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Path integral Monte Carlo study of a doubly dipolar Bose gas
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By combining first-principles path integral Monte Carlo methods and mean-field techniques, we explore
the properties of cylindrically trapped doubly dipolar Bose gases. We first verify the emergence of a pancake
quantum droplet at low temperatures, validating previous mean-field calculations. In a regime of small doubly
dipolar interactions, first-principles calculations agree with the generalized Gross-Pitaevskii equation. Such an
accordance disappears in a large interaction limit. Here the path integral Monte Carlo method estimates the
strong doubly dipolar regime with accuracy. In contrast, the Gross-Pitaevskii equation does not seize quantum
fluctuations in full. We also provide a complete description of the system’s quantum behavior in a wide range
of parameters. When the system forms a droplet, the superfluid fraction exhibits an anisotropic behavior if
compared to the usual Bose gas regime. Interestingly, we observe that the transition temperature from thermal
gas to droplet is higher than that of the thermal gas to a Bose-Einstein condensate, indicating the robustness of
the droplet against thermal fluctuations. Further, we investigate the anisotropic behavior of the superfluid fraction
during the structural transition from a pancake to a cigar-shaped droplet by varying the ratio between electric
and magnetic dipole interaction strengths. Our findings furnish evidence that the stability of doubly dipolar
Bose-Einstein condensates can be detected in experiments by means of dysprosium atoms.
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I. INTRODUCTION

Engineering interatomic potentials via external fields leads
to a wealth of exciting phenomena in ultracold quantum
gases [1,2]. In particular, systems having anisotropic and
long-range dipole-dipole interactions are at the forefront
[3]. Dipolar quantum gases include magnetic atoms [4,5],
polar molecules [6], and Rydberg atoms [7]. Unlike the
magnetic atoms, the latter two systems possess electric dipole
moments. A recent study reveals that admixing a pair of
low-lying quasidegenerate states with opposite parity using
an electric field can generate an electric dipole moment in a
dysprosium atom or a magnetic atom. It is a unique scenario
in cold atom physics where a single atom simultaneously
possesses substantial electric and magnetic dipole moments
[8]. Atoms experiencing a doubly dipolar potential exhibit
highly nontrivial anisotropic properties compared to the usual
dipolar interactions from a single dipole moment. Motivated
by that, on one side the role of quantum fluctuations and the
formation of droplet states are studied in a doubly dipolar
Bose-Einstein condensate (DDBEC) [9,10], and on the other
side quantum spin models are proposed [11]. Remarkably, the
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doubly dipolar potential leads to the existence of a pancake
droplet, in contrast to the typical cigar droplets so far observed
in Bose-Einstein condensate (BEC) experiments [12–15].

Dipolar interactions critically affect the fundamental prop-
erties of a Bose gas [4,16]. Notably, this leads to anisotropic
superfluidity [17–19], rotonlike excitations [20,21], and quan-
tum droplets in dipolar Bose-Einstein condensates (DBECs)
[12,14,22]. Regarding quantum droplets, this phase results
from the interplay between contact and dipolar interactions
and the stabilization provided by quantum fluctuations. The
effect of quantum fluctuations is incorporated in the mean-
field approach via the Lee-Huang-Yang (LHY) correction on
the chemical potential in the local density approximation,
leading to a generalized Gross-Pitaevskii equation (gGPE);
gGPE provides a good qualitative and, to a large extent, quan-
titative agreement with experiments. However, a better quanti-
tative picture requires going beyond the local density approx-
imation [23] or quantum Monte Carlo approaches [24,25].

Thermal fluctuations also play an essential role in the
physics of interacting Bose gases. Exploring finite tempera-
ture effects also requires methods beyond mean-field theory,
and the path integral Monte Carlo (PIMC) method has been
successfully employed for such studies [26–31]. In addition,
PIMC has already proven to be an accurate method to also
describe the ground state limit of both weakly and strongly
interacting bosonic systems [32–37]. Concerning DBECs
systems, PIMC has been instrumental in investigating key
macroscopic properties such as the superfluid and condensate
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fraction [29,38] (including their critical temperatures [39–41])
and pair correlation functions [42]. Additionally, PIMC fur-
nishes a correct description of the supersolid phase in quantum
droplet systems [37,43,44], self-bound liquid in binary Bose
mixtures [45], and Bose glasses [46–48].

In this paper, we analyze the properties of a cylindrically
trapped dysprosium doubly dipolar Bose gas through PIMC
simulations based on a continuous-space worm algorithm
[49,50]. First, we confirm the formation of a pancake droplet
at low temperatures, a unique feature first reported in a
DDBEC, which also validates the previous results obtained
using the gGPE [9,10]. As expected, the PIMC and gGPE
results are in excellent agreement for weak to moderate
doubly dipolar interactions (DDIs). In contrast, for large
DDIs, quantitative deviations are observed, and in particular
PIMC estimates stronger dipolar effects when the s-wave
scattering length is low. Further, we extract the superfluid
fraction, accessible to our PIMC approach based on the
nonclassical moment of inertia, as a function of scattering
length and temperature.

