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Edge currents as probe of topology in twisted cuprate bilayers
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Bilayers made of the high-Tc cuprate superconductor Bi2Sr2CaCu2O8+x assembled with a twist angle close
to 45◦ have been recently shown to spontaneously break time-reversal symmetry T , consistent with theoretical
predictions for emergent chiral topological dx2−y2 + idxy phase in such twisted d-wave superconductors. Here we
use a minimal microscopic model to estimate the size of spontaneous chiral edge currents expected to occur in
the T -broken phase. In accord with previous theoretical studies of chiral d-wave superconductors we find small
but nonvanishing edge currents whose magnitude and spatial distribution are sensitive to the type of the edge or
domain wall. We nevertheless predict these to be above the detection threshold of the state-of-the-art magnetic
scanning probe microscopy. In addition, by deriving a simple relation between the edge current and the electron
spectral function we help elucidate the longstanding disparity between the size of edge currents in chiral d-wave
and p-wave superconductors.
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I. INTRODUCTION

Chiral superconductors are characterized by the order pa-
rameter �k � �0[(kx + iky)/kF ]m with integer m > 0 being
both the magnetic quantum number which determines the
orbital angular momentum (OAM) mh̄ per Cooper pair and the
Chern number which is a topological invariant characterizing
the Bogoliubov–de Gennes (BdG) spectrum and determining
number of the chiral edge modes [1–3]. Such an order pa-
rameter breaks time-reversal symmetry allowing spontaneous
currents which we expect to find at the edges of the sam-
ple. The edge modes can support the supercurrent, although
some states that extend into the bulk may also participate
[1]. Unlike the Chern insulator, the edge currents in chiral
superconductors are not quantized [4]. The reason is that these
states are mixtures of particle and hole degrees of freedom
and how much electrical current they carry not only depends
on the dispersion but also on the particle-hole content of the
wave functions. Therefore we might not find current where
we expect due to cancellations between particle and hole
degrees of freedom [2]. The edge modes give rise to quantized
thermal conductance which is, however, notoriously difficult
to measure.

Edge currents predicted for a chiral p-wave superconductor
(m = 1) within the quasiclassical approximation using a con-
tinuum model [1] are consistent with OAM Lz = Nh̄/2 for N
fermions for a disk geometry. This quasiclassical analysis was
generalized in Ref. [2] to higher angular momentum pairing
channels (m > 1) and it was found that edge currents vanish
for single band continuum models. This is so even though in
the strong coupling (BEC) limit the expected OAM is Lz =
Nmh̄/2; vanishing edge currents in the simplest model suggest
that this is not the case. In Ref. [5], this reduction of angular
momentum for higher values of chirality was attributed to
spectral flow along the edge states.
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Edge currents for higher chirality states have not received
as much attention as the chiral p-wave state (long thought rel-
evant to a candidate triplet superconductor Sr2RuO4), owing
chiefly to the paucity of realistic candidate systems. Never-
theless theoretical studies of more complex models [2,6–10]
have found nonvanishing edge currents in the chiral d-wave
state. In contrast with the quasiclassical result for single-band
continuum theory, Refs. [2,6] found nonzero edge currents for
the m > 1 case based on self-consistent BdG lattice models
of a chiral d-wave state. References [11,12] investigated edge
currents in a finite-sized disk geometry, solving quasiclassical
Eilenberger equations, and determined that screening does
not alter the qualitative behavior of edge currents. However,
all these studies concluded that the chiral d wave has edge
currents an order of magnitude smaller than what is expected
for the chiral p wave.

Here we consider a specific candidate for the chiral d-
wave superconducting state realized in the two-dimensional
(2D) heterostructure of twisted bilayer cuprates such as
Bi2Sr2CaCu2O8+x (Bi-2212). Composed of two monolayer
d-wave superconductors (dSC) stacked with a near 45◦ twist,
such a structure is predicted to host a topological dx2−y2 + idxy

state (abbreviated henceforth as d + id ′) with bulk gap and
chiral edge modes [13]. Spontaneous T breaking here occurs
due to the symmetry-imposed vanishing of the first harmonic
in the Josephson energy between the two layers at 45◦ twist,
with the second harmonic favoring the π/2 phase difference.
Recent transport experiments on twisted Bi-2212 flakes in-
deed reported fractional Shapiro steps and Fraunhofer patterns
consistent with strong second-harmonic Josephson energy
[14]. The same study also observed a pronounced zero-field
superconducting diode effect in near-45◦ twisted samples,
indicating spontaneous T breaking at the interface [15]. Other
transport experiments, however, reported only conventional
behavior in twisted Bi-2212 junctions [16] and more recently
also in twisted Bi2Sr2CaCuO6+x (Bi-2201) [17]. The most
recent transport study of twisted Bi-2212 junctions reported
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[18], once again, an unconventional behavior consistent with
theoretical predictions for twisted d-wave superconductors.

On the theory side, more detailed microscopic studies of
twisted cuprate bilayers that incorporate the effect of strong
correlations [19–24], inhomogeneity [25,26] and the effect of
applied current and magnetic field [27] make predictions for
the T -broken phase that differ in important details such as the
critical twist angle and the size of the induced excitation gap.
Given this situation it is important to explore the full range of
physical manifestations of the predicted chiral d + id ′ phase.
In addition to the fractional Shapiro steps, Fraunhofer patterns
and the diode effect mentioned above signatures of T break-
ing can be probed directly via polar Kerr effect measurements
as proposed in Ref. [28]. Fractional and coreless vortices have
been predicted to occur in the chiral dSC [29], which could be
experimentally detected.

