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The amplitude and phase of the third harmonic response in superconductors provide important insights
into collective Higgs and Leggett modes, respectively, in the superconducting state. In particular, for twice
the incident frequency equal to the binding energy (2ω = 2�), one finds a resonance of the amplitude and
a corresponding phase jump in the third harmonic response, respectively. We generalize these concepts to
superconductors without an inversion symmetry, which can be effectively described by a two-band model
with an order parameter consisting of spin-singlet (even parity) and spin-triplet (odd parity) components. In
our work we use an effective action approach for the derivation of the nonlinear response and assign the
underlying physical processes to their respective Feynman diagrams. We calculate the third harmonic signal
exemplary for the noncentrosymmetric compound CePt3Si, showing that it contains contributions from three
distinguishable sources, namely the Higgs mode, the Leggett mode, and quasiparticles (broken Cooper-pairs).
Only in the clean limit diamagnetic Raman-like processes contribute to the third harmonic signal, whereas the
quasiparticle contributions dominate the collective modes for all triplet-singlet ratios of the gap structure. In the
dirty limit, we find a significant enhancement of the Higgs mode contributions to the third harmonic response,
due to the inclusion of nonvanishing paramagnetic diagrams. Finally, we argue that the phase difference between
the third harmonic and the fundamental signal might reveal a jump, where its size is dependent on the light-matter
coupling.
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I. INTRODUCTION

In the past few years, Higgs spectroscopy has emerged as a
powerful tool to investigate the properties of superconductors,
with experiments able to excite the amplitude (Higgs) mode
of the U (1)-broken phase. In clean superconductors, Higgs
modes are coupled only nonlinearly to light and are therefore
visible in nonlinear optical spectroscopic techniques, such
as Raman and third-harmonic response, often called third
harmonic generation (THG) [1–9]. A resonance in the THG
intensity appears, when matching the driving frequency to the
energy of the Higgs mode 2ω = 2�. At that resonance fre-
quency a phase jump occurs in the phase difference between
third harmonic and fundamental signal. On the other hand,
dirty superconductors reveal an enhanced signal that can be
detected with linear coupling to light [10,11].

It has been demonstrated that the THG and other super-
conducting response differs according to the symmetry of
the gap function, which can be used for a classification of
the Higgs mode [12]. This response was already discussed

*Contact author: s.klein@fkf.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

in detail for gap symmetries with even parity, such as s- or
d-wave superconductors, where the THG and phase jump was
calculated [1,7,13]. However, recently, also gap functions with
odd parity were analyzed in more detail [14].

In noncentrosymmetric superconductors (NCSs), the
Rashba-type antisymmetric spin-orbit coupling (ASOC) is
caused by the absence of an inversion center and leads to a
lifting of the band degeneracy. Thus, a single-band supercon-
ductor might be effectively described in a two-band structure.
Additionally, this absence leads to a breakdown of the strict
separation between even-parity spin-singlet and odd-parity
spin-triplet pairing correlations, thus allows for a mixed-
symmetry pairing interaction forming Cooper pairs [15–18].
This results in a mixed parity order parameter, formed by
a superposition of spin-singlet and spin-triplet components,
affecting the response of collective modes [19]. The prototyp-
ical noncentrosymmetric tetragonal superconductor CePt3Si
is only one example of such materials without an inversion
symmetry and was already the target of various extensive
theoretical [17,20–28] and experimental studies [29–37].

So far the investigation of superconductive collective
modes has involved systems with spin-singlet (mainly s- and
d-wave) pairing states, either single- or multiband. In the
former case, only the amplitude mode has been investigated,
since, at least in 2D superconductors, the Goldstone mode
does not directly contribute to the electromagnetic response
at zero external momentum hence to the THG. The reason for
that is the gauge invariance, that allows the phase mode to
be gauged away by its coupling to the density mode [38]. In
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the latter, additionally to the amplitude modes of each band,
a Leggett phase mode appears mostly inside the supercon-
ducting gap. This Leggett mode describes the Josephson-like
oscillations between the phases of the two superconducting
order parameters and corresponds therefore to collective fluc-
tuations of the superconducting interband phase difference.

Noncentrosymmetric superconductors can be effectively
described as two-band superconductors, each of them has a re-
stored inversion symmetry. Therefore, analogously to singlet
multiband superconductors, both Higgs and Leggett modes
are present in the superconducting response [19]. However,
neither a signature of the response of collective modes in
NCSs has not been calculated so far, nor the nonlinear THG
process. Only the influence of quasiparticles in parity-violated
NCSs in the Raman signal [39] as well as the second har-
monic generation (SHG) [40] have been studied recently.
These uncovered points of interest will be addressed in this
paper, where we get a deeper understanding of the THG signal
contributions in NCSs caused by quasiparticles, the Higgs
mode and the Leggett mode, respectively, by analyzing both
intensity and phase signals. In fact, it has been recently shown
in conventional and unconventional superconductors that the
phase of the generated harmonics contains additional infor-
mation about the collective modes and impurity level of the
superconductor [41]. Furthermore, our discussion will go be-
yond the clean limit and cover also the paramagnetic response
by including an extended Mattis-Bardeen approximation. In
centrosymmetric superconductors it has been shown that the
influence of impurities lead to a strong enhancement of the
THG signal, especially for the Higgs response [42–44]. As
we assumed a similar behavior for NCS, we aim for a gener-
alization of the resulting THG signal for the Higgs mode in
the dirty limit.

The paper is organized as follows: in Sec. II we develop
the theoretical background, introducing the minimal model
Hamiltonian with ASOC which allows to describe a crystal
structure without inversion symmetry. Thus, we carry out the
basis transformation which allows a two-band symmetric pic-
ture. In Sec. III we use an effective-action approach to derive
the amplitude and phase fluctuations. For a better understand-
ing of the underlying physical processes we also illustrate
the accordant relevant Feynman diagrams. Afterwards, we
calculate and analyze the generation of third-harmonic by
the superconductor in intensity and phase, as a function of
frequency and temperature. This is done in the clean limit
(Sec. IV) as well as in the influence of impurities (Sec. V). Fi-
nally, in Sec. VI we compare our results with previous works
on Higgs modes in superconductors before we summarize our
paper in Sec. VII.

II. FUNDAMENTALS FOR NONCENTROSYMMETRIC
SUPERCONDUCTORS

We first consider the noninteracting single-particle Hamil-
tonian in a crystal without inversion center

ˆ̃H0 =
∑

k

∑
σ,σ ′=↑,↓

[εkδσσ ′ + gk · σσσ ′] â†
kσ âkσ ′ , (1)

where εk is the noninteracting electronic band dispersion, σ

and σ ′ label the spin, σ is the vector of the Pauli matrices and

â(†)
k,σ

the annihilation (creation) operator of an electron with
momentum k and spin σ . The second term in the Hamilto-
nian describes the antisymmetric spin-orbit coupling (ASOC)
gk = (gk,x, gk,y, gk,z ) = −g−k, whose exact form depends on
the corresponding point group of the crystal. In this paper, the
tetragonal point group G = C4v is investigated, which is the
generating point group in CePt3Si (and also in CeRhSi3 or
CeIrSi3). The corresponding ASOC reads

gk = α(k̂×êz ) + α′k̂xk̂yk̂z
(
k̂2

x − k̂2
y

)
êz. (2)

In the following, we are setting the coupling strength of the
second term α′ = 0, so that we recover the two-dimensional
Rashba interaction gk = α(k̂×êz ) with ASOC strength α [45].