In the droplet regime, we see an enhanced anisotropic
superfluid behavior compared to that in the BEC regime be-
cause of the highly anisotropic shape of the droplet stemming
from the dipolar interactions. The anisotropic doubly dipolar
interactions cause a direction-dependent response to a slow
rotation, exhibiting an anisotropic superfluid fraction. In par-
ticular, when the rotation is about the symmetrical axis of
the droplet, the superfluid fraction is maximum. Anisotropic
superfluid fractions are well known in helium shells around
an impurity [51,52] and have previously been reported in
density-modulated stripe phases [33,53,54] and superfluid
dipolar filaments [28], where the density modulations along
an axis hinder the superfluid flow along that direction, and
in dipolar BECs in the presence of a weak disorder [55,56].
In ultracold trapped dipolar systems, with no disorder or im-
purities, anisotropic superfluidity has been characterized in
terms of Landau’s critical velocity, which manifests from the
anisotropic Bogoliubov spectrum [17,19]. In our paper, we
directly characterize an anisotropic superfluid fraction in an
unmodulated dipolar condensate.

Further, we show that the transition temperature for ther-
mal gas to droplet transition is larger than that of the thermal
to a repulsive BEC, indicating that the droplet is more ro-
bust against thermal fluctuations. Finally, we demonstrate the
change in anisotropic behavior in the superfluid fraction under
the structural transition from a pancake to a cigar droplet by
varying the ratio between the electric and magnetic dipole
interaction strengths.

The paper is structured as follows. In Sec. II, we intro-
duce the Hamiltonian governing the doubly dipolar Bose gas
and discuss the setup in our system. A comprehensive dis-
cussion of the PIMC simulation methodology is provided.
Moreover Sec. II briefly introduces the gGPE approach too.
We conduct a thorough comparison of the two different meth-
ods, gGPE and PIMC simulations, in Sec. III. Section IV
examines the superfluid behavior of the doubly dipolar gas
with varying short-range interaction. In Sec. V, we focus
on the characteristics of the doubly dipolar condensate and
a single pancake droplet under temperature variations. The
properties of DDBEC with the varying magnitude of electric

FIG. 1. Schematic diagram showing doubly dipolar Bose gas
consisting of N Dy atoms confined in an external harmonic trap
(see Sec. II). The atoms have both magnetic (dm) and electric dipole
moment (de), the magnetic dipole moment is fixed along the z axis,
and the electric dipole moment is assumed to be polarized in the
xz plane, forming an angle α with the z axis. The angle θm(θe)
is the angle between dm(de) and the vector joining the two atoms,
r = |ri − r j |.

dipole moment are discussed in Sec. VI. Finally, Sec. VII
summarizes the paper’s conclusions, drawing some future
outlooks.

II. MODEL AND METHODOLOGY

We consider a gas of N doubly dipolar dysprosium (Dy)
bosonic atoms of mass m confined in a cylindrical harmonic
trap of potential V (r) = m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2, where
ωq is the trap frequency along the qth direction. The atoms
possess both magnetic and electric dipole moments polar-
ized by external magnetic and electric fields respectively. The
quantum mechanical many-body Hamiltonian describing the
system reads

H =
N∑

i=1

[
pi

2m
+ V (ri )

]
+

∑
i< j

U (ri − r j ) (1)

where ri = (xi, yi, zi ) is the position of the ith atom of momen-
tum pi. The two-body interaction potential U in Hamiltonian
(1) yields

U (ri − r j ) = Uhard(r) + UDDI(ri − r j ) (2)

where r = |ri − r j |. Uhard(r) = ∞ for r < as and Uhard(r) =
0 for r > as, as being the two-body s-wave scattering length.
UDDI is related to the DDI, which reads

UDDI(ri − r j ) = gm
(1 − 3 cos2 θm)

r3
+ ge

(1 − 3 cos2 θe)

r3
,

(3)

where gm = μ0d2
m/4π , ge = d2

e /4πε0, while dm (de) is the
magnetic (electric) dipole moment of the atoms, and μ0 (ε0)
is the vacuum permeability (permittivity). θm and θe are the
angles formed by the magnetic and electric dipole vector with
the radial vector r joining the two dipoles, and α is the relative
angle between the two dipole moments as shown in Fig. 1.
In addition, we define γ = ge/gm as the ratio that identifies
the relative strength between electric and magnetic dipole
moments.

