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Negative electrohydrostatic pressure between superconducting bodies
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By applying a hydrodynamic representation of nonrelativistic scalar electrodynamics to the superconducting
order parameter, we predict a negative (attractive) pressure between planar superconducting bodies. For con-
ventional superconductors with London penetration depth A; ~ 100 nm, the pressure reaches tens of N/mm? at
angstrom separations. The resulting surface energies are in better agreement with experimental values than those
predicted by the Hartree-Fock theory, and the emergent electric-field screening length is comparable to that of
the Thomas-Fermi theory. The model circumvents the bulk limitations of the Bardeen-Cooper-Schrieffer and
Ginzburg-Landau theories to the analysis of superconducting quantum devices.
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I. INTRODUCTION

In conventional superconductors, steady-state bulk phe-
nomena are accurately described by both the Bardeen-Cooper-
Schrieffer (BCS) [1] and Ginzburg-Landau (GL) [2] theories.
The former provides a microscopic origin for supercon-
ductivity via the phonon-mediated pairing of electrons into
bosonic quasiparticles known as Cooper pairs, while the lat-
ter provides a phenomenological description of the resulting
condensate with a macroscopic order parameter representing
its mean-field wave function. The two theories were shown
to be equivalent near the superconducting critical temperature
[3], and both reproduce the London theory [4]. Though the
BCS theory is sufficiently general to predict time-dependent
bulk phenomena, an effective macroscopic theory is desirable
when such effects are triggered by electromagnetic sources
in spatially inhomogeneous domains. To this end, generalized
GL equations have been proposed to capture boundary and
wave effects present in complex geometries [5], but a consen-
sus has not been reached on their validity far below the critical
temperature, a regime all too familiar to the burgeoning area
of superconducting quantum devices [6].

In this study, we present and explore predictions offered
by a hydrodynamic representation of nonrelativistic scalar
electrodynamics applied to the superconducting order pa-
rameter at zero temperature. Few attempts have been made
to solve this model’s equations of motion (EOM) exactly
[7], but simplified versions have been considered via relax-
ations of minimal coupling [8—11] and can be credited as the
underpinning of Josephson phenomena and circuit quantum
electrodynamics [12]. Such approximate descriptions of light-
matter interactions have enabled coveted numerical analyses
of superconducting circuits embedded in electromagnetic res-
onant structures [13,14] far below the critical temperature,
but they rely on London-like boundary conditions between
superconducting and nonsuperconducting domains that seem
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to harbor serious inconsistencies [15]. Our goal is not to
provide a rigorous derivation of the theory (the literature
contains some attempts [16,17]), but rather to demonstrate
that its unapproximated form circumvents the aforementioned
spatial partitioning and implies a pressure between planar
superconducting bodies that can be measured to determine its
validity.

While our model shares similarities with the GL theory in
that it describes the superconducting condensate with an order
parameter, it differs in at least four important ways. First, in
contrast to the diffusive time-dependent GL equations, our
model entails wavelike dynamics implied by Schrédinger’s
equation. Second, we employ minimal coupling to all elec-
tromagnetic degrees of freedom, including the electric field
via Gauss’s law and Maxwell’s correction to Ampere’s law.
Third, we incorporate arbitrary arrangements of both external
drives and ionic backgrounds via normal (nonsuperconduct-
ing) source distributions. We take the latter to be static in
nature, akin to the Jellium model of a metallic conductor
[18], but generalizable to include dynamical fluctuations for
effective descriptions of phononic excitations. Fourth, in con-
sidering regimes far below the critical temperature, we omit
the self-interaction term that governs the GL phase transition.
In our model, nonlinear phenomena arise instead from our
more general treatment of light-matter interactions, and the
Higgs mechanism that yields the condensate’s equilibrium
number density via spontaneous symmetry breaking of the
U (1) gauge group is replaced by requirement from the EOM
that the entire system exhibits charge neutrality. Upon explicit
symmetry breaking by the free currents, this final property
yields a bulk superconducting charge density equal and op-
posite to the ionic background and has been studied in certain
astrophysical settings [19].