Perhaps the most persuasive direct manifestation of the
chiral d + id ′ state, however, would be observation of the
spontaneous edge currents associated with the topologically
protected edge modes. The aim of this work is to evaluate the
edge currents resulting from the spontaneous T breaking in a
lattice model of a d + id ′ superconducting system designed
to capture the physics of twisted Bi-2212 bilayers. To this
end we first construct a suitable “aligned-lattice model” and
solve the resulting Bogoliubov–de Gennes (BdG) theory self-
consistently in the long-strip geometry with several types of
edges and domain walls that produce spontaneous currents.
Based on this solution we calculate the edge currents and the
resulting magnetic fields which we find to be strong enough to
be detectable with a high-resolution scanning SQUID micro-
scope. As appropriate for a 2D sample of a strongly type-II
cuprate superconductor, our treatment throughout the paper
ignores the Meissner screening.

It is important to note that for a pure, single-layer dSC,
a different T broken state has been predicted to occur near
a pair-breaking boundary, e.g. one formed by a (110) edge
in a dx2−y2 superconductor [30–33]. In such a state fractional
vortex antivortex pairs are predicted to spontaneously nucleate
along the boundary below T ∗ ≈ 0.18Tc, breaking also the
translation symmetry along the edge. In our self-consistent
treatment of a single-layer dx2−y2 superconductor with a (110)
edge, we were able to confirm the onset of this T broken phase
below T ∗. Nevertheless this effect remains experimentally
unconfirmed [11] and we defer a study of its interplay with
the bulk T -broken phase to future work.

In the remainder of this paper we focus on types of edges
and domain walls that are not pair breaking in the above sense
and thus allow us to study edge currents intrinsic to the bulk
T -broken chiral d + id ′ phase that emerges in the bilayer near
a 45◦ twist. In addition, we focus on bilayer solutions that
retain translation invariance along all edges.

II. MODELLING THE TWISTED BILAYER

The bulk behavior of a twisted cuprate bilayer is most
conveniently described by a continuum BCS theory which has
been extensively checked against microscopic lattice models
with the correct Fermi-surface structure [13,28,34]. Because
we wish to model behavior of the twisted bilayer near an edge
it is preferable to use a lattice model. However, simulating the

FIG. 1. (a) Real-space representation of the aligned-lattice model
for the 45◦ twisted bilayer. Electrons in both layers move on identi-
cal square lattices. The twist is implemented by adopting attractive
interactions that favor a dx2−y2 (dxy) order parameter in layers 1 (2),
respectively. The extended s-wave order parameters have the same
spatial structure except the bond fields do not alternate sign. A side
view of (b) aligned and (c) step edge. Panel (d) shows a domain wall
between the d + id ′ and d − id ′ phases. The arrows indicate edge
currents and illustrate why we expect a domain wall to carry twice
the current of an edge.

full microscopic lattice model near the 45◦ twist tends to be
computationally expensive owing to its large moiré unit cell.
To avoid complications arising from such a large unit cell we
employ here the aligned-lattice model introduced in Ref. [28].
The idea is to represent two monolayers by two perfectly
aligned square lattices. The 45◦ twist is then implemented by
imposing a dx2−y2 order parameter in one layer and a dxy order
parameter in the other, as illustrated in Fig. 1(a). It is impor-
tant to bear in mind that by keeping the unit cell small the
aligned-lattice model necessarily misses all the physics related
to the Brillouin zone folding due to the formation of the moiré
lattice. On the other hand, as verified in Refs. [13,28,34], the
model still supports the correct phenomenology as compared
with the full microscopic calculation performed with the large
moiré unit cell, the continuum BdG theory, as well as the
Ginzburg-Landau approach.

A. The aligned-lattice model

The Hamiltonian of the aligned-lattice model is given by
H = H0 + Hint with

H0 = − t
∑

〈i j〉,σa

(c†
iσac jσa + H.c.) − μ

∑
i,σa

niσa

− g
∑
i,σ

(c†
iσ1ciσ2 + H.c.), (1)

014506-2



EDGE CURRENTS AS PROBE OF TOPOLOGY IN TWISTED … PHYSICAL REVIEW B 110, 014506 (2024)

describing the normal-state tight-binding band structure of the
bilayer. Here c†

iσa creates an electron on site i with spin σ in
layer a = 1, 2, 〈i j〉 denotes summation over nearest-neighbor
sites and niσa = c†

iσaciσa is the number operator. t and g denote
respectively the in-plane and interplane tunneling amplitudes,
and μ is the chemical potential.