Due to the antisymmetric spin-orbit coupling, the Kramer
spin degeneracy is lifted and two bands with different spin
structure are created. Accordingly, we can transform the
Hamiltonian from the spin representation in the diagonal band
representation by a unitary transformation [18,25,26]

âk,σ =
∑

μ=±1

uσ,μ(k)ĉk,μ, (3)

with

u↑,μ(k) =
√

gk + μgk,z

2gk
, (4a)

u↓,μ(k) = μ
gk,x + igk,y√

2gk(gk + μgk,z )
, (4b)

and gk = |gk|. Then the Hamiltonian becomes

Ĥ0 =
∑

k

∑
μ=±1

ξk,μ ĉ†
k,μĉk,μ, (5)

where its eigenvalues

ξk,μ = εk + μ gk (6)

corresponds to two distinct energy bands (μ = ±1).
We now consider the presence of a superconducting in-

stability generated by a weak electron-electron interaction of
the Bardeen-Cooper-Schrieffer form in the original spin basis.
Thus, the interacting Hamiltonian reads

ˆ̃Hint = −1

2

∑
k,k′

∑
α,β,

γ ,δ=↑,↓

V αβγ δ

k,k′ â†
k,α â†

−k,β â−k′,γ âk′,δ. (7)

In particular, we use a general ansatz for the pairing interac-
tion introduced in Refs. [15,17,18],

V αβγ δ

k,k′ =W g(iσ2)α,β (iσ2)†
γ ,δ

+ W ugk,n(iσnσy)αβgk′,l (iσlσy)†
γ δ

+ W m(iσ2)α,βgk′,l (iσlσy)†
γ δ

+ W mgk,n(iσnσy)αβ (iσ2)†
γ ,δ, (8)

with the pairing constants W g, W u, and W m, describing the
conventional even (g) parity pairing and the triplet odd (u) par-
ity pairing, as well as a scattering of Cooper pairs between the
two channels (m). Here, we used the Pauli matrices σl,n=x,y,z

which act in the fermionic spin basis.
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FIG. 1. Schematics of the polar plot of the gap functions showing
the neglected (a) and favored (b) Cooper pairings The two bands
(μ = + in red and μ = − in blue) are splitted due to the antisymmet-
ric spin-orbit coupling strength α. This ASOC strength is much larger
than the order parameter �. This requires a finite momentum q (for
almost all directions) for the pair function, leading to a suppressed
interband interaction in panel (a). Only intraband interactions in
panel (b) are contributing to the system.

Using the unitary transformation with components of
Eq. (4), we can rewrite Eq. (7) in the band basis as follows:

Ĥint = −
∑
k,k′

∑
μ,ν=±1

Vμ,ν;k,k′ ĉ†
k,μĉ†

−k,μĉ−k′,ν ĉk′,ν , (9)

with the pairing interaction

Vμ,ν;k,k′ =W g(τ0 + τx )μ,ν + W ugkgk′ (τ0 − τx )μ,ν

− W m[gk(τz − iτy)μ,ν − gk′ (τz + iτy)μ,ν]. (10)

Here, we used the Pauli matrices τx,y,z and the identity τ0 =
12×2 acting in the band basis. Note that by performing the
transformation, we allowed only intraband pairing. The inter-
band pairing is usually suppressed, since the band splitting
requires electrons, located far from the Fermi surfaces, to
pair. For NCS typical high values of the asymmetric spin-
orbit coupling compared to the superconducting energy scale
(α � �), such processes, which lead to a center of mass of the
Cooper pairs, are unlikely to happen as shown in Refs. [18,20]
(see also Fig. 1).

Within the BCS mean-field approximation, we can define
the superconducting gap as the order parameter

�k,μ =
∑

k′

∑
ν=±1

Vμ,ν;k,k′ 〈ĉ−k′,ν ĉk′,ν〉, (11)

whose corresponding self-consistent equation reads

�k,μ =
∑

k′

∑
ν=±1

Vμ,ν;k,k′
�k′,ν

2Ek′,ν
tanh (βEk′,ν/2), (12)

with the Bogoliubov quasiparticle energy for each band
(ν = ±1) given by E2

k′,ν = ξ 2
k′,ν + |�k′,ν |2. The gap can be

expressed as a combination of spin-singlet pairing gap ψk and
a spin-triplet pairing gap dk, due to the presence of ASOC
[20], obtaining

�k,μ = ψk + μ|dk|. (13)

In particular, we consider an s-wave symmetry for the
spin-singlet gap, ψk = ψ ≡ �ψ . Moreover, it has been

demonstrated in Ref. [21] that in the limit of strong ASOC
only the component dk ‖ gk survives for the spin-triplet gap,
so that |dk| = d gk.

We can also write the gap function in the factorized form
�k,μ = f μ

k �μ, introducing appropriate mixed form factors
f μ

k and their corresponding �μ. The form factor for the μ =
+ band is given by

f +
k = ψ + d gk

ψ + d
∈

[
ψ

ψ + d
, 1

]
, �μ=+1 = ψ + d. (14)

For the μ = − band the form factor can be written as

f −
k = ψ − d gk

ψ
∈

[
ψ − d

ψ
, 1

]
, �μ=−1 = ψ, (15)

if d < 2ψ and

f −
k = ψ − d gk

d − ψ
∈

[
−1,

ψ

d − ψ

]
, �μ=−1 = d −ψ, (16)

if d � 2ψ , respectively.
It is instructive to plot the total resulting order parameter

for various triplet-singlet ratios p = d/�s in Fig. 2. Note,
that when the triplet contribution exceeds the singlet contribu-
tion, we will find nodes in specific directions in the k-space.
We will see later that these nodes are changing the THG
signal in a characteristic way. Additionally it is worth to
mention, that with increasing triplet-singlet ratio p, a faster
change in the absolute value of the order parameter can be
detected, especially around the kz axis. This effect can be
used later to explain increasing broadening phenomena in the
spectra.

Finally, the influence of the Coulomb interaction is taken
into account via the additional term in the Hamiltonian

Hc = 1

2

∑
k,k′,q

∑
α,β,

γ ,δ=↑,↓

V ′
c (q)a†

k+q,αak,βa†
k′−q,γ

ak′,δ, (17)

with the Coulomb potential V ′
c (q). In the band basis this

Coulomb Hamiltonian transforms to

Hc = 1

2

∑
k,k′,q

∑
μν

Vc(q)c†
k+q,μck,μc†

k′−q,νck′,ν . (18)

For each band μ = ±1 we can define the corresponding
Nambu-Gor’kov spinor �

†
k,μ = (ĉ†

k,μ ĉ−k,μ), so that the inter-
acting Hamiltonian in Eq. (9) can be rewritten as

Ĥint = − 1

4

∑
k,k′

∑
μ,ν=±1

Vμ,ν;k,k′ �
†
k,μ(τ1 + iτ2)�k,μ

× �
†
k′,ν (τ1 − iτ2)�k′,ν , (19)

where τ1,2 are the Pauli matrices in the space of Nambu
spinors. Analogously, the single-particle Hamiltonian in
Eq. (5) becomes

Ĥ0 = 1

2

∑
k

∑
μ=±1

ξk,μ �
†
k,μτ3�k,μ. (20)

In this formalism, we can derive our two-fermions interaction
terms and subsequently the Nambu Green’s function Gkk′,μ of
the system. This derivation is presented in the Appendix and
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(a) p=0.01
k z

kx

(b) p=0.25

k z
kx

(c) p=0.5

k z

kx

(d) p=1

k z

kx

(e) p=2

k z

kx

(f) p=5

k z

kx

FIG. 2. Symmetry of the order parameters. The plots show the
2D-kxkz symmetry structure of the order parameters |�k,μ| of the
two bands (μ = +1 in red, μ = −1 in blue) of CePt3Si for different
triplet-singlet ratios p = d/�s at ky = 0. (a) For low p (p = 0.01) the
singlet s-wave gap symmetry dominates and therefore the two gaps
are nearly degenerate and rotationally invariant. (b), (c) Increasing p,
and therefore the contribution of the triplet component, the degener-
acy of the gaps is lifted and they possess only C2 rotational symmetry.
(d) For p = 1, the singlet and triplet gap contribute equally, leading to
a vanishing gap in the μ = −1 band for kz = 0. (e), (f) If the triplet
component is larger than the singlet (i.e., p > 1), then one obtains
additional nodes for the μ = − band.

will be used in the following section to calculate the THG
response in NCS.