The paper is organized in the following manner. We for-
mally define the model in Sec. II via presentation of the
Lagrangian, EOM, and Hamiltonian. In Sec. III, we enumerate
the results of our electrostatic analysis, beginning with an
equation of state satisfied by solutions in electrohydrostatic
equilibrium. We then solve this electrohydrostatic condition

©2024 American Physical Society
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numerically in the context of two planar superconducting
bodies separated by vacuum. By considering variations in
the system’s electrohydrostatic energy with respect to the
separation length, we find a negative (attractive) pressure
between the two bodies that peaks at an emergent healing
length. We proceed by calculating the resulting surface ener-
gies for a number of elemental superconductors and find better
agreement with experimental values than the Hartree-Fock
(HF) method applied to the normal fermionic state. Finally,
we compare our model’s screening response to that of a
normal metal. While our derived response is functionally
distinct from that of the Thomas-Fermi (TF) theory, both
yield remarkably similar values for the electric-field screening
length in elemental superconductors. We conclude the paper
in Sec. IV with a discussion of the other forces relevant to a
measurement of the electrohydrostatic pressure, along with an
outlook toward future dynamical analyses.

II. MODEL STATEMENT

Throughout the text, we employ the covariant formula-
tion of electromagnetism with the Minkowski metric n*¥ =
diag(+, —, —, —)"", and we refer to the components of a four
vector as X* = (Xj, X)*. Though the model describes nonrel-
ativistic charged superfluids, we find that a relativistic notation
provides useful physical insight. We assume the effective
Lagrangian governing the evolution of the order parameter
¥ = /ne’ and the electromagnetic four potential A* is given
by the nonrelativistic theory of scalar electrodynamics under
minimal light-matter coupling,

where F/*' = 9"A" — 9"A* is the electromagnetic tensor,
j¥ is the four current generated by normal charges, and
g and m are the charge and mass of the superconducting
charge carriers, respectively. The EOM arising from this
Lagrangian couple Maxwell’s equations for the four potential
and Schrodinger’s equation for the order parameter,

O F" = po(T" +j) (2a)

. 1 (h 2
ihr = (%<7V - qA> + ch())w, (2b)

where J" = gn(c, v)" is the four current generated by super-
conducting charges with number density n and flow velocity
v = (VO — gA)/m. As derived in Appendix A, the system’s
Hamiltonian can be expressed in an electrohydrodynamic
form as

#= e me () B, @)
= — — n| —mv —n|VInn|?,

2 210 2 8m
withE = —cVAy — A the electric field, B = V x A the mag-
netic field, n the superconducting number density, and v = |v|

the flow speed. Equation (3) represents a decomposition of the
total energy density into electric, magnetic, kinetic, and elastic

components, respectively [20]. Before proceeding, we empha-
size that unlike Josephson junction models based on two order
parameters, Eq. (1) assumes a single order parameter defined
over all space.

II1. RESULTS

A. Equation of state

We now limit our focus to electrostatic systems, which are
recovered by enforcing that all currents vanish J = j = 0.
We first introduce the bulk superconducting number density
ns and two important length scales: the London penetration
depth Ap, = /m/(juoq?ns) and the Compton wavelength Ac =
h/(mc). In terms of the normalized number densities 7 =
n/ny = Jo/(cqns) and g, = — jo/(cgns), Eq. (2) reduces to
the electrohydrostatic condition,

2 —
i+ 2§4v2M = Tigre, )
Vi

revealing the established [21] healing length £ given by

ALAcC
dr
As shown in Appendix B, Eq. (4) is a self-consistent statement
of Gauss’s law that expresses the balance between electric
and elastic forces in the electrostatic distribution of the fluid:
gE = VQ with Q = —i*(V2/n//n)/(2m) the well-known
quantum potential [22]. Because of the nonlinear term, prov-
ing the existence or uniqueness of solutions 7 is nontrivial
and remains an open problem. We may nonetheless make
some qualitative observations regarding solutions to Eq. (4).
First, we anticipate the asymptotic behavior 7 — 7ig,c = 1 in
the bulk. Second, spatial derivatives in the nonlinear term
ensure C* continuity of 7 over all spatial coordinates. To
avoid introducing additional length scales, we focus here on
piecewise-constant sources 7y, that take values zero outside
and one inside the superconducting material.

§= &)

B. Pressure

To obtain the electrohydrostatic pressure between two
planar superconducting bodies, we first solve the electrohy-
drostatic condition sourced by two finitely separated ionic
backgrounds. For each separation length L € [0, 20£], we
then integrate the resulting electrohydrostatic energy density,

€| B _Viym|t R
_ S| VG P 6)
2|2mqg  \/n 8m
Uelectric Uelastic
over all space V and compute the pressure P = —V|, fv Hdx.

