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Recovery of a Luther-Emery phase in the three-band Hubbard ladder with longer-range hopping
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A lightly doped single-band Hubbard model on a two-leg ladder exhibits a Luther-Emery phase, whereas the
three-band Hubbard ladder behaves as a Luttinger liquid upon hole doping. To understand this discrepancy, we
present a systematic density-matrix renormalization group study of the three-band Hubbard model on two-leg
cylinders with further-neighbor particle hoppings. The inclusion of the longer-range hopping is motivated by
the studies of the single-band Hubbard model in which the further-neighbor hopping terms are suggested to
be crucial for the unconventional superconductivity. When the longer-range hopping parameters are small, the
ground state is a Luttinger liquid having mutually commensurate superconducting, charge, and spin density wave
correlations. Increasing the longer-range hopping drives a transition into a Luther-Emery phase with quasi-long-
ranged superconducting and charge orders but short-ranged spin-spin correlations. By down-folding the three-
band Hubbard model into an effective t-t ′-J-J ′ model, we find that in the Luther-Emery phase, both the nearest-
and second-neighbor kinetic energies are enhanced due to an effective increase of copper-oxygen hybridization.
Amplifying intercell oxygen orbital hopping mirrors the benefits of reducing the charge transfer energy, causing
doped holes to favor oxygen orbitals and strengthening superconducting pairing.
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I. INTRODUCTION

The three-band Hubbard model, which was first proposed
by Emery [1,2], can depict the lattice structure of copper
and oxygen orbitals in cuprate superconductors. This model
is of particular interest because (1) it takes into account the
charge-transfer energy and describes the structure of cuprate
materials [3,4] better than the single-band Hubbard model,
and (2) it provides geometrically decoupled spin and charge
degrees of freedom in some parameter range. These characters
make it a potentially suitable candidate that favors the pairing
order. Besides, recent studies on the three-band Hubbard lad-
der suggest the presence of a pair density wave (PDW) ground
state [5,6], which is a rare find in the microscopic realization
of PDW [7–13].

In the context of high-temperature superconductivity, ex-
tensive studies have been conducted on the single-band
Hubbard model [14,15]. There are some deep relations be-
tween the single-band and three-band Hubbard models: the
similarity in the fundamental excitations is illustrated by the
Zhang-Rice singlet picture [16]; under certain circumstances,
the three-band Hubbard model can be down-folded to an
effective single-band Hubbard model or t-J model [17–20],
where similar ground state properties have been revealed in
recent decades [17,21–25]. The ground state of the single-
band Hubbard model at half filling on a two-dimensional
square lattice is a Mott insulator with long-range magnetic
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order [26,27]. The three-band Hubbard model at half filling
also has been found to exhibit AFM order [28,29].

However, discrepancies between these two models are not
negligible. Although it has been extensively studied in the
context of high-temperature superconductivity, no evidence
of PDW has been found in the single-band Hubbard model.
More strikingly, the single-band Hubbard ladder exhibits
a Luther-Emery phase with dominant superconducting and
charge orders upon light doping [30,31], whereas the three-
band Hubbard ladder is a Luttinger liquid for the same doping
concentrations [5,32].

To understand these discrepancies, we study the three-band
Hubbard model with longer-range hopping on a two-leg lad-
der. The inclusion of the longer-range hopping is motivated
by previous studies on the single-band Hubbard model, in
which the further-neighbor particle hoppings are essential for
superconductivity [14,15,33–38]. We study the ground state
properties of the lightly doped three-band Hubbard model
on two-leg cylinders of Lieb lattices. The further-neighbor
hopping terms we introduce here are the hopping between
copper sites in the adjacent cells with coefficients tdd , and
the hopping between oxygen sites in the adjacent cells with
coefficients t ′

pp. By tuning the hopping parameters, we get a
phase diagram with a Luttinger liquid phase with intertwined
PDW, charge density wave (CDW), and spin density wave
(SDW) correlations when both hoppings are close to zero, and
a Luther-Emery SC phase with d-wave symmetry when these
two parameters are greater than a critical value.