III. THEORY FOR THIRD HARMONIC RESPONSE IN
NONCENTROSYMETRIC SUPERCONDUCTORS

In the following, two approaches to calculate the THG
signal in NCS are instructively discussed. We start with the
derivation of the effective action via a Hubbard-Stratonovich
transformation in Sec. III A. Afterwards, we write down and
calculate the corresponding Feynman diagrams in Sec. III B,

where we also consider Coulomb screening in the system. Fi-
nally, we illustrate the changes in the calculation, when going
from a clean to a dirty superconductor via a Mattis-Bardeen
approximation in Sec. III C.

A. Effective action approach

The dynamics of the model transformed Hamiltonian
H = H0 + Hint in Eqs. (19)–(20) can be introduced in a path-
integral formulation with the imaginary-time action

S(�,�†) =
∫ 1/T

0
dτ

⎛
⎝∑

k,μ

�
†
k,μ

∂τ�k,μ + H

⎞
⎠. (21)

The partition function is then given by the functional integral

Z =
∫

D(�,�†) e−S(�,�† ). (22)

In the following, we will take advantage of a separable pairing
interaction Vμ,ν;k,k′ = Vμν f μ

k f ν
k′ , so that the k-dependence of

the effective action is significantly simplified. As a next step,
the interacting term in the exponent of the partition function Z
can be decoupled by a Hubbard-Stratonovich transformation
to investigate the physics of the collective fluctuations around
the mean-field solution

S(�,�†)

=
∫ 1/T

0
dτ

⎛
⎝∑

μν

V −1
μν �′∗

μ�′
ν −

∑
kk′,μ

�
†
k,μG−1

kk′,μ�k′,μ

⎞
⎠.

(23)

Here, the bosonic complex fields �′
+ and �′

−, representing
the fluctuations of the superconducting order parameter in
amplitude and phase, were introduced. An additional gauge
field A representing the coupling to light is implemented via
Peierls substitution c†

μcμ → c†
μcμeiA which modifies only the

kinetic part of the Hamiltonian.
Consequently, the fluctuations around the mean-field value

of the superconducting fields �μ,eq are decomposed in ampli-
tude �μ(τ ) and phase θμ(τ ) fluctuations

�′
μ(τ ) → �μ,eq + �μ(τ ) + iθμ(τ ). (24)

Note that without loss of generality, we have assumed a real
equilibrium gap, i.e., Im(�μ,eq) = 0. This allows us to treat
the amplitude fluctuations as oscillations along the real axis
(in τ1 channel) and the phase fluctuations as oscillations paral-
lel to the imaginary axis (in τ2 channel) of the order parameter
�. After integrating over the fermions the action reads then

S(�,�†) =
∫ 1/T

0
dτ

∑
μν

V −1
μν [�∗

μ,eq�ν,eq + �∗
μ(τ )�ν (τ )

+ θ∗
μ(τ )θν (τ )] −

∑
μ

Tr ln
(−G−1

μ

)
, (25)

where the trace includes the summation over momentum and
frequency. Expanding the effective action in powers of the
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bosonic fields around their mean-field value leads to

Tr ln
(−G−1

μ

) = Tr ln
(−G−1

0

) −
∑
n�1

Tr(G0�)n

n
, (26)

with the self-energy for the fluctuating fields �. This allows us
to split the action S = SMF + SFL in a time-independent mean-
field part

SMF =
∑
μν

�∗
μ,eq�ν,eq

TVμν

− Tr ln
(−G−1

0

)
, (27)

and a fluctuating quartic-order part

S(4)
FL = T

2

∑
iωm

[ ∑
i jkl,μ

A2
i j (−iωm)χ i jkl,μ

A2A2 (iωm)A2
kl (iωm)

+ φT (−iωm)b(iωm) + bT (−iωm)φ(iωm)

+ φT (−iωm)
↔
M (iωm)φ(iωm)

]
. (28)

The vector containing the fluctuating fields reads

φT (iωm) = (�+(iωm),�−(iωm), θ+(iωm), θ−(iωm)), (29)

where their fluctuations are described by the coupling to
light

b(iωm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∑
i j A2

i j (iωm)χ i j,+
�,A2 (iωm)

−∑
i j A2

i j (iωm)χ i j,−
�,A2 (iωm)

∑
i j A2

i j (iωm)χ i j,+
λ,A2 (iωm)

∑
i j A2

i j (iωm)χ i j,−
λ,A2 (iωm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

and their interaction with themselves, visible in the matrix

↔
M (iωm) =

⎛
⎜⎜⎜⎜⎜⎝

2V−−
V + χ+

�,�(iωm) −2V+−
V −χ+

�,λ(iωm) 0
−2V+−

V
2V++

V + χ−
�,�(iωm) 0 −χ−

�,λ(iωm)

−χ+
λ,�(iωm) 0 2V−−

V + χ+
λλ(iωm) −2V+−

V

0 −χ−
λ,�(iωm) −2V+−

V
2V++

V + χ−
λλ(iωm)

⎞
⎟⎟⎟⎟⎟⎠, (31)

with V = detVμν . In Eqs. (28), (30), and (31) we introduced
the susceptibilities χ i

α,β . Their indices α and β represent
thereby the coupling between light A, the Higgs mode � and
the Leggett mode λ, occurring via the phase fluctuations θ .
In Sec. III B, we will assign these susceptibilities to Feynman
diagrams and present their derivation in Eqs. (39)–(41) and
Eqs. (45)–(46).

Finally, after integrating out the fluctuations, the quartic
order action in Eq. (28) reads

S(4)
FL = T

2

∑
iωm

[ ∑
i jkl,μ

A2
i j (−iωm)χ i jkl,μ

A2A2 (iωm)A2
kl (iωm)

+ bT (−iωm)
↔
M

−1
(iωm)b(iωm)

]
, (32)

and the third harmonic current is given after analytic continu-
ation by

j (3)(3�) = − δS(4)
FL

δA(−ω)

∣∣∣∣∣
3�

. (33)

To get a more realistic solution of the THG response calcu-
lations also Coulomb screening has to be taken into account.
This can be modeled by including an additional Coulomb term
to the Hamiltonian

Hc = 1

2

∑
k,k′,q

∑
μν

Vc(q)c†
k+q,μck,μc†

k′−q,ν
ck′,ν , (34)

with Coulomb potential Vc(q). For the effective action a den-
sity field ρ ′(τ ) = ρeq + ρ(τ ) is introduced, which couples to
the other fields in the fluctuating action part which leads to the
extended mean-field action

SMF =
∑
μν

�∗
μ,eq�ν,eq

TVμν

− ρ∗
eqρeq

TVc(q)
− Tr ln

(−G−1
0

)
, (35)

and the following five-component vectors for the fluctuating
part SC

FL in Eq. (28)

φT (iωm) = (�+(iωm),�−(iωm),

× θ+(iωm), θ−(iωm), ρ(iωm)), (36)

b(iωm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∑
i j A2

i j (iωm)χ i j,+
�,A2 (iωm)

−∑
i j A2

i j (iωm)χ i j,−
�,A2 (iωm)

∑
i j A2

i j (iωm)χ i j,+
λ,A2 (iωm)

∑
i j A2

i j (iωm)χ i j,−
λ,A2 (iωm)

−∑
i j,μ A2

i j (iωm)χ i j,μ
A2,ρ

(iωm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)
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The corresponding 5×5 matrix reads then