Details of the calculation are provided in Fig. 1, with the
main conclusion being the existence of a negative (attractive)
pressure between plates that vanishes in the limit of zero or
infinite separation and reaches a peak for L = &. For a conven-
tional (m = 2m,, g = 2e) superconductor with A;, ~ 100 nm,
the pressure achieves a maximum value of ~ 40 N/mm? at
separations on the order of 1 A. Numerical details are given
in Appendix C, but no explicit calculations are necessary to
deduce the pressure’s negative sign and the relevant length
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FIG. 1. The main result is summarized by a free body diagram (a) depicting the attractive force between two planar superconducting
bodies. Calculation of this pressure begins with a numerical solution 7 to the electrohydrostatic condition sourced by two finitely separated
ionic backgrounds 7ig.. An example solution with separation length L = 4.8& is depicted in (b). We next calculate the electrostatic distribution
of the normalized number density (c), elastic energy density (d), and electric energy density (e) for a range of separation lengths specified by
the color bar. Energy densities are plotted in units of uy = fimc/(110q*A;) and are spatially integrated to find the energy per unit area (f) as a
function of the separation length, whose negative derivative with respect to L yields the pressure (g). We note that the electric pressure changes

sign at L ~ 4.8¢.

scale. The former is a consequence of the electrohydrostatic
energy density [Eq. (6)] being positive semidefinite and there-
fore minimized by the uniform solution, and the latter is a
consequence of the healing length [Eq. (5)] emerging as the
only length scale in the electrohydrostatic condition [Eq. (4)].

C. Surface energy

The literature currently lacks experimental data for pres-
sure measurements between superconductors at the angstrom
scale. In the absence of such measurements, the theory’s va-
lidity can be indirectly assessed by comparing the resulting
surface energy,

1
Osc = E/V'de

with existing experimental values [23]. The surface energy
represents the energy required, per unit area of new surface
formed, to split a material in two along a plane [24]. It is most
often measured in the liquid phase, where the observed tem-
perature dependence is extrapolated to yield a value at zero
temperature. Prior justifications for this crude approximation
exploit simple models of the surface energy’s temperature
dependence [25] and produce a figure of merit commonly
used in the assessment of fermionic models for normal metals
[23,24]. In Table I, we provide the surface energies predicted
by our model for a number of elemental superconductors,
along with experimental values, and find the two to be on the
same order of magnitude. For comparison, we also include
the surface energy predicted by the HF method applied to
the normal fermionic state, which yields negative values and
therefore fails at high densities [24]. The tabulated predictions
for normal metals are derived from a Jellium background and
thus represent the closest analog to this work. Normal metal
surface energies have been predicted with greater accuracy via

oo}

L=
~ 0.21&uq, 7
L=0

resolution of the ionic background’s lattice periodicity, which
suggests similar improvements can be made to our model.

D. Screening

Equation (4) evidently implies a screening response that
differs considerably from that of a normal metal. A direct
comparison is most effectively achieved via the Green’s func-
tion. As derived in Appendix D, for source distributions
representing small perturbations from a uniform background,
the electrohydrostatic condition reduces to a self-sourced ver-
sion of the inhomogeneous biharmonic equation arising in
linear elasticity theory [26],

(8a)

Nsre = Ns + 8Ngre, [0N5re| K 1,

(1 +&*V*H)on ~ dnge, (8b)

G(x,x) = ;[ \;72'\ sin <|X — Xll) (8¢)
U Anx —xg? EV2 )

with 6n = n — ng the first order perturbation in the supercon-
ducting number density, V4 = V2V? the biharmonic operator,
and G(x, x') the ensuing Green’s function. The screening re-
sponse exhibits both decaying and oscillatory behavior on the
length scale of the healing length, which stands in contrast
to the Yukawa-like response arising from TF screening in
normal metals [27]. The TF theory describes the response of
the electron number density nyr to small perturbations from
a uniform background. For metals with bulk electron number
density n,

Ngre = Ne + ONgre, |ONge| K N, (9a)
(] - s'12"Fv2)5nTF ~ (SnSI‘Cs (9b)

1 _ x=x
Gre(x, X) ¢ e , (9¢)

Amx — x/|EX
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TABLE I. Surface energies and screening lengths are calculated for aluminum, indium, tin, and lead at zero temperature. Fermionic models
based on the Hartree-Fock method employ the metal’s Wigner-Seitz radius r; [27] in the normal state to predict the surface energy o, (obtained
via interpolation of the data in [24]) and Thomas-Fermi screening length &g [27]. Our model employs the metal’s London penetration depth
AL (Al [1], In [28], Sn [1], Pb [29]) in the superconducting state to predict the surface energy oy given by Eq. (7), and healing length & given
by Eq. (5). Experimental values for the surface energy o, were averaged over the data provided by [23].