The rest of the article is organized as follow: in Sec. II,
we describe the model Hamiltonian and illustrate the
phase diagram; in Sec. III, we show various ground state
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FIG. 1. Top: The three-band Hubbard model on a Lieb lattice.
The hopping parameters are shown on the lattice. Several types of
copper-copper bonds are marked in dashed lines. We add an addi-
tional column on the right end to facilitate convergence. Here, �v1

and �v2 are basis vectors in the unit cell. Bottom: Phase diagram
as a function of tdd and tpp′ . The region in orange represents the
PDW+CDW+SDW phase, and the region in blue is the SC phase.

correlations and discuss how the hopping parameters affect
the ground state properties; in Sec. IV, we present an analysis
of down-folding the three-band Hubbard model to an effec-
tive t-t ′-J-J ′ model using the exact diagonalization method;
finally, in Sec. V, we summarize our results.

II. MODEL AND PHASE DIAGRAM

We use the density-matrix renormalization group (DMRG)
method [39–41] based on the iTensor library [42,43] to study
the ground state phase diagram of the three-band Hubbard
model with further-neighbor hoppings on two-leg (Ly = 2)
Lieb lattice cylinders with length up to Lx = 64. By keeping
bond dimensions up to m = 7000, we make sure the trunca-
tion error remains in the order of 10−7 or below. The Lieb
lattice we simulate is shown in the top panel of Fig. 1. The
“squares” and “circles” represent copper and oxygen orbitals,
respectively. We implement the periodic (open) boundary con-
dition along the vertical (horizontal) direction.

We study the following model Hamiltonian in the hole
language:

H = Htb + Hint (1)

Htb = −T pd − T pp − T dd − T pp′

+�pd

∑
i

np
i (2)

Hint = Ud

∑
i

nd
↑,in

d
↓,i + Up

∑
i

np
↑,in

p
↓,i, (3)

where the kinetic term is defined as T αβ =∑
i, j;σ tαβ (cα†

i,σ cβ
j,σ + H.c.), and α, β belongs to each kind

of orbitals. We take into account four types of hopping
terms in this model as shown in the top panel of Fig. 1:
(1) tpd between the adjacent oxygen and copper sites, (2)
tpp between the nearest px and py orbitals, (3) tdd between
copper sites in the adjacent unit cells, and (4) tpp′ between the
same type of oxygen sites in the adjacent cells. In this work,
we keep Ud = 8, Up = 3, tpd = 1, tpp = 0.5, and �pd = 3
[44–46] unless otherwise specified. tdd and t ′

pp are the tuning
parameters. We follow the sign convention in Ref. [5],
which is equivalent to the original Emery model by a gauge
transformation.

We calculate the following correlation functions to study
the ground state properties of the systems. These include the
spin-spin correlation function

S(r) = 〈
Sz

0Sz
r

〉
, (4)

the charge density-density fluctuation correlation function

D(r) = 〈n0nr〉 − 〈n0〉〈nr〉, (5)

the single-particle Green function

G(r) = 〈c†
↑,0c↑,r〉, (6)

and the spin-singlet SC pair-pair correlation function

�(r) = 〈�̃†
0�̃r〉. (7)

Here, �̃† represents the spin-singlet Cooper pair creation op-
erator between neighboring sites

�̃
†
i = 1√

2
(c†

i,↓c†
i+1,↑ − c†

i,↑c†
i+1,↓). (8)