Hint describes attractive electron-electron interactions that
give rise to d-wave superconductivity in the individual layers,

Hint = − V1

∑
〈i j〉,σσ ′

niσ1n jσ ′1 − V2

∑
〈〈i j〉〉,σσ ′

niσ2n jσ ′2, (2)

where 〈〈i j〉〉 denotes summation over second-neighbor sites
on the square lattice. For positive Va (and assuming decoupled
layers) this form of interaction is known to produce a dx2−y2

order in layer 1 and dxy order in layer 2.
Performing the standard mean-field decoupling of the

interaction term (2) in the pairing channel, one obtains
the BdG Hamiltonian. For a uniform system with peri-
odic boundary conditions, it can be written compactly in
the momentum space as H = ∑

k �
†
k hk�k where �k =

(ck↑1, c†
−k↓1, ck↑2, c†

−k↓2)T and

hk =

⎛
⎜⎜⎝

ξk �k1 g 0
�∗

k1 −ξk 0 −g
g 0 ξk �k2

0 −g �∗
k2 −ξk

⎞
⎟⎟⎠. (3)

The normal state for each monolayer has a dispersion ξk =
−2t (cos kx + cos ky) − μ. The superconducting order param-
eters assume the form

�k1 = �1d (cos kx − cos ky),

�k2 = �2d (2 sin kx sin ky), (4)

and their amplitudes are determined self-consistently from the
gap equation,

�ad = 2Va

∑
k,α

∂Ekα

∂�∗
ad

tanh

(
βEkα

2

)

= 2Va

∑
k,α

〈kα| ∂hk

∂�∗
ad

|kα〉 tanh

(
βEkα

2

)
, (5)

where β = 1/kBT is the inverse temperature, |kα〉 are the
eigenstates of hk belonging to positive eigenvalues Ekα (α =
1, 2), and the second line is convenient in numerical compu-
tations.

We find that, for decoupled monolayers, a dSC with
nonzero order parameters defined in Eq. (4) represents a stable
ground state of the BdG theory for much of the phase diagram
spanned by parameters V1, V2, and μ. However, a state with
extended s-wave order parameters defined as

�k1,s = �1s(cos kx + cos ky),

�k2,s = �2s(2 cos kx cos ky), (6)

is a close competitor. Here �as are given by equations anal-
ogous to Eqs. (5). As discussed in more detail below this
competing s-wave state tends to crop up in situations where
the dominant d-wave order parameter is spatially varying, e.g.
near the edges.

B. Model parameters

We set our normal state parameters as t = 0.38 eV, μ =
−1.2t and the interaction strengths as V1 = 0.46 eV, V2 =
0.48 eV. These parameters give us a near-circular Fermi
surface, a d-wave superconducting order parameter, and a
maximal gap of approximately 40 meV in each monolayer,
in accord with the observed gap size in optimally doped Bi-
2212. In addition, critical temperatures in the two monolayers
coincide for this parameter choice. We use these parameters
for all subsequent calculations except where noted otherwise.

Upon weakly coupling the layers using g = 11 meV, a self-
consistent solution develops a relative phase of π/2 between
the superconducting order parameters, thereby reproducing
the expected d + id ′ order parameter in the twisted bilayer
system. Our chosen value of the interlayer coupling g fol-
lows from the estimate for twisted Bi-2212 bilayers given
in Ref. [34] based on experimental data of Ref. [14]. It is
to be noted, however, that estimates of g vary widely in the
available literature. Also, we find that the edge current is
quite sensitive to the value of g, with larger values generally
supporting stronger currents. For this reason we give results
for edge currents and the associated magnetic fields for several
representative values of g = 4–20 meV covering the range
most likely relevant to Bi-2212.

We note here that the BdG theory yields physical, current-
conserving solutions only when the order parameters are
determined self-consistently. However, obtaining a fully self-
consistent solution when working with various constrained
geometries can get numerically expensive. This is precisely
the reason why we choose to work with a simple aligned-
lattice two-band model instead of the full microscopic model
describing the large moiré unit cell of the bilayer system.
The advantage of a two-band model is that it can accurately
reproduce the physical observables while being numerically
tractable, especially when working with long strip geometries,
as described in the following section.

C. Long strip geometry

We use a long strip geometry to examine the characteristic
edge effects in this system. In all cases we assume transla-
tional invariance along the x direction and impose periodic
boundary conditions in this “long direction.” The strip has
a finite width of Ny unit cells along the y direction and the
boundary conditions in the y direction are chosen based on the
specific configuration we consider. We study three different
configurations of the edges of this system which we discuss
below.

Accordingly, we convert the mean-field BdG theory fol-
lowing from the Hamiltonian Eqs. (1) and (2) to the strip
geometry by taking a partial Fourier transform along x using

cyσa(k) =
∑

x

eikx

√
Nx

c(x,y)σa. (7)

Here R = (x, y) is used to denote lattice site position and Nx

is the number of unit cells along the periodic direction. In this
representation the BdG Hamiltonian H(k) becomes a matrix
of size 4Ny for each value of the crystal momentum k drawn
from a one-dimensional (1D) Brillouin zone (−π/a, π/a).
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FIG. 2. Self-consistent solution of the superconducting order pa-
rameters in the bulk as a function of temperature for the long strip
geometry with the aligned-edge configuration (left) and the step-edge
configuration (right). For both configurations, a dx2−y2 and a dxy

emerge with a relative phase of π/2 between them. The data are
shown for a weak interlayer coupling g = 11.4 meV.

We diagonalize this matrix numerically and from its eigen-
vectors and eigenvalues compute the order parameters and
currents which now vary spatially along y.

1. Aligned-edge configuration

In this configuration, the edges of layers 1 and 2 are per-
fectly aligned, as shown in Fig. 1(b). We simulate this scenario
using the long-strip geometry with open boundary conditions
in the y direction for both layers.