Element 15 [ao] A [nm] o, [J/m?] oy [J/m?] Oexpt [J/m?] &rr [A] £ [A]
Al 2.07 16 —-0.73 0.90 1.2 0.49 0.39
In 2.41 20.5 —0.012 0.48 0.70 0.53 0.44
Sn 2.22 35 —0.28 0.13 0.70 0.51 0.58
Pb 2.30 30.5 —0.13 0.18 0.60 0.51 0.54

with dnr = nyp — n. the first order perturbation in the nor-
mal electron number density, Gtg(x, X') the ensuing Green’s
function, and &g =~ 0.344/r5/ay A the TF screening length. In
this definition, ry and ag are the Wigner-Seitz and Bohr radii,
respectively. We note that while our healing length and the
TF screening length scale differently with the mobile charge
carrier density (§ ~ ng 1/4, ETp ~ ne Y 6), they take on remark-
ably similar values for the elemental superconductors listed in
Table I. We emphasize that the two responses are not mutually
exclusive: TF screening by unpaired electrons is a separate
and complementary phenomenon that can be incorporated
into our model by an appropriate choice of the free current
[21,30]. Here, we have assumed a static Jellium background
that neglects TF screening, since the mobile electrons are
predominantly paired far below the critical temperature. This
is opposite to the GL theory’s typical assumption of a TF
screening response near the critical temperature, where the
mobile electrons are predominantly unpaired. We conclude
our discussion of the screening response by noting that the
oscillations in Eq. (8c) are showcased in Fig. 1, where in-
creases (decreases) in electric energy arise from constructive
(destructive) interference of screening charges, thereby pro-
ducing a zero crossing in the electric pressure. Derivation of
the analogous Friedel oscillations in normal metals requires
more complex models than TF screening, such as Lindhard
theory [27], which highlights the efficacy of our compara-
tively simple model.

IV. OUTLOOK

Though some confirmation of our model can be found
from experimental values for the surface energy, its valid-
ity is most directly assessed by experimental measurements
of the pressure or screening response. The viability of such
measurements requires knowledge of other forces present at
this scale, such as the Casimir and van der Waals interactions
[31]. While the literature contains both theoretical [32] and
experimental [33] analyses that suggest the Casimir force at
large separations is unaffected by the superconducting phase
transition, we are unaware of any conclusive evidence that
suggests this correspondence holds for the small separations
considered here. Macroscopic treatments of Casimir forces
often rely on assumptions (e.g., local response [34]) that
break down at and below nanometric gaps. A more detailed
analysis incorporating the weaker superconducting response
along with nonlocal/atomistic effects is therefore needed and
left to future work. Indeed, due to their distinct screening

responses, superconductors may exhibit a nonlocal damping
of the Casimir force at small separations that differs consid-
erably from its normal metal counterpart. Nonetheless, the
literature contains some arguments based on UV cutoffs that
suggest a Casimir contribution to the surface energy that is
comparable to experimental values [35], thereby leaving the
significance of the predicted electrohydrostatic contribution
uncompromised. We conclude by noting that since C* con-
tinuity of the superconducting number density is guaranteed
by the nonlocal quantum potential [36], all contributions to
the electrohydrostatic energy density are, in contrast to the
Casimir force, finite [37].

By virtue of its formulation in terms of hybridized
radiation-matter fields, our model may also be applied to
the study of Josephson dynamics, as has been studied in
[7]. For the static limit considered here, such effects vanish.
Neglecting the effect of these limit cycle solutions on the
pressure between superconducting bodies can be justified by
the assumption that the ground state is electrostatic. We leave
the proof of this intuitively plausible assumption to future
work but note that its validity would imply that these semi-
classical excitations are frozen out in the zero temperature
limit, thereby leaving the predicted pressure unaffected in
this regime.