In the bottom panel of Fig. 1, we show the phase diagram as
a function of tdd and t ′

pp at δ = 1/8 hole doping concentration.
When both hopping parameters are around zero, the system
is in a Luttinger liquid phase with intertwined PDW, CDW,
and SDW correlations. To find the strongest signal of the
pairing order, we have computed the SC pairing correlations
on different bonds (see Appendix B) and find that �hh(r), i.e.,
the spin-singlet SC pairs on nearest copper sites along the x-
direction, is the dominant SC component. By increasing both
hopping coefficients to the positive values, the spin-singlet
pairing correlations are further enhanced and the system even-
tually undergoes a quantum phase transition to a d-wave SC
phase. The properties of this d-wave SC phase is consistent
with that of a Luther-Emery liquid state with quasi-long-range
SC and CDW correlations but short-range spin-spin correla-
tion (see Appendix D). Different from the Luttinger liquid
phase, the spin-singlet pairing correlation between adjacent
copper sites along the y-direction �uu(r) becomes dominant
over all the other bonds here and exhibits a d-wave symmetry.

III. GROUND STATE CORRELATIONS

When tdd and t ′
pp are both small and positive, the ground

state of the system is consistent with that of the Luttinger
liquid phase with power-law single-particle, PDW, SDW, and
CDW correlations. However, different from the single-band
Hubbard model, the SC correlation (see the right panel of
Fig. 9) in this case has a spatial oscillation with sign change
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FIG. 2. Local density profiles for tdd = t ′
pp = 0.2. Left: Density

distribution on copper orbital. Right: Density distribution on oxygen
orbital. κC is the scaling exponent obtained by curve fitting.

(see Appendix C), which can be described by the following
formula:

〈�̃†
0�̃r〉 = A · cos(ωr + φ)

rκpdw
+ B

rκsc
. (9)

If the value of B � A, the overall fluctuation has a spatial
oscillation around zero, which suggests the presence of the
PDW order. Our results are consistent with this, where we
find that A ≈ 10B when tdd = t ′

pp = 0. For tdd = t ′
pp = 0.2,

we find that A ≈ B/3.
The charge density properties of the system can be de-

scribed by the charge density profile nα (x, y) and its rung
average ρα (x) = ∑Ly

y=1 nα (x, y)/Ly, where x denotes the po-
sition along the longer direction, y is the position along the
shorter direction, and α represents each type of orbital. Con-
sistent with previous studies [5,6], the spatial decay of the
CDW correlation at long distance is dominated by a power law
with an exponent κc with two ordering wavevectors Q = 2πδ

and 2Q (see Fig. 10). The value of the exponent κc can be
obtained by fitting the charge density oscillations ρ(x) with
a generalized Friedel oscillation formula induced by the open
boundaries of the cylinder [5,47]

ρ(x) = AQ ∗ cos(Qx + φ1)

xκc/2
+ A2Q ∗ cos(2Qx + φ2)

xκc/2
+ n0,

(10)

where AQ and A2Q are the amplitudes, φ1 and φ2 are the phase
shifts, and n0 is the mean density. It has been shown that the
2Q charge order usually competes with the superconductivity
[14,48], which is also consistent with our results. We will see
that when the system enters the superconducting phase, the
2Q mode is suppressed.

By increasing the parameters to the larger positive val-
ues, the system enters a distinct d-wave SC phase with
dominant power-law superconducting correlations but expo-
nentially decaying single-particle and spin-spin correlations.
In the d-wave SC phase, the short-ranged spin-spin correlation
is mutually commensurate with the charge correlation at the
wavevector Q, although both of them are incommensurate on
the finite lattice with open boundaries in the longer direction.

Contrary to the Luttinger liquid phase with small further-
neighbor electron hoppings, we find that in this d-wave SC
phase, the coefficient B is greater than A. Moreover, the charge
density modulation has only one characteristic wavevector
Q (Fig. 2). The 2Q mode is suppressed while the SC order

FIG. 3. Correlations for tdd = t ′
pp = 0.2. Left: Singlet pairing

correlations on u bonds in log scale for different number of states
m. The black curve with square symbols represents the result of a
m → ∞ extrapolation. Right: The normalized pairing correlations
on u − u, h − h, and u − h bonds, where the u, h bonds are shown in
the lattice in Fig. 1. f (r) is the envelope function.

is enhanced. The symmetry of the SC correlations can be
determined by comparing the relative signs of the SC pair-pair
correlations between different bonds. The right panel of Fig. 3
shows that the pairing correlations between u bonds display
values in opposite sign with the correlations between u and h
bonds (see Fig. 1 for the definition of the bonds). Besides,
the multiplication of κc and κsc is close to 1. All of these
suggest that the system is in a Luther-Emery phase, with
a d-wave pairing symmetry, and these conclusions are not
system dependent based on our study on ladders with different
lengths (see Appendix E).