↔
M (iωm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2V−−
V + χ+

�,�(iωm) −2V+−
V −χ−

�,λ(iωm) 0 χ+
�,ρ (iωm)

−2V−+
V

2V++
V + χ−

�,�(iωm) 0 −χ−
�,λ(iωm) χ−

�,ρ (iωm)

−χ−
λ,�(iωm) 0 2V−−

V + χ+
λλ(iωm) −2V+−

V −χ+
λ,ρ (iωm)

0 −χ−
λ,�(iωm) −2V+−

V
2V++

V + χ−
λλ(iωm) −χ−

λ,ρ (iωm)

χ+
�,ρ (iωm) χ−

�,ρ (iωm) −χ+
λ,ρ (iωm) −χ−

λ,ρ (iωm) − 1
Vc (q) + ∑

μ χμ
ρ,ρ (iωm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)

Note, that the coupling terms χ+
�,λ(iωm) and χ−

�,λ(iωm) are
odd in ξk and therefore rely on an asymmetric distribution of
states close to the Fermi surface. This means that in general
this coupling is strongly suppressed and can be neglected in
the following. Similar arguments can be found for the cou-
pling terms χ+

λ,ρ (iωm) and χ−
λ,ρ (iωm).

B. Diagrammatic approach

From our effective action approach, we can extract con-
tributions from the quasiparticles, as well as collective mode
contributions in the amplitude (Higgs) and phase (Leggett)
channel. The arising contributions are also shown as Feyn-
man diagrams in Table I. In the amplitude channel we
find contributions of two distinguishable Higgs modes Hμν

on their corresponding bands (μ = ν), which are coupled
with band-mixing contributions. In the phase channel, the
relative phase/Leggett mode Lμν (μ �= ν) contributions are
dominant in the analyzed frequency range, while the sum
phase/Goldstone mode is neglectable. The shown diagrams
consist of the corresponding propagators for each mode as
well as their connecting bubbles. In the clean limit diagrams
with two-photon vertices γi j = ∂2ξk/∂ki∂k j are the most
dominant contributions and their single bubble susceptibility
are given by

χ
i j,ν
�A2 (iωm) =

∑
k

fk
1

2
γ 2

i jX
ν
13(k, iωm), (39)

χ
i j,ν
λA2 (iωm) =

∑
k

fk
1

2
γ 2

i jX
ν
23(k, iωm), (40)

χ
i jkl,ν
A2A2 (iωm) =

∑
k

1

4
γ 2

i jγ
2
klX

ν
33(k, iωm), (41)

with

X ν
αβ (k, iωm) = T

∑
iωn

tr
[
Gν

0(k, iωn)ταGν
0(k, iωn + iωm)τβ

]
,

(42)

and the Nambu Green’s function G0 given in the Appendix.
Note that the Green’s function inside one bubble are con-

sidered on the same band, as the contributions from interband
bubbles has been proven to be neglectable small in the system.
The indices of the susceptibilities are showing their integra-
tion to the diagrams via vertices to photons (A), the amplitude
propagator (H), and the phase propagator (λ), respectively.

The propagators of their corresponding collective modes
are given in the form of RPA series (see Fig. 3) for the Higgs

mode

H (iωm)μν = Vμν +
∑

θ

Vμθχ
θ
��(iωm)H (iωm)θν, (43)

and the Leggett mode

L(iωm)μν = Vμν +
∑

θ

Vμθχ
θ
λλ(iωm)L(iωm)θν, (44)

with the susceptibilities

χν
��(iωm) =

∑
k

f 2
k,νX ν

11(k, iωm), (45)

χν
λλ(iωm) =

∑
k

f 2
k,νX ν

22(k, iωm). (46)

With the obtained propagators we can describe the THG re-
sponse of the arising contributions for the quasiparticles, the
Higgs mode and the Leggett mode in the short form

χdia
QP (iωm) =

∑
ν

χν
A2A2 (iωm), (47)

χdia
H (iωm) =

∑
μν

χ
μ

�A2 (iωm)χν
�A2 (iωm)Hμν (iωm), (48)

χdia
λ (iωm) =

∑
μν

χ
μ

λA2 (iωm)χν
λA2 (iωm)Lμν (iωm). (49)

Finally, we have to include the Coulomb screening
in our system. The Coulomb interaction renormalizes the

FIG. 3. Feynman diagrams of the RPA summation of collective
modes. (a) The Higgs propagator Hμν in Eq. (43) is calculated in a
multiband (θ ) RPA series in the amplitude channel τ1. (b) Analo-
gously, the Leggett propagator Lμν in Eq. (44) is derived in the phase
channel τ2. The here shown susceptibility bubbles χθ

�� and χθ
λλ are

derived in Eqs. (45) and (46).
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TABLE I. Overview over the different diagrams contributing to the THG signal. Here we differentiate between contributions coming from
quasiparticles (QP), the Higgs mode, and the Leggett mode. While only the diamagnetic diagrams (top three rows) are present in the clean
limit, the paramagnetic contributions (bottom three rows) are dominating, when impurities are included in the system. In the first row, the
typical γkτ3–γkτ3 bubble of broken Cooper pairs (quasiparticle excitations) in the clean limit is visible. The properties of the two modes
(μ = + and μ = −) of the Higgs response (τ1) as well as the single mode Leggett response (τ2) are shown in row two and three, respectively.
The summary of our results in the last two columns (amplitude and phase THG signal) provide information about a strong suppression of the
collective modes by the quasiparticles. In the following three rows the correspondent assisted THG diagrams, connected via a τ0-vertex, in the
paramagnetic channel give all a relatively similar contribution to the THG signal, as it is visible in the relative THG amplitude. Another major
differences between the diamagnetic and paramagnetic diagrams is the change in the phase jump at the THG resonances. Here we calculate a
sudden change of the phase jump from π/2 to π , when going from a clean superconductor to the dirty limit.

clean # collective relative THG phase
channel limit? diagram origin modes amplitude jump

I/Idia
QP

dia- 0
mag. QP (continuum) ≈ 100 ≈ π/2

dia- 2
mag. Higgs (μ = ν) ≈ 10−6 ≈ π/2

dia- 1
mag. Leggett (μ = ν) ≈ 10−4 ≈ π/2

para- 0
mag. QP (continuum) ≈ 105 ≈ π

para- 2
mag. Higgs (μ = ν) ≈ 104 ≈ π

para- 1
mag. Leggett (μ = ν) ≈ 103 ≈ π

corresponding diagrams so that the resulting susceptibilities
read in the limit of q → 0 and 1/Vc(q) → 0,

χC,ν

�A2 (iωm) = χν
�A2 (iωm) −

χν
�ρ (iωm)χν

A2ρ
(iωm)

χν
ρρ (iωm)

, (50)

χC,ν

A2A2 (iωm) = χν
A2A2 (iωm) −

χν
A2ρ

(iωm)χν
A2ρ

(iωm)

χν
ρρ (iωm)

, (51)

χC,ν
��(iωm) = χν

��(iωm) − χν
�ρ (iωm)χν

�ρ (iωm)

χν
ρρ (iωm)

, (52)

with

χν
�ρ (iωm) =

∑
k

fk,νX ν
13(k, iωm), (53)

χν
ρρ (iωm) =

∑
k

X ν
33(k, iωm), (54)

χν
A2ρ (iωm) =

∑
k

1

2
γ 2

i jX
ν
33(k, iωm). (55)

A diagrammatic description of this inclusion of the Coulomb
screening can be seen in the renormalized vertices in Fig. 4
which illustrates Eq. (51) exemplary.