To summarize the results of this study, we have presented
a theory of superconductivity akin to the GL theory that is ca-
pable of describing the dynamics of superconducting quantum
devices well below the critical temperature, and we have used
the theory to predict a negative electrohydrostatic pressure be-
tween superconducting bodies. Moreover, we have calculated
the resulting surface energies and shown that they are in better
agreement with experimental values than those predicted by
the HF method applied to the normal fermionic state. The
screening response predicted by our model is functionally dis-
tinct from the TF screening response of normal metals, with
a screening length that exhibits a different scaling with the
mobile charge carrier density. Nonetheless, the two electric-
field screening lengths take on remarkably similar values for
the elemental superconductors listed in Table I. This agree-
ment suggests that the common assumption of an identical
electrostatic response in normal metals and superconductors
may originate from the experimental misidentification of our
proposed healing length with the TF screening length. A
measurement of the electrohydrostatic pressure capable of de-
termining the theory’s validity may thus depend on a material
choice for which these two screening lengths are sufficiently
different. Like the GL theory, our model may be applied to the

014508-4



NEGATIVE ELECTROHYDROSTATIC PRESSURE BETWEEN ...

PHYSICAL REVIEW B 110, 014508 (2024)

analysis of conventional and unconventional superconductors
alike, so material choices need not be restricted to the former.
The viability of a pressure measurement also requires an ac-
count of the other relevant forces present at this scale, such
as the Casimir and van der Waals interactions [31], which
remains an open problem. Though not necessary for a pressure
measurement, our model may also be applied to the analysis
of dynamical phenomena, such as the Josephson effect.
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APPENDIX A: ELECTROHYDRODYNAMIC
REPRESENTATION OF THE HAMILTONIAN

The following derivation assumes electrostatic sources
ji=0:

AL . AL . AL .
&> :/ A+ — ~ vt — L )d?
/’H X <8Ap p—i—aww—i-av/*w ) X

(—LFO/JA,) + iRy — £>d3x

1
——F %A, + (jo+ cql¥*)Ao + 4—F*”

-J
Sz
s

€0 12 1 2 1
- DR B Z
/<2| | +2M0| | +n<2mv>

To arrive at the fourth line in Eq. (A1), we have employed
Gauss’s law and integration by parts. For more general source
distributions, an analog of Poynting’s theorem can be derived
directly from the equations of motion,

H+V-S+j-E=0, (A2)

where the directional energy flux in electrohydrodynamic
form is given by

1 1,
E—EXB+”V —-—mv:- — — —
Ho 2

APPENDIX B: ELECTROHYDROSTATIC CONDITION

The equations of motion are invariant under the
gauge transformation (A*, 6) — (A* + 3" f,6 — 1 f) for any
single-valued smooth function f, which motivates us to define
the gauge-invariant four-potential A* = A* 4 58“9. In terms
of these variables, Maxwell’s forms are preserved. Namely,
the electric and magnetic fields are given by E = —cV. Ay —
AandB = V x A, respectively, and the electromagnetic ten-
sor is given by F*' = 9* A" — 3" A*, which for notational
consistency we now refer to as F*” = F*'. In terms of
the gauge-invariant four potential, Maxwell’s equations thus

1 1 h
E>+ — B> + —‘ﬁ(ﬁV@ —qgA)+ -V.n
20 2m i

1 h 2\
wt+ —v -V —qA ) ¥ |d’x
2m i

2
1 1 |(h
|B|2+—‘<—,V—qA)xp‘ d’x
20 2m |\ i

2
d*x

h2

+ —n|V 1nn|2)d3x (A1)
8m

[

undergo a trivial relabeling:
WF" = po(J" +J") = 9 F"" = po(J" +j%).  (BD)

Since the flow velocity v = —(g/m).A, the superconducting
four current may be written purely in terms of the num-
ber density and the gauge-invariant four-potential as J#* =
gn(c, —(g/m).A)*. We proceed by expressing the imaginary
and real parts of Schrodinger’s equation in polar form in terms
of the gauge-invariant four potential, which correspond to the
superconducting charge continuity equation and the quantum
Hamilton-Jacobi equation, respectively:

9, T" =0=n= ﬁv - (nA) (B2a)
1 h2 VZ\/_
—hf = —mv? — — A
2mv m \/_ + gcAy
]‘;l2 VZ\/_
= — . B2b

To ground the reader, we note that upon taking the gradi-
ent of the quantum Hamilton-Jacobi equation, Eq. (B2) is
simply the Madelung equations. In an electrostatic system
(j = A=0), the only nontrivial component of Maxwell’s
equations is Gauss’s law, and the only nontrivial component
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of Schrddinger’s equation is the quantum Hamiltonian-Jacobi
equation, which are respectively given by

1
VieAn) = ——(qn +cjo), (B3a)
P Vi/n

Combining the two equations to eliminate .4, we arrive at the
electrohydrostatic condition,

" - V2 n

1
=—— i0), B4
2ma NG @ (gn + cjo) (B4)

J

2 1 d2 =
ol (L4
dz* \ /i dx?