In this paper, we assume that the external magnetic field
is directed along the z axis and, hence, the direction of the
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magnetic dipole moment. The external electric field instead
varies in the xz plane, inducing a tunable electric dipole mo-
ment. The latter forms an angle α with the z axis (see Fig. 1).
Both α and γ can be varied by tuning the external electric field
for a range of experimentally feasible values [8,10]. Since
dipoles are polarized in the xz plane only, the DDI is always
repulsive along the y axis and anisotropic in the xz plane.

A. Path integral Monte Carlo method

PIMC is a methodology based on Feynman’s path integral
theory [57], which is devised to provide an accurate character-
ization of the thermodynamic features of quantum systems at
finite temperatures. PIMC has been fruitfully applied to a vari-
ety of bosonic systems, starting with 4He [58] and continuing,
more recently, with different ultracold atom setups [26–31]. In
this approach, considering a canonical ensemble, we extract
the main information of the bosonic systems by evaluating
the partition function Z , which is the trace of the density
matrix operator e−βH, where β = (kBT )−1. For N bosons the
partition function yields

Z = 1

N!

∑
P

∫
dR ρ(R, PR, β ), (4)

where

ρ(R, R′, β ) = 〈R|e−βH|R′〉 (5)

is the density matrix and PR = (rP(1), rP(2), . . . , rP(N ) ) is
a permutation of particle coordinates ri. In this framework
bosons at thermal equilibrium are described by their trajec-
tories in imaginary time, corresponding to a decomposition
of Eq. (5) into a convolution of density matrices at a higher
temperature, and then Eq. (4) yields

Z = 1

N!

∑
P

∫
dR0dR1 . . . dRM−1

× ρ(R0, R1, τ )ρ(R1, R2, τ ) . . . ρ(RM−1, PR0, τ ), (6)

where τ = β/M, while M is the number of time slices, and
Rm=(r(m)

1 , r(m)
2 , . . . , r(m

N ) are the coordinates of particles on a
given time slice m (with m = 1, 2, . . . , M). By applying this
representation, each boson in a position ri is seen as a classical
polymer made of M beads. The entire many-body system can
therefore be sampled through the usual Monte Carlo tech-
niques [24]. Over the years, numerous approximations and
sampling schemes have been brought forward, including the
so-called worm algorithm to efficiently sample superfluid or
condensate fractions [49,50].

PIMC has been applied to three-dimensional (3D) dipolar
Bose gases before. Nho and Landau [30] first suggested a
scheme that employs the Cao-Berne propagator [59] to de-
scribe the contact part of the interaction, while adopting a
simpler form, the primitive approximation [58], for the long-
range component. More recently, Saito [26] has conducted a
detailed analysis of this approach, in particular by studying
the effect of a short-range cutoff on the r3 term, and providing
benchmarks. Another possible scheme is to instead describe
the contact part of the interaction through a smooth potential,
e.g., a Lennard-Jones potential, and treat everything with the

primitive approximation [27,31]. The problem of purely re-
pulsive dipoles in two dimensions has also been investigated
[29,32,33,60,61].

Generally, dipolar interactions present two numerical com-
plications: first, the long-range character of the interaction
leads to a O(N2) scaling in computational resources; second,
the anisotropy of the interaction, as well as its divergent
character at r = 0, require a large number of time slices for
convergence in the primitive approximation. In this paper, we
adopt Saito’s scheme [26] adapting it to the DDI. In this way,
the density matrix reads

ρ(Rm, Rm+1; τ ) = ρfree(Rm, Rm+1; τ )

×
⎡⎣∏

i< j

ρCB
(
r(m)

i j , r(m+1)
i j ; τ

)⎤⎦e−τUDDI(Rm ).

(7)

The first term of the right side of the Eq. (7) represents the
free-particle density matrix:

ρfree(Rm, Rm+1; τ ) = 1

(4πλτ )3/2
e−τ

(Rm−Rm+1 )2

4λτ , (8)

where λ = h̄2

2m . The second term corresponds to the Cao-Berne
propagator [59]:

ρCB(r, r′, τ ) = 1 − as(r + r′ − as)

rr′ e− (r−as )(r′−as )(1+cos r̂r′ )
2τλr , (9)

where λr = h̄2

2m + h̄2

2m′ . Finally, we define the exponential ar-
gument of the third term as

UDDI(Rm) =
∑
i< j

UDDI
(
r(m)

i − r(m)
j

)
. (10)

We run simulations on a cluster, parallelizing the calculation
of the interaction to achieve a significant speedup. This allows
us to study large numbers of particles, up to N = 2000, while
ensuring convergence in the discretization of imaginary time.

The methodology here introduced is capable of precisely
estimating the chief quantities of interacting bosonic systems.
In this paper, we are interested in calculating the system’s
energy and its superfluid fraction; both cases are going to be
evaluated at T > 0 and in the limit of zero temperature.