Let us first look at the bulk superconducting order pa-
rameters in this configuration. Our self-consistent calculations
for each monolayer, reveal that considering nearest-neighbor
attractive pairing adequately stabilizes a d-wave pairing state
in the bulk for a strip width Ny = 100a0. This state is sustained
in each monolayer, across temperatures up to Tc, with the max-
imum bulk gap of approximately 40 meV at low temperatures.
With the chemical potential set to μ = −1.2t , introducing
weak interlayer coupling yields a dx2−y2 order parameter in
layer 1 and a dxy order parameter in layer 2, exhibiting a
relative phase of π/2. This is illustrated in Fig. 2 where we
plot the onsite order parameters defined within the bulk.

The spatial profile of the order parameters is shown in
Fig. 3. The edge is pair-breaking for the dxy order parameter
in layer 2. This leads to a suppression of �2d near the edge
and a nucleation of an extended s-wave order parameter in
layer 2. The phase difference between the s-wave order pa-
rameter and the dxy order parameter is π/2, giving rise to
the dxy + is order parameter in layer 2 near the edge. This
is a manifestation of the pair-breaking edge physics explored
previously in Ref. [30]. This local T breaking occurs already
for a single-layer dSC and is not relevant to our discussion
of edge currents in the chiral d + id ′ phase in twisted bilayer.
The effect complicates our analysis of the bilayer because the
d + is order parameter is time-reversal-symmetry breaking
and can give rise to significant edge currents, a topic addressed
in Sec. III. For this reason we focus in the following on
types of edges that are not pair breaking and therefore avoid
formation of the local d + is phase.

2. Step-edge configuration

Next, we consider a step-edge configuration in which the
layer 1 with the dx2−y2 order parameter covers half of the long

FIG. 3. Spatial profile of the superconducting order parameters
of the aligned-edge configuration in the long strip geometry as a
function of y. The top panel shows the self-consistent solutions of
the d-wave order parameters in layers 1 and 2 labeled as �1d (dx2−y2 )
and �2d (dxy), respectively. The bottom panel shows the s-wave order
parameters in layers 1 and 2, labeled �1s and �2s, respectively. The
data are shown for a weak interlayer coupling g = 11.4 meV and a
temperature of T/Tc = 0.001.

strip width, as shown in Fig. 1(c). This type of edge is likely to
occur in a real experimental setup where the twisted bilayer is
fabricated using the cleave-and-stack technique. Importantly,
the edge of this type avoids the effects due to the pair-breaking
boundary by keeping the dxy order parameter nearly uniform.

We model this configuration in the long strip geometry
with a width of Ny and maintain periodic boundary conditions
along the y direction in both layers. In layer 1, we impose
a large potential barrier across half the strip, precluding the
emergence of dx2−y2 order parameter in the region with the
barrier. We model this barrier as

Vbarrier =

⎧⎪⎨
⎪⎩

V∞, if 0 � y < 0.25Ny

0, if 0.25Ny � y < 0.75Ny

V∞, if 0.75Ny � y < Ny,

(8)

with V∞ 
 t .
The self-consistent solution yields a dxy + idx2−y2 order

parameter in the bulk, as shown in Fig. 2. We obtain step
edges of the dx2−y2 order parameter in layer 1 at y = 0.25Ny

and y = 0.75Ny while generating a nearly uniform dxy order
parameter in layer 2 without any edges, as depicted in Fig. 4.

The pair-breaking edges of the dxy monolayer are absent in
this configuration, leading to the reduction in the magnitude
of the extended s-wave order parameter. The magnitude of the
extended s-wave order parameter is about 100 times smaller
than that in the aligned-edge configuration. The contribution
of the dxy + is order parameter to the current in the system
is negligible, as we demonstrate in Sec. III. Therefore, the
step-edge configuration can be used to examine the edge cur-
rents intrinsic to the chiral d + id ′ superconductor formed in
a twisted bilayer.
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FIG. 4. Spatial profile of the superconducting order parameters
of the step-edge configuration in the long strip geometry as a function
of y. The top panel shows the self-consistent solutions of the d-wave
order parameters in layers 1 and 2, labeled �1d (dx2−y2 ) and �2d (dxy),
respectively. The bottom panel shows the s-wave order parameters in
layers 1 and 2, labeled �1s and �2s, respectively. The data are shown
for a weak interlayer coupling g = 11.4 meV and a temperature of
T/Tc = 0.001.

3. Domain wall

Domain walls can form between d + id ′ and d − id ′
phases when there is a weak in-plane magnetic field modu-
lating the relative phase or when the system is rapidly cooled.
The Chern number for each domain is ±C, respectively. A
domain wall separating d + id ′ and d − id ′ regions therefore
hosts twice as many edge modes compared with the ordinary
edge, leading to a larger supercurrent. This configuration is
illustrated in Fig. 1(d).

To avoid pair breaking effects we create domain walls in
the dx2−y2 order parameter in our system by imposing the
following initial ansatz,

�d =

⎧⎪⎨
⎪⎩

dxy − idx2−y2 , if 0 � y < 0.25Ny

dxy + idx2−y2 , if 0.25Ny � y < 0.75Ny

dxy − idx2−y2 , if 0.75Ny � y < Ny.

(9)

Evidently, the domain walls are present at y = 0.25Ny and
y = 0.75Ny. We take periodic boundary conditions along the
y direction in both layers.

In the bulk, our self-consistent solution Fig. 5 gives a nearly
uniform dxy order parameter in layer 2 and, depending on the
domain, a ±dx2−y2 order parameter in layer 1. In the absence
of any pinning potential, we observe that the system prefers
to keep the magnitude of the dx2−y2 order parameter constant
and vary the phase, thus creating a phase domain wall. The
dxy order parameter remains nearly constant as there is no pair
breaking edge present in the system. The extended s-wave in
layer 2 is about 1000 times smaller than that found in the
aligned-edge configuration.