The preceding results show that the intercell hopping terms
enhance the SC correlations while suppressing the spin-spin
correlation. This is closely connected to the results of charge
transfer energy, which also suggests that the density distribu-
tion is associated with the intertwined orders in the charge
transfer insulators [49]. To understand how these two pictures
reconcile, we study how the hopping terms affect the den-
sity distributions on each orbital. It is shown in other works
[45,46] that for the undoped three-band Hubbard model, about
70% of the holes are on the copper sites. Upon (hole) doping,
however, most of the doped holes will occupy the oxygen sites
[49]. Interestingly, if we turn on the further-neighbor electron
hoppings tdd and t ′

pp, we find that the effect of increasing
t ′
pp is equivalent to decreasing the effective �pd , where the

average copper density will decrease (see Appendix A). On
the contrary, the influence of tdd on density distribution is
negligible.

As a complementary comparison, we have computed the
SC pairing correlation for different charge transfer energies
�pd while all the other parameters remain the same. In Fig. 4,
we show the SC pairing correlations for two representative
cases in each of the two phases, where we find that for
both phases, decreasing �pd can enhance the SC pairing
correlations.

IV. DOWN-FOLDING THE THREE-BAND HUBBARD
MODEL TO AN EFFECTIVE t-t ′-J-J′ MODEL

The low-energy physics of the three-band Hubbard model
(or CuO2 plane) can be mapped to an effective t-t ′-J-J ′ model
in Eq. (11). Following the prescription in Refs. [18–20], we
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FIG. 4. Comparison of singlet pairing correlations with different
values of charge transfer energy in each of the PDW + CDW + SDW
and SC phases.

present the down-folding for the three-band Hubbard model
with further-neighbor hopping terms. In this scheme, we con-
sider two types of small clusters: the Cu2O7 cluster with two
unit cells aligned, and the Cu2O8 cluster with the two unit cells
along the diagonal direction. Specifically, the hopping param-
eter t (t ′) is determine by the spin-singlet and triplet energy
splitting of a Cu2O7 (Cu2O8) cluster; J (J ′) is determined by
the energy difference between bonding and antibonding states
of a Cu2O7 (Cu2O8) cluster. The results are shown in Table I.
When the three-band Hubbard model is in the d-wave SC
phase, we find in the effective model that the hoppings to both
the nearest- (t) and next-nearest (t ′) neighbors are enhanced,
as well as the spin exchange coupling J . The strengthening
of the hybridization between orbitals makes the pairing orders
more favorable.

Ht−t ′−J−J ′ = −t
∑
〈i, j〉σ

(c†
i,σ c j,σ + H.c.)

− t ′ ∑
〈〈i, j〉〉σ

(c†
i,σ c j,σ + H.c.)

+ J
∑
〈i, j〉σ

(
�Si · �S j − 1

4
nin j

)

+ J ′ ∑
〈〈i, j〉〉

(
�Si · �S j − 1

4
nin j

)
(11)

TABLE I. Coefficients of the effective t-t ′-J-J ′ model. There is
an overall minus sign before each hopping coefficient.

Cu2O7 Cu2O8

tdd t ′
pp t J t ′ J ′

0 0 0.34 0.17 –0.14 0.01
0 0.25 0.45 0.27 –0.21 0.04
0.25 0 0.41 0.34 –0.14 0.01
0.25 0.25 0.52 0.47 –0.21 0.04

FIG. 5. Ground state correlations of the t-t ′-J-J ′ model. (a) The
results for t = 0.34, t ′ = −0.14, J = 0.17, J ′ = 0.01. The corre-
sponding three-band Hubbard model is in the LL phase. (b) The
results for t = 0.52, t ′ = −0.21, J = 0.47, J ′ = 0.04. The corre-
sponding three-band Hubbard model is in the SC phase.