Regarding the energy, its estimator relies heavily on the
approximation operated on the density matrix. Thus, referring
to the Eq. (7), the total energy reads

〈H〉 =
〈

3N

2τ
− 1

4λτ 2M

M∑
m=1

(Rm − Rm+1)2

− 1

M

M∑
m=1

∂ ln ρpot (Rm, Rm+1, τ )

∂τ

〉
, (11)

〈· · · 〉 denoting the statistical mean values of the estimator. For
the sake of brevity, ρpot (Rm, Rm+1, τ ) represents the interact-
ing part of the density matrix, that is, second and third terms
of Eq. (7).

The superfluid phase can be characterized by the response
of the fluid to a small external rotation [62]. While a normal
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fluid in equilibrium will rotate rigidly with the walls, a super-
fluid will stay at rest if the walls rotate slowly. The superfluid
fraction, fs, can be accurately estimated in a PIMC simulation
by calculating the ratio of the moment of inertia of the system
to that of the classical moment of inertia [58].

In this paper, we evaluate fs by sampling the well-
established “area estimator” [62]. This method draws a direct
connection between the area enclosed by tangled paths of
polymers in a finite system and the reduction of the moment
of inertia of the particles compared to the classical case. We
inspect the superfluid fraction along three orthogonal axes
(k = x, y, and z). When doing so, the formula for f (k)

s reads

f (k)
s = 4m2

h̄2βI (k)
cl

(〈
A2

k

〉 − 〈
Ak

〉2)
, (12)

where we keep the full definition by Sindzingre et al. in
Refs. [47,62]. In this formula, Ak results the total area en-
closed by particle paths projected onto the plane perpendicular
to the k axis, which can be written in terms of particle posi-
tions as

Ak = 1

2

N∑
i=1

M−1∑
j=0

(
r j

i × r j+1
i

)
k
, (13)

where in this case r j
i yields the position of the bead corre-

sponding to the ith particle on the jth time slice [63]. I (k)
cl

represents the classical moment of inertia around the k axis. It
reads

I (k)
cl = m

N∑
i=1

M−1∑
j=0

r( j)
i · r( j+1)

i . (14)

While for an isotropic soft-core fluid the superfluid fraction
along any of the principal directions is the same within errors,
the highly anisotropic doubly dipolar interaction makes f x

s ,
f y
s , and f z

s different for a wide range of parameters, depending
on the relative angle α and the relative strength γ .

B. Generalized Gross-Pitaevskii equation

At T = 0 the system can be described in the framework
of the mean-field theory by gGPE. To incorporate the effect
of quantum fluctuation, the LHY correction term is added to
the chemical potential, which stabilizes the condensate against
mean-filed collapse and helps to describe the beyond mean-
field physics [64,65]. The DDBEC including the quantum
fluctuation is described with the generalized GPE:

ih̄ψ̇ (r, t )

=
[

− h̄2∇2

2m
+ V (r) +

∫
d3r′ψ (r′, t )U (r − r′)ψ (r′, t )

+ �μ[n(r, t )]

]
ψ, (15)

where ψ denotes the macroscopic condensate wave function,
with

∫
d3r|ψ (r, t )|2 = 1 and n(r, t ) = N |ψ (r, t )|2. U (r) =

gδ(r) + NUDDI(r) is the interaction potential. The parameter
g = 4π h̄2asN/m determines the contact interaction strength,
with as being the s-wave scattering length. The LHY

correction term to the chemical potential is given by

�μ = g5/2
m

3π3

(
mn0

h̄2

)3/2 ∫
d�k[ε + F (θk, φk, α)]

5
2 , (16)

where
∫

d�k = ∫ 2π

0 dφk
∫ π

0 dθk sin θk , ε = g/Ngm and

F (θk, φk, α)

= 4πγ

3
[3(cos α cos θk + sin α sin θk cos φk )2 − 1]

+ 4π

3
(3 cos2 θk − 1), (17)

with θk and φk the angular coordinates in the momen-
tum space. The correction �μ becomes complex when
ε < 4π

3 (1 + γ ), meaning that the homogeneous DDBEC be-
comes unstable. The real part of �μ is dominated by
hard modes, whereas the unstable low-momentum excita-
tions determine the imaginary part. Not very deep in the
instability regime, Im[�μ]/Re[�μ] � 1 and Im[�μ] can be
disregarded.

The LHY correction is repulsive in nature and exhibits a
density dependence of n3/2

0 . Under local density approxima-
tion, that is for n0 → n(r, t ), we can obtain the ground states
of a DDBEC by numerically solving Eq.(15) via imaginary
time evolution. The units of length and energy used for the
simulations are ly = √

h̄/(mωy) and h̄ωy respectively.
To test both PIMC and gGPE, the Appendix reports a test

for a simple dipolar interaction system. Moreover, we are
going to compare the obtained density profiles with those
presented in Ref. [26].