FIG. 4. Exemplary Feynman Diagram of the effective vertex
renormalization for the Coulomb screening. The Coulomb interac-
tion Vc is introduced by renormalizing in this case the vertex of
incoming light γkτ3 into an effective vertex with the help of an RPA
series.
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C. Role of impurities for THG

In the clean limit only a diamagnetic coupling of light
to the condensate contributes to the collective modes as
the paramagnetic response vanishes. However, it can be
shown that nonmagnetic impurities are allowing an additional
paramagnetic coupling [1,11]. These additional occurring di-
agrams are visible in the bottom half of Table I, where the
light-coupling vertices are now in the τ0 channel. Even for
small disorder the paramagnetic contributions become im-
portant and are usually dominating the optical nonlinear
response. To include the impurities, we will choose a Mattis-
Bardeen approximation [46] to model the impurities with an
effective vertex approximation.

For the implementation of the Mattis-Bardeen approxima-
tion we follow closely references [11] and [47] in which the
susceptibility of the paramagnetic diagrams in Table I for the
quasiparticles χQP, Higgs χH mode, and Leggett mode χλ,
respectively, are given as

χ
para
QP (iωm) =

∑
ν

χν
AAAA(iωm), (56)

χ
para
H (iωm) =

∑
μν

χ
μ
AA�(iωm)χν

AA�(iωm)Hμν (iωm), (57)

χ
para
λ (iωm) =

∑
μν

χ
μ
AAλ(iωm)χν

AAλ(iωm)Lμν (iωm), (58)

with the triangular and square bubbles defined as

χν
AA�(iωl , iωm) = T

∑
iωn

∑
k,k′

∣∣Jν
kk′

∣∣2
tr
[
Gν

0(k, iωn)τ1

× Gν
0(k, iωn + iωm)

× Gν
0(k′, iωn + iωm + iωl )

]
, (59)

χν
AAλ(iωl , iωm) = T

∑
iωn

∑
k,k′

∣∣Jν
kk′

∣∣2
tr
[
Gν

0(k, iωn)τ2

× Gν
0(k, iωn + iωm)

× Gν
0(k′, iωn + iωm + iωl )

]
, (60)

χν
AAAA(iωl , iωm, iωp) = T

∑
iωn

∑
k,k′,k′′

∣∣Jν
kk′

∣∣2∣∣Jν
kk′′

∣∣2

× tr
[
Gν

0(k, iωn)Gν
0(k′, iωn + iωm)

× Gν
0(k, iωn + iωm + iωl )

]
× Gν

0(k′′, iωn + iωm + iωl + iωp)
]
.

(61)

The corresponding transition matrix element Jkk′ =
〈k| ep/m |k′〉 is approximated by a Lorentzian distribution

∣∣Jν
kk′

∣∣2 ∝ W
(
ξν

k , ξ ν
k′
)

N (0)
= γ

N (0)
(
ξν

k − ξν
k′
)2 + γ 2

, (62)

with the density of states at the Fermi surface N (0) and
the scattering rate γ revealing the strength of impurity
(see Fig. 5). For γ � 2� the condensate is considered in
the dirty limit. Due to this photon distribution in momentum
and energy, the here implemented approximation leads to an
effective broadening of the Fermi surface. In Sec. V, we use

FIG. 5. Illustration of the smeared out Fermi surface in a Mattis-
Bardeen-like approximation (a) The Mattis Bardeen approximation
leads to a Lorentz distribution in the excitation spectra W (ε, ε ′)
around the originally frequency ω = ε ′ − ε = 0 [see Eq. (62)]. The
here chosen damping factor γ = 2 represent the strength of impuri-
ties in the system. (b) By inserting this distribution into the energy
dispersion in Eq. (63), one obtains a smeared out Fermi surface.

Eqs. (59), (60), and (61) to calculate the THG susceptibilities
in the presence of impurities.

IV. RESULTS IN THE CLEAN LIMIT

In this section, we will study the results of our calculated
THG spectra and identify the arising modes. We will start first
in the clean limit, before artificially adding impurities to our
system in Sec. V.

To describe the so-called β-band of CePt3Si [48] without
antiferromagnetic order, we will use the following expression
for the tight-binding band dispersion:

εk = 2t (cos(kx ) + cos(ky)) + 4t1 cos(kx ) cos(ky)

+ 2t2(cos(2kx ) + cos(2ky)) + 2t3 cos(kz )

+ 4t4(cos(kx ) + cos(ky)) cos(kz )

+ 4t5(cos(2kx ) + cos(2ky)) cos(kz )

+ 2t6 cos(2kz ) − μ∗, (63)

with hopping parameters t , t1/t = −0.15, t2/t = −0.5, t3/t =
−0.3, t4/t = −0.1, t5/t = −0.09, t6/t = −0.2 and the chem-
ical potential μ∗/t = 1.75.

Based on the above hopping parameters and Ref. [48],
we used a value α/t = 0.3 for the strength of the ASOC.
The Fermi surface of the two bands for this specific set of
parameters is shown in Fig. 6.

A. Quasiparticles’ contribution dominates in clean limit

The intensity of the THG signal in the clean limit is deter-
mined by

ITHG, clean
i (ω) ∝ ∣∣χdia

i (ω)
∣∣2

, (64)

with the Coulomb-screened susceptibilities given in
Eqs. (47)–(49), and shown in Fig. 7 for the quasiparticle
(i = QP), the Higgs (i = H), and the Leggett response
(i = λ), respectively.
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FIG. 6. Fermi surfaces of the noncentrosymmetric superconduc-
tor CePt3Si. 3D plot of the Fermi surfaces of the two bands (μ = +1
red, μ = −1 blue) of a noncentrosymmetric superconductor. For a
better visibility only half of the total 3D Brillouin zone is shown here
(0 < ky < π , −π < kx, kz < π ). The splitting of the two bands arises
from the antisymmetric spin-orbit coupling term gk. The two bands
are degenerate only along the z axis (kx = ky = 0). The parameters
used to obtain the Fermi surface are extracted from band structure
calculations [48].

The THG signal contribution of the quasiparticle suscepti-
bility is dominating the collective modes by several order of
magnitudes for all shown triplet-singlet ratios p. The here in-
vestigated prototypical material CePt3Si shows a rather strong
domination of the quasiparticles response compared to the
Higgs response with a relative high THG intensity difference
of IQP/IH ≈ 106. It is important to note, that the exact rela-
tion between the quasiparticle response and the response of
the collective modes is strongly related to the band struc-
ture around the Fermi level. In some other superconductors a
stronger Higgs contribution was found; however, the general
behavior of a dominating quasiparticle response in the clean
limit was obtained so far in all investigated materials (see, e.g.,
Refs. [7,10]).

For p = 0.01, where the system can be approximated by an
s-wave superconductor, the peak positions of the signal origi-
nated by different bands coincide, thus leading to a single peak
structure at the THG resonance condition 2ω = 2�s. For in-
creasing triplet-singlet ratio p the peak positions of both bands
in the quasiparticle and Higgs response are drifting away from
each other: for the μ = + band the peak position can be well
identified around 2ω = 2�+ = 2�s(1 + p), while the peak
position of band μ = − is located at 2ω = 2�s(1 − p). While
at p = 0.25 the second band becomes visible as a shoulder
from the more prominent peak, the two-band structure can be
seen especially well at p = 0.5. For that reason, we will use
this specific triplet-singlet ratio later on for a more detailed
analysis.

