, we suggest
using optical means to distinguish which superconductivity
pairing dominates in a SWSM. Finally, while the optical
response reveals the superconducting pairing potential, the
microscopic mechanism determining which pairing is fa-
vored in a system cannot be obtained from the optical
conductivity.
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