III. BEC-DROPLET TRANSITION: PIMC
VS GGPE COMPARISON

In this section, we analyze the ground state passage of the
doubly dipolar Bose gas from a BEC to a pancake droplet
by employing the PIMC method and the gGPE discussed in
Sec. II. It is also interesting to compare the two methodologies
under the variation of the short-range interaction; in particular,
decreasing the s-wave scattering length makes dipolar interac-
tions very dominant.

Regarding PIMC, we consider a doubly dipolar Bose gas
of N = 1024 Dy atoms described by Hamiltonian (1) and
confined in a cylindrical trap elongated along the y axis,
with ωx,y,z = 2π × (75, 25, 75) Hz. Here, the magnetic and
electric dipole moments are assumed to be oriented perpen-
dicular to each other in the xz plane, thus having α = π/2,
and their magnitudes are chosen to result in γ = 1. Ground
state properties are obtained by extrapolating to the limit of
zero temperature, that is, lowering the temperature until the
observables (in this paper the energy and superfluid frac-
tion) do not change on further decreasing T . In a different
way, gGPE is solved at T = 0 via imaginary time evolution
[see Eq. (15)].

We first inspect the ground state energy of the system by
varying as. Figure 2(a) depicts this observable computed by
using both methods. Regarding the total energy (Etotal, black
points) PIMC and gGPE display a substantially concordant
trend between them. For as � 222a0 the repulsive short-
range interaction dominates, resulting in a stable low-density
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(a)

(b)

Ekin(PIMC)

Eint(PIMC)

ETotal(gGPE)

ETotal(PIMC)

DROPLET BEC

DROPLET

BEC

FIG. 2. (a) Energy comparison from the ground state of gGPE
(diamond) and PIMC (squares). The total energy is shown in black,
the energy contribution in PIMC arising from short-range interac-
tions and long-range DDI is shown in pink, and the kinetic term
is illustrated in violet. The inset shows the total energies in the
BEC regime. (b) Peak density comparison from the ground state of
gGPE (diamonds) and PIMC (squares). PIMC simulations have been
performed for N = 1024 Dy atoms under the external trap, ωx,y,z =
2π × (75, 25, 75) Hz (see main text). The blue and red background
denote the BEC and the droplet regime respectively.

BEC ground state. As expected, in this region the energy
calculations through gGPE exhibit a close agreement with the
statistically exact PIMC simulations compared to the droplet
regime for lower scattering lengths, where the attractive part
of the DDI in Eq. (3) dominates over the repulsive short-range
one, Uhard. The transition from a BEC to a pancake droplet
is observed consistently around as ≈ 222a0 as witnessed
in PIMC.

The appearance of the droplet regime from a BEC state
is also captured well by analyzing the peak density be-
havior. A sharp increase in the peak density is evident as
the system enters the droplet regime. The peak density of
the droplet rises with a decrease in the scattering length,
PIMC and gGPE exhibiting a qualitatively similar pattern
as shown in Fig. 2(b). The values obtained from PIMC
seem to indicate a sharper jump of this quantity around
222a0. A similar trend is observed in the total energy,
as illustrated in Fig. 2(a), where gGPE shows a smoother
behavior in the droplet regime. Regarding the PIMC find-
ings, the sharp drop of Eint supports the analysis shown in

FIG. 3. (a) Superfluid fraction across BEC to droplet transition
along three orthogonal directions (x, y, z) with varying scattering
length as for α = π/2, and γ = 1, for a trap frequency, ωx,y,z =
2π × (75, 25, 75) Hz. The blue and red background denote the BEC
and the droplet regime respectively. We show the 3D density iso-
surfaces obtained via PIMC simulations for (b) a pancake droplet
(as/a0 = 200) and (c) a cigar-shaped BEC (as/a0 = 230). The peak
densities for each case are provided at the top. The PIMC simulations
are done for N = 1024 number of Dy atoms.

Fig. 2(b), indicating the presence of a structure dominated by
the DDI.

The droplet regime features a clear growth of the Ekin terms
computed from PIMC [violet points in Fig. 2(a)]. This shows
the quantum fluctuations are indeed significant in the regime
dominated by strong attractive DDI (low as). As discussed in
Sec. II, the introduction of the repulsive LHY correction acts
to stabilize the condensate against the collapse and form a
pancake quantum droplet. However, it should be remembered
that LHY only remains a first-order correction to the mean-
field theory (one-loop term). It therefore can never account for
all the terms that characterize quantum fluctuations as PIMC
can properly. Furthermore, PIMC provides an accurate esti-
mate of the effects of DDI in the strongly dipole-dominated
regime. These explain the mismatch of energy between the
mean-field calculations and the PIMC simulations in the
droplet region.