/Hdmog/(

)=®(|5c—~

2
d {1 d*Ja +fl
di\ i di* 4

which can be expressed in terms of the normalized number
densities as given in the main text. We note that the electric
field may be written purely in terms of the number density by
taking the negative gradient of the quantum Hamilton-Jacobi

equation E = —/2/(2mq)V (V2/n//n).

APPENDIX C: NUMERICAL DETAILS

The nondimensionalized 1D electrohydrostatic condi-
tion and energy density employed in this study are
given by

), (Cla)

dInn

T (Clb)

Uelectric 0]

where ¥ =x/&, L=L/&, and ® is the Heaviside theta
function. Calculation of the electrohydrostatic pressure be-
tween superconducting bodies was performed numerically
using a central finite difference scheme with second-order
accuracy for all spatial derivatives. The electrohydrostatic
condition was solved on a numerical grid consisting of 801
equally spaced points ¥ € [—20,20] with boundary con-
ditions 7i(X)|jz>20 = 1 for 201 equally spaced separation
lengths L € [0, 20]. Analytic manipulations of the electro-
hydrostatic condition were performed with SymPy, and the
ensuing nonlinear vector equation was solved numerically
using scipy.optimize.fsolve, which converged with the
default tolerance of 1.49012e-08 for all results in this study.

APPENDIX D: SELF-SOURCED INHOMOGENEOUS
BIHARMONIC EQUATION AND GREEN’S FUNCTION

For a uniform background 7ig,. = 1, the electrohydrostatic
condition [Eq. (4)] yields the trivial solution 7 = 1. We derive
the self-sourced version of the inhomogeneous biharmonic
equation arising in linear elasticity theory by considering
source distributions representing small perturbations from a
uniform background as follows:

nsrc(x) =1+ )"n(l)(x)

Src

(Dla)

Ai(x) =1+ Zxkﬁ“‘)(x),

k=1

(D1b)

so that as A — 0, we recover the unperturbed uniform
medium. To first order in A, Eq. (4) reads

v%/ﬁ)
Vi

A0 4 v = 7O

SrC )

A= Al

src

Py 2£4y2
7 +8)L(§

(D2)

as given in the main text with 8iig,. = Aiil}) and 87 = ria').

To arrive at the second line, we have employed the quantum

Uelastic [Uo]

2
)dx,
{

potential derivative identity derived in Eq. (E1). We now
derive the corresponding Green’s function by considering a
source distribution of the form A{})(x) = §(x). Expanding
i and 7)) in the Fourier basis,

fz(l)(x) = /ﬁ(l)(k)eik-xdiik’

i = [ R0k

(D3a)
(D3b)
and taking the inverse Fourier transform of Eq. (D2) yields

(14 ()00 =0 = o 04)

with k = |k|. We proceed by solving for 7" in spherical
coordinates with p = |x]|:

_(1)( )_ 1 ezkx d3k
o ‘(2n>3/1+<k5)4
2 1kpcos€ )
(27t)3/ fo / <] +(k"§)4k 51n9>d¢d0dk
lkpcoqe

(27T)2/ / <1+(k§)4
/ <ksm(kp)>dk
~ 2n? P Jo 1 4 (k&)
R SR 2 P

For source distributions of the form 7i{l)(x) = §®(x — x'),
the first order response 7("(x) can be attained by a simple
coordinate shift, which yields the Green’s function in the main
text. We note that the total net charge is neutral, as ensured
by the property [, iVd*x = [, i{lJd*x, where integration is
performed over all space V.

sin 9>d9dk

(D5)
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APPENDIX E: QUANTUM POTENTIAL
DERIVATIVE IDENTITY

The derivative of the quantum potential with respect to an
arbitrary variable o can be written as follows:

o Vi 1V Vi

da Jn 2\ Jn 2

n/

1
= —(r12V2 —nVn-V +|Vn|* — ann)n/

YE
1 V]2 on ED)
= —l[n VI —,
2n3 o

where ' = 9n/dw, [n, VIf = (nV)f — (Vn)f, and we have
employed the dyadic notation Vf =V - f.
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