We can also pin the domain walls using a potential to
suppress the order parameters locally along a line. In this case,

FIG. 5. Spatial profile of the superconducting order parameters
of the free domain-wall configuration in the long strip geometry as a
function of y. The top panel shows the self-consistent solutions of the
d-wave order parameters in layers 1 and 2 labeled �1d (dx2−y2 ) and
�2d (dxy), respectively. The bottom panel shows the s-wave order
parameters in layers 1 and 2, labeled as �1s and �2s, respectively.
The data are shown for a weak interlayer coupling g = 11.4 meV
and a temperature of T/Tc = 0.001.

the magnitude of the dx2−y2 order parameter goes to zero at the
domain wall, creating an amplitude wall. We show the order
parameters of the pinned domain wall in Fig. 6.

For the discussion that follows, we refer to the domain wall
in the absence of pinning potential as “free domain wall” and

FIG. 6. Spatial profile of the superconducting order parameters
of the pinned domain wall configuration in the long strip geometry
as a function of y. The top panel shows the self-consistent solutions
of the d-wave order parameters in layers 1 and 2 labeled �1d (dx2−y2 )
and �2d (dxy) respectively. The bottom panel shows the s-wave order
parameters in layers 1 and 2, labeled �1s and �2s, respectively. The
data are shown for a weak interlayer coupling g = 11.4 meV and a
temperature of T/Tc = 0.001.
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FIG. 7. Spectral functions (12) for a p + ip′ (top row) and d + id ′ superconductor (bottom row) on a long strip of width Ny = 52. The label
“edge” corresponds to a lattice site on the edge whereas “bulk” corresponds to a site near the strip center. To visualize various spectral features
with maximum clarity we use larger gap � � 0.5t and larger interlayer coupling g � 0.8t . To model the p + ip′ SC we use Hamiltonian
Eqs. (1) and (2) adapted to describe a single flavor of spinless fermions and interactions that give rise to px (py) order parameters in layers 1
(2). The rightmost panel shows integrated edge currents, as a function of temperature T computed from Eq. (11).

that with a pinning potential as a “pinned domain wall.” The
two domain walls exhibit notable differences in the spatial
profile of the supercurrent, as we discuss in Sec. III.

III. EDGE CURRENTS

A. Current operator

The current flowing along a bond between sites i and j in
the tight binding model (1) is most easily obtained by per-
forming the Peierls substitution ti j → ti j exp (ieAi j/h̄), where
Ai j is the vector potential integrated along the bond. The
current operator then follows from

ji j,a = ∂H

∂Ai j

∣∣∣∣
A=0

= −et

h̄

∑
σ

(ic†
iσac jσa + H.c.), (10)

and the last expression holds when sites i and j are nearest
neighbors. Given the BdG eigenstates at temperature T , it
is straightforward to evaluate the expected value Ji j,a of the
current operator (10) for any bond. By symmetry and current
conservation, we only expect nonzero currents to flow along
the in-plane bonds that are parallel to the edge.

B. Current from spectral function

Before we present our results for edge current magnitudes
we digress briefly to relate the edge current to the electron
spectral function Ak (y, ω). The latter can be used to visualize
the chiral edge modes and hence the relation offers a way to
understand the origin of the edge current. We also see that
this approach helps to rationalize the disparity between the
robust edge currents expected in the p + ip′ (m = 1) case and
a relatively weak current predicted for the d + id ′ (m = 2)
chiral superconductor. We remark that previous studies noted

this disparity [2,5,11,35]. Here, we provide a simple physical
picture that would explain its origin.

For a long strip geometry where crystal momentum k along
x is a good quantum number, starting from Eq. (10) we can
derive a mixed representation expression for the current Jx̂(y)
along a horizontal bond at distance y from the edge in terms
of the spectral function,

Jx̂(y) = 2et

h̄

∫ π

−π

dk

2π
sin k

∫ ∞

−∞

dω

2π

Tr[Ak (y, ω)]

1 + eβω
. (11)

Here the trace extends over layer and BdG indices while

Ak (y, ω) = −2Im[ω + iδ − H(k)]−1
yy (12)

is the spectral function evaluated at distance y from the edge.
H(k) is the 4Ny × 4Ny matrix Hamiltonian describing the strip
and δ denotes a positive infinitesimal. Subscript yy indicates
that a diagonal 4 × 4 block of the matrix at spatial position
y is to be taken. Individual elements of each such 4 × 4
block can be thought of as position- and layer-resolved normal
and anomalous components of the Gorkov Green’s function
Ĝk (y, y; ω). Details of the derivation are given in Appendix A.

Figure 7 shows spectral functions Ak (y, ω) calculated from
our bilayer model for both p + ip′ and d + id ′ chiral super-
conductors. In accord with the expectations spectral functions
show unidirectional modes when evaluated near the edge of
the strip and they show fully gapped spectrum in the bulk. We
note that for p + ip′ bilayer Chern number C = 1 and 2 phases
are possible, depending on the model parameters [36], while
for d + id ′ one can get C = 2, 4 [13]. We chose to display a
C = 2 phase for p + ip′ and C = 4 for d + id ′ here.