To further support this argument, we have also calculated
the ground state properties of the t-t ′-J-J ′ model on an N =
64 × 2 ladder with DMRG, using the parameters listed in
Table I. We choose two representative sets of parameters in the
first and last rows of the table to implement the calculations.
The corresponding three-band Hubbard models of these two
data points are in the Luttinger liquid phase and d-wave SC
phase, respectively. The results are presented in Fig. 5. We can
see in the left panel that all the correlations decay as a power
law, with dominant single-particle and spin correlations. How-
ever in the right panel, the SC pairing and CDW correlations
become dominant while the spin and single-particle correla-
tions are short ranged, which decay exponentially. Similar to
the three-band Hubbard model, the pairing symmetry of the
SC correlations is also d-wave in this case.

V. CONCLUSIONS

To summarize, we have studied the ground state properties
of the lightly doped three-band Hubbard model with longer-
range hopping terms on two-leg cylinders. By tuning these
hopping coefficients positively, we observed a quantum phase
transition from a Luttinger liquid phase characterized by in-
tertwined PDW, CDW, and SDW correlations to a d-wave SC
phase (i.e., Luther-Emery phase). Through this transition, the
pairing order intensifies, changing from a mixed SC and PDW
order to a predominantly d-wave symmetry SC order. This
transition is underlined by modifications in the band structure
and density distributions stemming from the tuning of hop-
ping parameters. Our computational analyses pinpointed an
intriguing correlation: the increase in the t ′

pp parameter mimics
the effect of a reduced effective charge transfer energy, �pd .

By down-folding the three-band Hubbard model to the
effective t-t ′-J-J ′ model, we observed an increase of both
the nearest- and second-neighbor hopping parameters and the
ratio of J/t , when entering the Luther-Emery phase. This find-
ing sheds light on the question as to “why the lightly doped
three-band Hubbard ladder behaves as a Luttinger liquid but
not the Luther-Emery liquid, as the single-band Hubbard
model does.” From our small cluster study, we found that
although these two models were closely related, the param-
eters of the original three-band Hubbard model did not have
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FIG. 6. Number density measurements on Cu, Ox , and Oy sites.

a strong enough hybridization between orbitals. However, by
introducing longer-range hopping terms, the Luther-Emery
phase emerges in the vicinity of the Luttinger liquid phase.

In this study, we have examined the effect of further-
neighbor particle hopping terms on the ground state properties
of the three-band Hubbard model on two-leg cylinders. It is
worth noting that the recovery of the Luther-Emery phase
on the three-band Hubbard model can also be achieved by
introducing long-range Coulomb interactions [6]. An intrigu-
ing avenue for future research would be to ascertain whether
this influence persists in wider systems and at higher doping
levels. A comprehensive understanding would also necessitate
the exploration of the combined effects of further-neighbor
hopping and long-range Coulomb interactions, for which pre-
vious studies have demonstrated that the latter one is crucial

FIG. 7. Average number density as a function of �pd . Computed
by DMRG for system size Nx = 48 with 1/8 doping.

FIG. 8. Left: Comparison of singlet pairing correlations on dif-
ferent bonds for tdd = t ′

pp = 0. Right: Comparison of singlet pairing
correlations on different bonds for tdd = t ′

pp = 0.2. The u, h, a, b, d,

and d bonds are shown in the lattice in Fig. 1.

for enhancing or in some instances even inducing the PDW
order and superconductivity [5,6,50–52].
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APPENDIX A: EFFECTS OF HOPPING PARAMETERS
AND CHARGE TRANSFER ENERGY ON DENSITY