Physically more interesting is the region around p ≈ 1,
where the contribution of the singlet and triplet gap structure is
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FIG. 7. Comparison of different THG signal contributions in the
clean limit. THG signal contribution of the quasiparticles (black),
Higgs mode (red, ×106), and Leggett mode (green, ×105) for dif-
ferent triplet-singlet ratios p. The single contributions are rescaled
for a better comparison with the same factor in each panel. Note
that the main contribution is always coming from the quasiparticles.
With increasing triplet-singlet-parameter p, first a shoulder and then
a two-peak structure is visible for the quasiparticles and the Higgs
mode. The Leggett mode contributes only for small triplet-singlet-
values (p < 1) and vanishes when the triplet part dominates the gap
structure.

on a similar level. In this regime we expect a balanced mixed
parity gap in our system. In the proximity of p = 1 most parts
of the triplet and singlet gap are canceling with each other, so
that we find the main contributions in the QP response of the
μ = − band around ω ≈ 0, resulting in a weak and very broad
signal peaked at ω = 0. As a result mainly the μ = + band is
seen in the response around 2ω = 2�+ = 4�s. Finally, in the
triplet dominated regime (here, e.g., at p = 2) the contribution
of the band μ = − is lifted up to 2ω = 2|�−| = 2�s(p − 1).
In this range it is very difficult to identify the lower energy
band due to the fast changing gap value in the momentum
space (see Fig. 2) resulting in rather strong broadening effects.

A more detailed frequency and temperature analysis of the
quasiparticles is given in Fig. 8 for the THG intensity as well
as the THG phase information. The typical BCS-like behavior
of the two gaps �+ and �− is clearly visible. Furthermore, a
phase jump between the fundamental and the THG response
can be detected at the resonance condition 2ω = 2�μ. We will
come back to the phase results later on, when comparing the
phase signal under different circumstances in Sec. V A.

B. Higgs modes

The qualitative analysis of the Higgs mode contribu-
tion follows the above described effects of the quasiparticle
contribution, however at a quantitative significantly lower
THG intensity. It is interesting to see, that with increasing
triplet gap contributions the response of the Higgs mode in-
creases compared to the quasiparticles. Nevertheless, also in
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FIG. 8. Temperature dependence of THG intensity and phase:
quasiparticles response. THG intensity (left column panels) and
phase (right column panels) of the quasiparticle susceptibility for
various frequencies and temperatures at the exemplary triplet-singlet
ratio p = 0.5. (a) In the 2D plot the typical BCS-like behavior for
the THG peak position is well visible. The two peak structure in
the 2D plot becomes better visible, when looking at the constant
temperature cuts in panel (c). These are taken at T = 0.1 Tc (solid),
T = 0.6 Tc (dashed), and T = 0.8 Tc (dashed-pointed). For increas-
ing temperature the peak position is shifted to lower frequencies. The
constant frequency cuts in panel (e), which are experimentally easier
to get are taken at ω = 1.5 meV (solid), ω = 4 meV (dashed) and
ω = 6.5 meV (dashed-pointed). Unfortunately, the multipeak struc-
ture can not identified herein. (b) 2D diagram of the phase difference
between the THG and the fundamental signal. At the peak position
the phase is shifted by ≈ +π/2 (transition from blue to yellow). (d),
(f) Constant temperature and frequency cuts of the phase differences
at the same values used in panels (c), (e). In all cuts a phase jump at
the resonance at �φ ≈ π/2 is well visible.

the limit of a triplet superconductor (p → ∞) the quasiparti-
cle response is dominating by several orders of magnitudes.

As long as the system consists of a mixed parity gap
structure, two Higgs modes (one for each band) can be clearly
distinguished. Both modes are investigated in more detail in
Figs. 9 and 10. We will first concentrate on Fig. 9, where
the different contributions of the THG response of the Higgs
signal are plotted individually. For the + and − band a peak
can be seen in the spectrum (well visible, e.g., for p = 0.5).
The peak of the + band is still matching the corresponding
frequency ω = 2�+, while the peak in the − band can be
identified at the corresponding frequency ω = 2�−. The wide
broadening of the peaks result not only from the strongly
anisotropic gap behavior, but also from the coupling of the
Higgs propagators Hμν (μ �= ν) of both bands, which leads
to an admixture in their contributions. By analyzing the band-
mixing contribution (μ �= ν) in this singlet-dominated regime
in Fig. 9, it seems that we can not find an individual third
peak in the spectrum. Instead the obtained features in the THG
susceptibility are only appearing from adding the weighted
contributions from the + and − band susceptibilities.
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FIG. 9. THG signal of the Higgs contribution in the clean limit.
THG signal contribution of the Higgs mode for various triplet-singlet
ratios p: the contribution from the band μ = +1 is shown in red,
μ = −1 in blue and the band-mixing contribution in purple. (a)–(d)
For increasing values of the triplet-singlet-ratio p, the μ = +1 band
contribution is dominant with respect to both the μ = −1 band and
the band mixing contribution. While the peak position of the Higgs
mode in the μ = −1 band is shifting to lower frequencies from the
s-band resonance condition 2ω < 2�s, the new resonance condition
for the μ = +1 band is above the original frequency 2ω > 2�s. (e),
(f) In the limit of high triplet contribution to the gap (p � 1), the
Higgs mode in the μ = −1 band is almost suppressed by the μ = +1
band mode.

FIG. 10. Temperature dependence of THG intensity and phase:
Higgs mode. THG intensity (left column panels) and phase (right col-
umn panels) of the Higgs mode contribution for various frequencies
and temperatures at the exemplary triplet-singlet ratio p = 0.5. The
temperature and frequency cuts [solid and dashed lines in (c)–(f)] are
taken at the exact same values as introduced for the quasiparticles
in Fig. 8. The qualitative results match those of the quasiparticles
contribution calculations.
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While in the singlet gap structure dominated regime (p<1)
the spectra shows exactly one mode at each band, the situation
becomes more interesting, when increasing the triplet-singlet
ratio (p > 1). At p = 2, one can find next to the single peak
structure of the μ = + band, a multiple peak structure in the
μ = − band. The multiple peak structure can be explained
with the help of the gap symmetry in Fig. 2. For small triplet-
singlet ratios p < 1, there are no nodes appearing in the gap
structure of the μ = − band. Increasing the triplet-singlet
ratio over the critical value of p = 1, leads to the appearance
of nodes and hence lobes of similar size in the different
k-directions [see exemplary Fig. 2(e) at p = 2]. This results
in equal contributions of the lobes to the total gap function.
This competition is in the end responsible for the occurring of
multiple peaks in the THG response. A similar behavior is for
example also visible for the d-wave gap symmetry in [12]. In
the limit of a triplet superconductor p � 1, we obtain again
only a single peak structure in the μ = − band. Additionally,
in this limit the μ = − band contributions are overshadowed
by the μ = + band response, due to the large difference of the
average gap value.

Analyzing the 2D-frequency-temperature results in Fig. 10
the THG response still reproduces the typical BCS-gap behav-
ior. However, in contrast to the quasiparticle response, we find
a strong decrease of the Higgs mode intensity for increasing
temperatures T . This leads to an even stronger domination of
the quasiparticles close to the critical temperature Tc.

C. Leggett mode

Additional to the two Higgs modes, the effective two-band
structure in noncentrosymmetric superconductors enable the
appearance of an additional third mode, namely the Leggett
mode in the system. This mode corresponds to the relative
phase oscillations between the two bands and is not ef-
fected by the Anderson-Higgs mechanism or the sum-phase
oscillations. The existence of the Leggett mode in non-
centrosymmetric superconductors was already proposed by
Ref. [19], where the dispersion was derived. Dependent on
the inter- (V+−) and intraband (V++,V−−) interaction strength
of the two bands the Leggett mode exists either below the
two Higgs modes (Vμμ � V+−) or in between the two Higgs
modes for sufficient strong interband couplings V+−. For the
prototypical noncentrosymmetric superconductor, which we
have analyzed, the interaction strength is large enough to find
a well pronounced Leggett mode in between the two Higgs
modes.

In the limit of small triplet-singlet ratios p the Leggett
mode is visible slightly above the s-wave gap energy
2ω � 2�s. In this singlet dominated regime the THG intensity
of the Leggett mode is clearly higher compared to the Higgs
mode (Iλ/IH ≈ 102). However, in the limit of strong triplet
contributions the Leggett mode vanishes. This behavior can
be justified, by the strong unequal contributions of the two
different bands in this regime, which was already visible for
the QP and Higgs response.