IV. SUPERFLUID FRACTION ACROSS
BEC-DROPLET TRANSITION

One important macroscopic observable that characterizes
the quantum properties of the doubly dipolar Bose gas is the
superfluidity. We compute the superfluid fraction across the
BEC-to-droplet transition via PIMC simulations employing
area estimator methods as defined in Eqs. (12)–(14). The up-
per panel of Fig. 3 illustrates the ground state limit superfluid
fraction along the three orthogonal directions (x, y, z) with
varying short-range interactions. The density distributions
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obtained from PIMC simulations are visually represented
through isodensity plots in the lower panel of Fig. 3.

For higher values of as, the condensate represents the
ground state of the system, which has a three-dimensional
cigar shape elongated along the y axis [see Fig. 3(c)], de-
termined by the underlying trap geometry. The superfluid
fraction values computed in the condensate regime at T =
5 nK are finite in all three directions, with f y

s reaching
unity and f x

s and f z
s having lower values. The anisotropy

in the superfluidity is due to the anisotropic external har-
monic trap being applied to confine the doubly dipolar gas.
The high values of the superfluid fraction indicate the inher-
ent superfluid nature and the quantum coherence present in
the DDBEC.

With decreasing as, the superfluid fraction shows a drastic
change and becomes highly anisotropic. In this regime, the
interaction is dominated by the strong DDI, which is purely
attractive in the dipole plane (xz) and repulsive perpendicu-
lar to the dipole plane (y axis). The attractive DDI forms a
quasi-two-dimensional (2D) pancake-shaped droplet extend-
ing in the xz plane [see Fig. 3(b)], which emerges as the
ground state of the system. Due to the highly anisotropic
shape, the pancake droplet shows distinct superfluid responses
to a small external rotation around different axes. Along the
direction perpendicular to the dipole plane, the superfluid
fraction reaches unity, while its values are greatly suppressed
within the dipole plane. At a temperature of T = 10 nK, f (y)

s

achieves around 100% superfluidity, and we extrapolate these
values to lower temperatures. The anisotropy of the super-
fluidity in this regime is entirely dictated by the anisotropic
DDI, with minimal influence from external trap geometry.
Similar to the DDBEC, the superfluid fraction emphasizes
the intrinsic superfluid nature of the doubly dipolar pancake
droplet.

V. DDBEC WITH VARYING TEMPERATURES

In this section, we study the properties of the doubly
dipolar condensate and the pancake droplet with temperature
variations.

A. Doubly dipolar condensate

As discussed in previous sections, at high scattering
lengths, the doubly dipolar gas resides in a weak DDI regime.
We compute the energy and the superfluid fraction across
the passage from a thermal gas to a repulsive doubly dipolar
condensate.

At high temperatures, the thermal fluctuations dominate
and the system describes a simple thermal gas, without dis-
playing any coherence between the particles. The pronounced
thermal fluctuations result in a high value of the kinetic energy
as shown in Fig. 4(a). The detailed energy analysis shows
that the energy due to the harmonic trap is much higher
compared to the interaction energy, resulting in a cigar-shaped
geometry of the thermal gas dictated by the cylindrical trap
[see Fig. 4(d)]. As the temperature diminishes, the thermal
fluctuations decrease, and below a critical temperature the
thermal gas undergoes a transition to a condensed state. The
transition is captured through a sharp increase in the superfluid

FIG. 4. (a) Energy variation with temperature for a doubly dipo-
lar condensate at as/a0 = 260. The total energy is shown in black,
the energy contributions arising from short-range interactions and
long-range DDI are shown in pink, and the energy contributions from
the kinetic term and external harmonic trap are illustrated in violet
and sky blue respectively. (b) Superfluid fraction along the transition
from a thermal gas to a doubly dipolar condensate. The 3D isodensity
surfaces are shown for (c) a cigar-shaped doubly dipolar condensate
(T = 5 nK) and (d) a thermal gas (T = 20 nK). The peak densities
for each case are provided at the top. The PIMC simulations are
done for N = 1024 Dy atoms for an external harmonic trap, ωx,y,z

= 2π × (75, 25, 75) Hz.

fraction value around T = 18 nK [see Fig. 4(b)]. Superfluidity
increases in all three orthogonal directions as temperature
decreases and reaches 100% superfluidity along the y direc-
tion at lower temperatures. In this repulsive BEC regime,
the role of doubly dipolar interaction is minimal, and the
anisotropy of superfluidity is attributed to the anisotropic trap
geometry. At lower temperatures where thermal fluctuations
are negligible, the system converges toward its ground state,
with the total energy exhibiting minimal variation. Figure 4(c)

014513-6



PATH INTEGRAL MONTE CARLO STUDY OF A DOUBLY … PHYSICAL REVIEW B 110, 014513 (2024)

illustrates an isodensity plot of a superfluid cigar-shaped con-
densate at T = 5 nK.