DISTRIBUTION

To demonstrate how the hopping coefficients affect the
number density, we compute the average density on copper
and oxygen sites for systems with length Lx = 48 for two
cases: (1) half filling and (2) 1/8 hole doping. Figure 6 shows
the average local densities on Cu, Ox, and Oy sites with
different values of intra-orbital hoppings. In both of the half
filling and the hole-doped regimes, the density on copper
sites mainly depends on the values of t ′

pp and keeps nearly
unchanged with tdd . When t ′

pp is increasing, the occupation

FIG. 9. Correlations for tdd = t ′
pp = 0. Left: Singlet pairing cor-

relations on h bonds in log scale; the black curve with square symbols
represents the result of extrapolation to m → ∞. Right: The normal-
ized pairing correlations on h − h, u − u, and u − h bonds. f (r) is
the envelope function.
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FIG. 10. Local density profiles for tdd = t ′
pp = 0. Left: Density

distribution on copper orbital. Right: Density distribution on oxygen
orbital. κC is the scaling exponent obtained by curve fitting.

number on Cu sites decreases and more holes go to oxygen
sites, which is similar to the effect of decreasing the charge
transfer energy �pd (Fig. 7).

Nevertheless, the doped holes (the increase of the hole
density upon doping) have both tdd and t ′

pp dependencies.
With the increase of t ′

pp, the doped holes on both Ox and Oy

decrease. With the increase of tdd , the doped holes on Ox and
Oy have opposite trends and the number of doped holes on
copper sites decreases.

APPENDIX B: COMPARISON OF THE PAIRING ORDERS
ON DIFFERENT BONDS

In Fig. 8, we show the pairing correlations on all types of
bonds illustrated in the top panel of the schematic in Fig. 1.
When the system is in the PDW phase, the PDW order on the
h bonds is slightly stronger than all the others, although all of
the pairing orders are quasi-long ranged. However, in the d-
wave SC phase, the SC order on u and h bonds are dominant,
and are stronger than the others by a few orders of magnitude.

APPENDIX C: GROUND STATE CORRELATIONS
IN THE LL PHASE

We choose one representative data point in the LL phase
and present the ground state properties. For the case tdd =
t ′
pp = 0, we show the pairing correlations in Fig. 9. The pair-

ing order has a spatial oscillation with a vanishing average
and exhibits a d-wave symmetry. Figure 10 shows the local
density profile and the decaying exponent obtained by curve
fitting with Eq. (10).

FIG. 11. Spin-spin correlations for tdd = t ′
pp = 0 and tdd = t ′

pp =
0.2. Left: Log-log scale. Right: Semi-log scale.

FIG. 12. Comparison of the correlations with different system
sizes for tdd = t ′

pp = 0.

APPENDIX D: SPIN-SPIN CORRELATIONS
IN EACH OF THE TWO PHASES

To address the magnetic properties of the system in dif-
ferent phases, we compute the spin-spin correlations defined
in Eq. (4), and the results are presented in Fig. 11. Two
representative cases are chosen to present in this figure. The
log-log and semi-log plots clearly reveal the different scaling
behaviors. The S(r) in the PDW+SDW+CDW phase exhibits
a power-law decay (for tdd = t ′

pp = 0), which appears as a
linear curve in the log-log plot but a nonlinear curve in the
semi-log plot. In contrast, the S(r) in the SC phase (with
tdd = t ′

pp = 0.2) exhibits an exponential decay, which appears
as a nonlinear curve in the log-log plot but a linear curve in
the semi-log plot, indicating that the spin sector is gapped.

APPENDIX E: COMPARISON OF DIFFERENT
SYSTEM SIZES

We have computed the spin-spin, density-density, single-
particle, and pairing correlations for systems of size 64 × 2

FIG. 13. Comparison of the correlations with different system
sizes for tdd = t ′

pp = 0.2.
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and 32 × 2, and present the results in Figs. 12 and 13. Both
of these figures demonstrate that the trends and decaying

behaviors of varied correlations are independent of system
size across both phases.
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