Because no current flows in the bulk of the strip one can
subtract Ak (yB, ω) from the edge spectral function in the ar-
gument of the trace in Eq. (11) without changing the result.
Here yB denotes a position sufficiently far from the edge.
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Such bulk-subtracted edge spectral functions therefore help
visualize the origin of the edge currents and are displayed in
the third column of Fig. 7. We observe that for both m = 1
and 2 the edge currents are sourced primarily from the edge
modes, as expected.

Furthermore, combined with Eq. (11) the spectral function
plots help understand some important differences between
m = 1 and m = 2 cases. First, we note that because of the
Fermi function only the occupied states, that is the ω < 0 part
of the spectral function, contribute to the current. The edge
modes in the p + ip′ case therefore contribute only for k < 0
and this contribution is weighted with the same sign by the
sin k factor in Eq. (11). Hence, after integration over k, we
expect in this case a large contribution to the edge current. On
the other hand the occupied edge modes in the d + id ′ case
have support at both positive and negative values of k; hence
they will tend to cancel in the k integral after being weighted
by the odd sin k function. Indeed as illustrated in the rightmost
panel of Fig. 7 the integrated edge current calculated from
Eq. (11) is about factor of four larger for p + ip′ than d + id ′
for this specific choice of parameters. We note that, for the
sake of simplicity, in this calculation the gap amplitudes are
taken as T independent and uniform across the width of the
strip; the temperature dependence of J comes entirely from
the Fermi factor in Eq. (11). Results for J based on fully
self-consistent calculations with realistic parameters will be
presented in the next section.

C. Edge currents: Quantitative results

Now we calculate the edge currents in the long strip geom-
etry of the d + id ′ superconducting heterostructure based on
fully self-consistent solutions of the BdG theory with parame-
ters relevant to Bi-2212 bilayer. We compute the supercurrents
along the periodic direction x as a function of y for the strip ge-
ometry with finite width along y for the three current-carrying
configurations described in Sec. II C. We discuss the current
density Ix̂(y) and use the net supercurrent associated with a
given edge, that we define as Inet = ∑Ny/2

y=0 Ix̂(y), to quantify
the edge currents.

1. Aligned-edge configuration

We begin with the simplest case, the aligned-edge config-
uration, and present the supercurrent profile as a function of y
and the net supercurrent versus temperature in Fig. 8. For the
aligned-edge configuration, the supercurrents are localized in
a narrow region at the common edges of both layers and decay
exponentially into the bulk. For low temperatures, we observe
that the magnitude of the net supercurrents in this configura-
tion is significant for different values of interlayer couplings,
g. However, upon decreasing the value of g from 19 to 4 meV,
we do not observe any significant change in the magnitude of
these supercurrents. Even at low values of g, we still get the
same magnitude of the supercurrents, an effect that persists
up to g = 0. We have confirmed that these supercurrents come
almost entirely from the dxy monolayer. We thus identify the
origin of these supercurrents as the time-reversal breaking
dxy + is order parameter nucleated at the pair-breaking edges.
As discussed in the previous section, this effect is unrelated to
the chiral d + id ′ phase in twisted bilayer.

FIG. 8. Edge currents in the aligned-edge configuration. (left)
Spatial profile of the supercurrent flowing in x as a function of y for
the aligned-edge configuration at g = 11.4 meV and T/Tc = 0.001.
(right) Temperature dependence of the net edge currents for g =
4–20 meV. The inset shows the net edge currents for T/Tc > 0.2.

In the inset of Fig. 8, we focus on the temperature regime
T > 0.15Tc where, according to Ref. [30] and our own calcu-
lations, the dxy + is edge state should be absent. We observe
that the magnitude of the net supercurrent decreases with
decreasing g, a behavior expected at an edge of a bilayer with
the chiral d + id ′ superconducting order. In addition we note
that when the extended s-wave dominates at the edges, the net
supercurrent reverses the direction. The transition temperature
T ′ remains constant for a range of interlayer coupling param-
eters g, consistent with the fact that the dxy + is order occurs
already in the monolayer limit.

2. Step-edge configuration

We now analyze the edge currents in the step-edge con-
figuration. Here, we avoid the pair-breaking edge of the dxy

order parameter by considering step edges in the dx2−y2 layer.
In Fig. 9 we plot Ix̂(y) and analyze the net current as a function
of temperature and interlayer coupling parameter. With the
step edges of the dx2−y2 order parameter located at y = 0.25Ny

and y = 0.75Ny, we find that the supercurrents are localized
near these edges and decay into the bulk of the d + id region
between the two edges. Note that there is no supercurrent
present in the bulk of the pure dxy order parameter.

The net edge current is found to generally decrease with
an increasing temperature. Furthermore, as we decrease the
interlayer coupling g from 19 to 4 meV, we find that the net

FIG. 9. Edge currents in the step-edge configuration. (left) Spa-
tial profile of the supercurrent flowing in x as a function of y for the
step-edge configuration at g = 11.4 meV and T/Tc = 0.001. (right)
Temperature dependence of the net edge currents for g = 4–20 meV.
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FIG. 10. Edge currents in the domain-wall configuration. Spa-
tial profile of the supercurrent flowing in x as a function of y for
at g = 11.4 meV and T/Tc = 0.001 for (a) the free domain wall
(domain1) configuration and (b) the pinned domain wall (domain2).
(c) Temperature dependence of the net edge currents for the pinned
domain-wall configuration for g = 4–20 meV. (d) Comparison of the
net edge currents at the step edge, free domain wall (domain1), and
the pinned domain wall (domain2) as a function of g (T/Tc < 0.01).

supercurrent hosted in the system decreases at all tempera-
tures. In the absence of interlayer coupling, i.e., at g = 0,
the supercurrents vanish. Therefore, the supercurrents present
in this system arise solely due to the time-reversal breaking
of the d + id ′ order parameter, unlike those emerging at the
aligned edges. As the magnitude of the extended s-wave order
parameter is very small for this configuration, the contribu-
tion to the supercurrents from a possible d + is time-reversal
breaking order parameter is negligible.