In Fig. 11 the single resonance structure in the THG inten-
sity is visible in a 2D plot over temperature and frequency.
Due to the single-peak structure of the spectrum, the Leggett
mode is noticeably pronounced compared to the correspond-

FIG. 11. Temperature dependence of THG intensity and phase:
Leggett mode. THG intensity (left column panels) and phase (right
column panels) of the Leggett mode contribution for various fre-
quencies and temperatures at the exemplary triplet-singlet ratio
p = 0.5. The temperature and frequency cuts [solid and dashed lines
in (c)–(f)] are taken at the exact same values as introduced for the
quasiparticles in Fig. 8. The qualitative results match those of the
quasiparticles and Higgs contribution calculations. However, instead
of a multipeak behavior, we can identify the single Leggett mode by
a sharp peak.

ing QP and Higgs response. Similar to the Higgs THG signal
we find a strong decrease of the intensity by increasing tem-
perature T . Close to the critical temperature Tc the Leggett
mode vanishes.

V. RESULTS IN THE DIRTY LIMIT:
ENHANCEMENT OF HIGGS MODES

So far, only the THG response in the clean limit was an-
alyzed. When including impurities to our system additional
contributions from the paramagnetic response appear in the
THG signal. This paramagnetic response which vanishes in
the clean limit dominates the diamagnetic response already
when including only a small amount of impurities. As an re-
sult we can find a strong enhancement of the collective modes
compared to the quasiparticle response. For dirty noncen-
trosymmetric superconductors, we can find therefore Higgs
modes almost at the same magnitude as the quasiparticle,
so that the Higgs modes should also be experimentally well
detectable in these systems.

The THG response in the dirty limit is calculated by

ITHG, dirty
i (ω) ∝ ∣∣χpara

i (ω)
∣∣2

, (65)

with the Coulomb-screened susceptibilities given in
Eqs. (56)–(58) for the quasiparticle (i = QP), the Higgs
(i = H) and the Leggett response (i = λ), respectively. In
Fig. 12, we are comparing the signal strength of the different
contributions in the clean and dirty limit for various
triplet-singlet ratios p.
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FIG. 12. Comparison of peak positions in clean and dirty su-
perconductors. The THG intensity of the peaks of the quasiparticle
(black), Higgs mode (red) and Leggett mode (green) are compared
in clean and dirty (γ = 2�) superconductors. (a) In the diamagnetic
coupling (the only coupling allowed in clean superconductors) the
quasiparticle response dominates the collective modes by various
orders of magnitudes (IQP/IH ≈ 106) for all triplet-singlet values p.
Here the vanishing of the Leggett mode in the triplet regime p > 1.5
is well visible. (b) In the paramagnetic coupling (the main source for
dirty superconductors) the intensity coming from the Higgs modes
converges to the quasiparticle response intensity, especially for high
triplet-singlet ratios p > 1 (IQP/IH ≈ 101–102). The Leggett mode is
vanishing even faster in this configuration. For a better comparison
we use the normalization of ITHG

QP (p = 0, γ = 0) = 1 and adjust the
other THG intensities accordingly.

As already mentioned a strong enhancement of the col-
lective modes compared to the clean limit is visible for all
triplet-singlet values p. This behavior was already obtained in
centrosymmetric superconductors [42–44]. Our results may
be seen as a generalization of their results to NCS. Further-
more, it is remarkable that in the dirty limit the resonance
intensity of the Higgs mode and the resonance intensity in
the quasiparticle response are approaching each other for in-
creasing triplet-singlet ratio p. Unfortunately, we could not
find an exceeding Higgs intensity in the investigated regime.
However, the Leggett mode is vanishing already for smaller
triplet contributions (p ≈ 1) compared to the clean limit.

Note, that only a small impurity strength γ is enough, so
that the paramagnetic response is dominating the diamagnetic
response and therefore a strong enhancement of the collective
modes is present. This behavior is visible also in Fig. 13 where
the intensity of the contributions is plotted over the impurity
strength γ . With increasing impurity strength, one obtains a
similar trend of an approaching Higgs mode intensity to the
quasiparticle contributions. In contrast, the intensity of the
Leggett mode is peaked around γ ≈ 2�+ and vanishes much
faster in the dirty limit, as it is highly affected by the interband
interaction. As a result we can summarize that the Higgs mode
is best visible in the dominating triplet regime with a strong
influence of the impurities.

A. Phase signal for THG

Next to the THG intensity, also the phase difference
between the fundamental response and the THG response
show meaningful information. In previous works, it was
already possible to indicate a coupling between collective
modes via an antiresonance behavior of this phase difference
experimentally [41]. Additionally, for trivial even parity gap
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FIG. 13. Impurity dependence of THG intensity. THG intensity
for different orders of impurities γ for a balanced ratio between
singlets and triplets p = 1. Only a small amount of impurities leads
to a strong enhancement of the overall signal and additionally to
an enhancement of the collective mode contributions compared to
the quasiparticles (black). While the Leggett mode decreases (green)
in the strong dirty limit, the Higgs mode (red) contributions can
compete with the quasiparticle response in this limit. The same
normalization as in Fig. 12 is used.

structures at the resonance condition 2ω = 2� of a collective
mode a phase jump was already calculated in the spectra,
which exhibits a sudden rise, when including impurities to the
system [11,47].

To identify the above-mentioned phenomena in the phase
information, we calculate the phase of the THG response
in relation to the response of the first harmonic generation.
The THG phase jump at the Higgs mode resonance in the
clean limit is shown in the 2D plot in Fig. 10 for various
frequencies and temperatures at the exemplary triplet-singlet
ratio p = 0.5. At the resonance condition the phase is shifted
by ∼ + π/2. This value can be understood be analyzing the
Higgs propagator which can be approximated at least close to
the p = 0 limit to a form of

H (ω) ∝ 1√
4�2 − ω2

. (66)

This resonance condition is in contrast to classical oscillators,
where the resonance occurs due to a 1/(ω2

0 − �2) factor and
leading to a π -phase jump at the resonance. The square root
in the Higgs propagator reduces therefore the phase jump at
the resonance by a factor of 2. Note that a similar behavior
can be seen for the other visible THG resonances in the clean
limit for quasiparticles in Fig. 8 and for the Leggett mode in
Fig. 11.

When including impurities, as expected, a sudden rise of
the phase jump in the THG signal occurs at the peak positions
[47] (see Fig. 14). At the resonance we can find in these cases
an increased phase jump of ∼π due to the inclusion of the
paramagnetic diagrams in the system. This leads to an ad-
ditional contribution from the electron-mediated microscopic
coupling of light to the Higgs mode, which effects the result-
ing phase jump. This phenomena, which is already visible for
small amounts of impurities can be used to distinguish Higgs
modes in the system even if they are suppressed by orders of
magnitudes.
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FIG. 14. Temperature dependence of THG intensity and phase:
Higgs mode in dirty limit. THG intensity (left column panels) and
phase (right column panels) of the Higgs mode contribution for
various frequencies and temperatures at the exemplary triplet-singlet
ratio p = 0.5 in the dirty limit. (a) Similar to the clean limit in Fig. 10
the 2D plot the typical BCS-like behavior for the THG peak position
is well visible. (c) Constant temperature cuts are taken at T = 0.1 Tc

(solid), T = 0.6 Tc (dashed) and T = 0.8 Tc (dashed-pointed) to
increase the visibility of the two-peak structure. The constant fre-
quency cuts in (e) are taken at ω = 1.5 meV (solid), ω = 4 meV
(dashed) and ω = 6.5 meV (dashed-pointed). (b) 2D diagram of the
phase difference between the THG and the fundamental signal. The
major difference to the clean limit case is that the phase is shifted
here by π instead of π/2. (d), (f) This behavior gets better visible
when looking at the constant temperature and frequency cuts of the
phase differences at the same values used in panels (c), (e). In all cuts
a phase jump at the resonance at �φ ≈ π is well visible.