B. Doubly dipolar pancake droplet

In the low scattering length regime, the doubly dipolar gas
is dominated by the strong DDI where the quantum fluctua-
tions present in the system play a pivotal role. We investigate
the interesting transition from a thermal gas to a quantum
pancake droplet with varying temperatures.

As expected, at high temperatures, thermal fluctuations
are strong and we observe a cigar-shaped thermal gas [see
Fig. 5(d)]. As temperature decreases, the attractive DDI and
the quantum fluctuations become prominent, leading to the
transition from the thermal gas to a quasi-2D pancake droplet.
Figure 5(a) shows the energy computed from PIMC simula-
tions across this transition. The high quantum fluctuations at
low temperatures are reflected in the increase of the kinetic
energy of the system, while the total energy decreases due to
diminished thermal fluctuations and an increase in the attrac-
tive component of the DDI. The effect of the external trap is
minimal in this regime, which indicates the pancake droplet is
effectively self-bound due to the DDI.

The behavior of superfluidity across the temperatures is il-
lustrated in Fig. 5(b). The rise in the superfluid fraction around
T = 30 nK signals the formation of the quantum droplet.
Upon entering the droplet regime, f y

s increases steadily and
reaches 100% superfluidity around 10 nK, while f x,z

s re-
mains suppressed throughout due to the anisotropic DDI. The
isodensity plot of a superfluid pancake droplet is shown in
Fig. 5(c). Notably, we observe that the transition tempera-
ture from the thermal gas to the droplet is higher than that
of the thermal gas to a condensate transition. This shows
that the doubly dipolar potential alters the critical temperature
for the condensation in the Bose gas. With decreasing the as

value, the DDI’s dominance has shifted the critical temper-
ature to a higher value. The pancake droplet demonstrates
prolonged superfluidity across a broader temperature range
compared to the condensate, which shows that the droplet is
more robust against thermal fluctuations.

Our paper reveals that the doubly dipolar condensate
and the pancake droplet are stable against finite temperature
fluctuations, which paves the way toward the experimental
realization of DDBEC.

VI. STRUCTURAL TRANSITION WITH VARYING
ELECTRIC DIPOLE MOMENT

At this point, we study the characteristics of the doubly
dipolar Bose gas by manipulating the relative strength, γ ,
between the electric and magnetic dipole moments at a fixed
scattering length. γ can be varied by varying the magnitude
of the electric dipole moment with the help of the external
electric field [8]. The relative angle between the two dipole
moments, α, is kept constant at π/2.

The PIMC simulations with varying γ reveal the BEC to
droplet transition and the structural transition from a quasi-2D
pancake to a quasi-one-dimensional (1D) cigar droplet. The
superfluid behavior throughout this transition is illustrated in
Fig. 6(a). When γ = 0, DDI solely involves magnetic dipoles

FIG. 5. (a) Energy variation with temperature for a pancake
droplet at as/a0 = 170. The total energy is shown in black, the energy
contributions arising from short-range interactions and long-range
DDI are shown in pink, and the energy contributions from the kinetic
term and external harmonic trap are illustrated in violet and sky
blue respectively. (b) Superfluid fraction along the transition from
a thermal gas to a superfluid pancake droplet along three orthogonal
directions (x, y, z). The 3D isodensity surfaces are shown for (c) a su-
perfluid pancake droplet (T = 5 nK) and (d) a cigar-shaped thermal
gas (T = 40 nK). The peak densities for each case are provided at
the top. The PIMC simulations are done for N = 1024 Dy atoms for
an external harmonic trap, ωx,y,z = 2π × (75, 25, 75) Hz.

pointing along the z direction. The repulsive short-range inter-
action dominates over the attractive DDI and forms a repulsive
BEC [see Fig. 6(b)]. Since the trap is weaker along y, the
condensate is elongated in y and the width of the condensate
along z is greater than along x, due to the maximum attraction
of DDI along z. The superfluid fraction exhibits finite values in
all three orthogonal directions, with f x,y

s having higher values
than f z

s . With the introduction of γ and the associated electric
dipole moment, attractive interactions along the x direction
come into play. In the BEC regime for γ > 0, f y

s surpasses
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FIG. 6. (a) Superfluid fraction across the structural transition
from a BEC to a quasi-2D pancake droplet to a cigar droplet along
three orthogonal directions (x, y, z) with increasing γ , for a constant
α = π/2 at scattering length, as = 170a0. The 3D isodensity plots
are shown for (b) BEC at γ = 0, (c) an anisotropic pancake droplet
at γ = 0.6, and (d) a cigar droplet elongated along the x axis at
γ = 2. The peak densities for each case are provided at the top.
The PIMC simulations are done for N = 1024 Dy atoms for an
external harmonic trap, ωx,y,z = 2π × (75, 25, 75) Hz. The blue and
red background denote the BEC and the droplet regime respectively.