For temperatures below 0.2Tc and for g = 10 to 20 meV,
we estimate the net supercurrents hosted at the edge of the
twisted cuprate bilayers to be between 10 to 30 nA for realistic
parameters.

3. Domain-wall configuration

Finally, we investigate supercurrents generated by the two
types of a domain wall. We show the current profile and the
net current associated with the free domain wall as well as the
pinned domain wall in Fig. 10.

In the pinned domain wall, the amplitude of the dx2−y2 order
parameter goes to zero, whereas it remains constant in the ab-
sence of pinning, where a phase domain wall is energetically
more stable. As a result, the supercurrent profiles as a function
of the position differ significantly for the two domain-wall
configurations. Supercurrents are highly localized and decay
quickly into the bulk near the pinned domain wall, similar
to the step-edge configuration. In the absence of pinning,
currents are still maximal at the domain wall but spread out

significantly more into the bulk. These differences are related
to the contrasting order parameter profiles for the two types of
domain walls shown in Figs. 5 and 6; the phase domain wall
is clearly much broader than the amplitude domain wall.

Since the domain wall contains twice the number of pro-
tected chiral modes as compared with an edge, we expect the
supercurrents to be larger than those generated by the step-
edge configuration. This is indeed the case, as the net current
associated with the pinned domain wall is at least twice that
of the step-edge configuration, reaching peak values between
20 and 40 nA for interlayer couplings ranging from g = 10
to 20 meV. The supercurrents reduce to zero as the interlayer
coupling value decreases to zero, which is what we expect
in the case of a d + id ′ state in a bilayer. We also find that the
supercurrents of the phase domain wall are slightly larger than
those at the amplitude domain wall.

Overall, the net supercurrents in pinned and free domain
walls increase as the temperature decreases. However, below
0.05Tc, the supercurrents in the pinned domain wall exhibit a
dip in magnitude. As for the free domain wall, we observe that
the domain-wall thickness increases with temperature, leading
to finite-size effects in our model at higher temperatures. Nev-
ertheless, our system sizes can accurately represent domain
walls present in a d + id ′ superconductor at low temperatures
(below 0.1Tc) relevant to experimental observations discussed
below.

IV. ESTIMATION OF MAGNETIC FIELDS GENERATED
BY EDGE CURRENTS

The edge currents produced in a time-reversal breaking
chiral superconductor will necessarily produce a magnetic
field that can, in principle, be detected by state-of-the-art mag-
netic probes [37–39]. A possible way to detect the magnetic
fields due to the edge currents is by using a scanning supercon-
ducting quantum interference device (SQUID) microscope. A
DC SQUID consists of a superconducting loop, interrupted
by two Josephson junctions. The critical current and voltage
drop across the device are periodic in the external magnetic
flux. The sensitivity and versatility of scanning SQUID have
been instrumental in noninvasive measurements of a broad
range of electronic orders such as those in unconventional
superconductivity [40,41], exotic magnetism [42], topological
states [43], and more [44].

As demonstrated in the previous section, currents gener-
ated by the step edge or pinned domain wall decay over
tens of lattice sites, which corresponds to a length scale of
several nm. A typical magnetic field sensor is located at a
height h > 20 nm above the sample. In this geometry, the
edge current can be treated as a line current concentrated at
the edge for all practical purposes [39]. We thus model the
edge as a long thin wire along x carrying the net current Inet,
located at (y, z) = (0, 0). The magnetic field generated by this
line current at height h above the sample can be deduced from
Ampére’s law and is given by

B = μ0Inet

2πr
θ̂ = μ0Inet

2πr

(
y

r
ẑ − h

r
ŷ

)
, (13)

where y denotes the lateral position of the sensor and r =
(y2 + h2)1/2 is the radial distance from the wire. Currents
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FIG. 11. Estimation of magnetic fields due to edge currents.
(a) Perpendicular magnetic field (Bz) generated due to edge currents
as a function of y at a vertical height of h = 30 nm for the step edge,
free domain wall (domain1) and pinned domain wall (domain2).
Here, the net edge currents are modeled as a line current flow-
ing along x located at (y, z) = (0, 0). (b) Maximum perpendicular
magnetic field (Bmax

z ) due to the net currents in the step-edge config-
uration as a function of temperature for g = 4–20 meV at h = 30 nm.
(c) Comparison of Bmax

z (T/Tc < 0.01) at the step edge, free domain
wall (domain1) and pinned domain wall (domain2) as a function of g
at h = 30 nm. (d) Bmax

z for the pinned domain-wall configuration as
a function of height for g = 4–20 meV.

associated with the phase domain wall are spread out over
a wider length scale so the above thin-wire approximation
becomes less accurate. Nevertheless, it should still provide a
reasonable estimate for the magnetic field strength.

The flux picked up by the SQUID loop arises from the z
component of the magnetic field in Eq. (13). The minimal
sensor-sample distance depends on the SQUID design, which
typically balances spatial resolution and magnetic field sensi-
tivity [39,44]. For planar SQUID, this distance is 100–500 nm
[45,46], while for SQUID-on-tip and nano-SQUID, it is 20–
100 nm [43,47].