VI. COMPARISON WITH PREVIOUS WORK

A detailed analysis of the THG intensity and phase were al-
ready found in the paper by Schwarz et al. [47]. However, this
analysis covered only the s- and d-wave gap symmetry. Our
studies in this work go beyond the simple case of spin-singlet
superconductors. Due to the missing center of inversion, a
superposition of singlet and triplet components occurs. This
yields a more complicated THG response than in previous
studies. However, we can see that similar to the previous work
the quasiparticle response dominates the Higgs mode for clean
superconductors, while for dirty superconductors the Higgs
mode get enhanced. The exact factor of the enhancement is
difficult to compare, since the band structure plays an impor-
tant role herein. In contrast to the s-wave case, we find now
two distinct Higgs modes at frequencies corresponding to the
two emerged bands in noncentrosymetric superconductors.
The resonance conditions for these Higgs modes of the both
bands μ are related to their actual gap value 2ωμ = 2�μ with
�μ = ∑

k |�μ(k)|, respectively.
Importantly, due to the multiband structure of our system,

a Leggett mode is appearing in the THG response. An oc-
currence of such a relative phase mode in the THG response
was already discussed in references [1,11]. However, in these

works the Leggett mode (especially in the dirty supercon-
ducting case) was controlled by the interband coupling of an
even-parity multiband superconductor, such as MgB2. On the
contrary, in NCS the Kramers spin degeneracy is lifted due to
the presence of the asymmetric spin-orbit coupling. As a result
the two bands are no longer described in the originally spin
basis. Consequently, the interband coupling is closely related
to the triplet-singlet ratio p in the system. Thus we find, that in
contrast to the Higgs mode, the strength of the Leggett mode
is strongly sensitive on the detailed spin properties material,
which was is not the case in a spin-singlet multiband super-
conductor.

Furthermore, we want to emphasize that the determined
values of the phase jump of the Higgs mode in clean and
dirty superconductors from previous works [7,47] are also
confirmed for NCS systems. As a result, it is possible to use
phase measurements of the THG signal to proof the presence
of Higgs modes. From these kind of measurements one can
gain useful information about the modes even if the amplitude
of the corresponding modes is highly suppressed by other
phenomena (e.g., phonons) at the same energy. Although, the
general presence of a Higgs mode can be identified, the result-
ing interplay between modes from different bands in the phase
signal, such as antiresonances (see, e.g., Ref. [41]) are hard to
identify in NCS. The reason for that is the strong overlap of
the gap structure in the two bands, thus their respective contri-
butions can not be distinguished in these kind of compounds,
as it was possible, e.g., in Ref. [47]. For detailed investigations
in this direction we refer to systems, where Higgs modes
couple to additional external modes with a different origin
such as CDW. Even in the limit of a strong triplet contribution
p � 1 phenomena of that kind will be suppressed, due to a
strongly dominant μ = + band Higgs response in that regime.

Finally, we comment on the recently found collective
modes for NCS in the second harmonic generation (SHG)
signal [40]. In the here chosen formalism, it is not possible
to find a Higgs response in SHG. The reason for that is the
unitary choice of a parallel ASOC and the triplet gap function
gk ‖ dk as presented in Refs. [17,20,21]. Only, when violating
this unitary condition, one can obtain a nonvanishing contri-
bution in the SHG from Higgs modes. So far, as one could
assume, observations have shown a strong suppression of this
specific triplet gap contribution in NCS. So we conclude, that
THG is the lowest order signal that can be measured in NCS
systems.

VII. CONCLUSION

In this paper we have extended the study of the collective
modes, here namely the Higgs mode and the Leggett mode, to
a new class of materials, the noncentrosymmetric supercon-
ductors. In doing so, we calculated the response of the third
harmonic generation via an effective action approach and a
diagrammatic approach in the clean limit as well as in the
influence of impurities.

We have shown that next to the usual quasiparticle re-
sponse in THG collective modes contribute to the spectra.
The hereby studied collective modes consist of three distin-
guishable modes, namely two Higgs modes at 2ω1 = 2�+
and 2ω2 = 2�−, respectively, and a relative phase mode
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(or Leggett mode) around the s-wave gap value 2ω = 2�s.
While in the clean limit the response of the collective modes is
comparable small, their response enhance dramatically when
including only a small amount of impurities. Note, that the
Leggett mode will appear only for small triplet-singlet ratios
or in other words only if the coupling between the two bands
is strong enough.

As in previous studies [1,11,41,47] the phase difference
between incoming and THG signal is an important parameter
to reflect the cleanness of the superconductor. While a phase
jump at the resonance of π/2 can be found in the clean
limit, the phase jump rises to π when including paramagnetic
contributions as observed in the dirty limit.

Our THG results clearly demonstrate that noncentrosym-
metric superconductors can be used as an important material
class to get more insights, theoretically as well as experimen-
tally about the Higgs mode and other collective modes such
as the Leggett mode. In particular, the Leggett mode reacts
very sensitive to the so far unknown triplet-singlet ratio of the
most NCS materials. Another interesting point is the strength
of impurities, which can be used to optimize the system to
a strong Higgs contribution compared to the quasiparticles.
We remark that in our analysis the THG signal, is the lowest
excitation order in the system, as the SHG signal vanishes
under the rational condition gk ‖ dk.

We are aware that in practice the optical experiments with
NCS materials are difficult to perform, due to the small critical
temperature Tc in combination with the unavoidable heat-
ing of the sample. Especially, the usage of the prototypical
compound CePt3Si is a challenge as it has a comparable
small Tc ≈ 1.7 K. Fortunately, qualitatively similar results are
expected not only for compounds with the same crystal sym-
metry, but also for other point groups with higher Tc ≈ 10 K,
such as Li2PdxPt3−xB or Re3W. Here, we point the focus to
the exemplary material of Li2Pt3B, where the existence of a
dominating triplet gap is already known.
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APPENDIX: NOTATION AND NAMBU
GREEN’S FUNCTIONS

In our description we make use of the Nambu-Gor’kov
spinor �

†
k,μ = (ĉ†

k,μ ĉ−k,μ), so that we can write the full
Hamiltonian as

Ĥ = 1

2

∑
k

∑
μ=±1

ξk,μ �
†
k,μτ3�k,μ + 1

4

∑
k,k′

∑
μ,ν=±1

Vμ,ν;k,k′

× �
†
k,μ(τ1 + iτ2)�k,μ�

†
k′,ν (τ1 − iτ2)�k′,ν , (A1)

with the Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

Therefore, the 2-fermions interaction terms can be writ-
ten with electron creation and annihilation operators as
follows:

�
†
k,μ

(τ1 + iτ2)�k,μ = ĉ†
k,μ

ĉ†
−k,μ

, (A2a)

�
†
k′,ν (τ1 − iτ2)�k′,ν = ĉ−k,ν ĉk,ν . (A2b)

The Green’s function of the superconducting state in
Nambu-Gor’kov space can be written in the matricial form

Gμ(k, iνm) = 1

(iνm)2 − E2
k,μ

·
(

iνm + ξk,μ �k,μ

�∗
k,μ iνm − ξk,μ

)
,

(A3)

or, using the Pauli matrices,

Gμ(k, iνm) = iνmτ0 + ξk,μτ3 + (�′
k,μτ1 − �′′

k,μτ2)

(iνm)2 − E2
k,μ

, (A4)

with the complex order parameter �k,μ = �′
k,μ + i�′′

k,μ.
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