f x,z
s due to attractive DDI in the xz plane. As γ increases

further, the attractive DDI dominates over the short-range
interactions, leading to the emergence of a quasi-2D pancake
droplet. The pancake droplet is anisotropic for γ 
= 1, and
it is elongated along z for γ < 1 as shown in Fig. 6(c). For
γ = 1, where DDI is radially symmetric in the xz plane,
an isotropic pancake is formed [see Fig. 5(c)]. Superfluidity
is high perpendicular to the dipole plane for the pancake
droplets and suppressed in the dipole plane. f y

s reaches around
unity for an isotropic pancake droplet. For γ values much
higher than 1, the electric dipole moment dominates over
the magnetic dipole moment and DDI is maximally attractive
along the x axis. The droplet undergoes a structural transi-
tion from the pancake to a cigar shape elongated along the
x axis [see Fig. 6(d)]. Superfluidity ( f y

s ) decreases with the
dimensional crossover from a quasi-2D to quasi-1D geometry.
This paper highlights that the superfluid characteristics of
DDBEC can be manipulated through the application of an
external field.

VII. CONCLUSIONS AND OUTLOOKS

In this paper, we have implemented first-principles numer-
ical simulations to study the properties of a doubly dipolar
Bose gas. Employing PIMC, we observe the transition from a
repulsive BEC to a quantum pancake droplet at low tempera-
tures and conduct a comparative study of the same at T = 0
using the gGPE in the mean-field framework. While PIMC
and gGPE results align well in weak DDI regimes, PIMC

correctly estimates dipolar as well as quantum fluctuation
effects in a strong DDI regime. We have investigated the su-
perfluid behavior based on rotational responses, as a function
of scattering lengths and temperatures. We observe a highly
anisotropic superfluid fraction in the pancake droplet regime,
attributed to the anisotropic nature of the doubly dipolar in-
teraction. The direction-dependent superfluid fraction may be
experimentally measured based on the system’s nonclassical
rotational inertia [66]. The anisotropy in the superfluid frac-
tions might also be observed in usual magnetic dipolar BECs
or in nondipolar BECs confined within highly anisotropic
traps, paving the way for comprehensive investigation in fu-
ture studies. Notably, we observe that the temperature of
passage from a thermal gas to the pancake droplet is higher
than that of the transition to a BEC, showcasing the robustness
of the pancake droplet against thermal fluctuations. Modu-
lating the relative strength between the two dipole moments
influences the structural and superfluid properties of the quan-
tum droplet.

In this paper, we have considered doubly dipolar bosons
confined within a cylindrical trap, which reveals an interest-
ing transition from a cigar-shaped BEC to a pancake-shaped
droplet due to the interplay between the trap and the
anisotropic DDI. Due to convergence issues, simulating a
self-bound droplet using the PIMC method becomes difficult
and a detailed study on self-bound droplets can be explored
in future work. Also, our current focus has been on a single
pancake droplet, although by altering the trap geometry or
number of atoms multiple pancake droplets can be realized.
Future investigation of superfluidity between the droplets will
provide insights into novel pancake supersolids predicted in
the mean-field work [10]. Exploring the finite temperature
properties of pancake supersolids will also be the subject
of future studies. Our paper confirms a stable DDBEC at
finite temperature and paves the way toward its experimental
realization.
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FIG. 7. Integrated density distribution along the x and z axis ob-
tained using PIMC (solid lines) and gGPE (dashed lines) simulations.
The simulations are done at as = 70a0 for N = 1024 atoms under an
external harmonic trap, ωx,y,z = 2π × (46, 44, 133) Hz.

APPENDIX: DENSITY PROFILE TEST FOR A SINGLE
DIPOLAR TERM

We have tested our PIMC code in the case of the sim-
ple dipolar interaction against GPE and known results. We
consider N = 1024 particles under an external harmonic
confinement ω = 2π (46, 44, 133)Hz, with magnetic dipole
moment dm = 9.93μb. The s-wave scattering length, as co-
incides with the radius r0 of the hard-sphere potential. We
run the PIMC code for a temperature T = 7.4 nK, taking
as = 70a0, where a0 is the Bohr radius. Figure 7 depicts
the integrated density profiles in the x and z directions for
M = 64, 96, 128, 256 (see Sec. II). The PIMC density profiles
are compared with the same quantity obtained by using the
gGPE, which includes the beyond mean-field LHY correction.
The density profiles of PIMC and gGPE find a good agree-
ment with each other. At the same time, they too accord with
the results by Saito for the same parameters [26]. We have
also measured the superfluid fraction along the three principal
axes, obtaining fs = 0.69(12), 0.67(12), 0.72(15).
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