We calculate the magnetic fields generated from the step
edge and the domain wall edge of the d + id ′ bilayer. In
Fig. 11, we present the magnetic field profiles for the step
edge, free domain wall, and the pinned domain wall at a
height of 30 nm from the sample, as a function of y. We also
plot the peak magnetic field generated at the step edge as a
function of temperature and confirm that the peak magnetic
field shows similar features as the supercurrent plot in Fig. 9.
Additionally, we plot the peak magnetic field for the step edge
and domain-wall edges as a function of interlayer coupling.

Our estimates indicate that a magnetic sensor positioned
at a height of 30 nm from the sample would detect magnetic
fields of 20–100 nT at the step edge, 50–250 nT at the pinned
domain wall, and 80–400 nT at the free domain wall, for
realistic interlayer coupling values between 10 and 20 meV.
These values are slightly above the detection threshold of
current state-of-the-art nano-SQUIDs [43].

We also show in Fig. 11 the variation of the peak magnetic
field with the vertical height of the sample for a representa-
tive edge (pinned domain wall). The order of magnitude of
the magnetic field remains around 102 nT below a height of
100 nm which is at the detection threshold of nano-SQUIDs.
The magnetic field decreases to ≈10 nT for realistic values of
interlayer coupling going from 100 to 500 nm height where
planar SQUIDs typically operate.

V. DISCUSSION AND SUMMARY

The twisted bilayer cuprate system breaks time-reversal
symmetry due to the formation of d + id ′ superconducting
order parameter. Our work analyzes the edge currents that
arise in such a chiral superconductor and can be probed ex-
perimentally as a signature of the chiral phase.

We study this system using an aligned-lattice model where
the d-wave superconducting pairing occurs on the nearest-
neighbor bonds in one layer and on the next-nearest-neighbor
bonds in the second layer, mimicking the dx2−y2 and the dxy

order parameters, respectively, while avoiding the complica-
tions arising from a large moiré unit cell. Working with the
long strip geometry periodic along the x direction and with
a finite width along the y direction, we study three different
edge configurations and calculate the supercurrents flowing in
each of these geometries. We also relate the edge currents to
the spectral function in a generic chiral superconductor and
provide an intuitive picture for their difference in magnitudes
in the p + ip′ and a d + id ′ case. We then use realistic pa-
rameters to model the supercurrents at the edge of the twisted
cuprate bilayers using a fully self-consistent Bogoliubov–de
Gennes theory.

The aligned-edge configuration corresponds to the sce-
nario where the edges of the two layers are perfectly aligned.
In accord with previous work [30–33] we find that a sig-
nificant extended s-wave order parameter develops at the
pair-breaking edge of the dxy monolayer resulting in the nu-
cleation of a time-reversal breaking dxy + is order parameter
locally at the edge. We further find that the main contribu-
tion to the current for this edge configuration arises from
this d + is order parameter, which is in itself interesting but
unrelated to the bulk d + id ′ phase of interest here. To study
the edge currents and resultant magnetic fields arising solely
due to the bulk d + id ′ order we therefore focus on two other
types of linear defects, the step edge and the domain wall,
chosen such that no significant s component is nucleated.

The step-edge configuration features a sharp boundary in
the dx2−y2 order parameter but avoids the pair-breaking edge in
the dxy monolayer. The supercurrents at these step edges arise
solely due to the bulk d + id ′ order parameter. For realistic
parameters relevant to twisted bilayer cuprates, we estimate
the supercurrents from this configuration to be 10–30 nA.
Near domain walls we observe supercurrents that are at least
twice the magnitude of those present at the step edges, with
some notable differences in the local current-density profiles
between free and pinned domain walls.

Based on these results we provide estimates of the mag-
netic fields generated by the supercurrents at the edges. At
the height of 30 nm above the sample, characteristic of
the nanoSQUID experiment, we estimate 40–400 nT peak
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magnetic fields generated by a step edge, free domain-
wall, or pinned domain-wall configuration in the d + id ′
superconducting phase. This places the edge currents in
twisted Bi2Sr2CaCu2O8+x bilayers within the realm of what
is currently observable using the state of the art scanning
magnetometry. The principal source of uncertainty entering
the field strength estimate is the magnitude of the interlayer
tunneling amplitude g on which the edge current depends
strongly. The range of values quoted above corresponds to
the range of g = 10–20 meV spanning its most likely value
consistent with transport measurements [14,34]. By contrast,
the edge current shows only weak dependence on other system
features, such as the detailed shape of the Fermi surface and
the size of the gap. The parameters underlying these features
are also much better known for Bi2Sr2CaCu2O8+x and other
cuprates.

In closing, we wish to remark on the general significance
of these findings. As of this writing twisted cuprate bilayers
constitute the most plausible candidate for a topological su-
perconductor in two dimensions and the sole known candidate
for a high-temperature topological superconductor. Reference
[14] provided strong evidence for spontaneous T breaking
in high-quality Bi-2212 junctions near 45◦ twist which is a
basic prerequisite for the chiral d + id ′ phase. However, to
directly probe topology it is necessary to detect the protected
chiral edge modes which is a more delicate task. Edge modes
in a topological superconductor carry quantized heat current
but this is exceedingly difficult to measure. The associated
persistent electrical current is not quantized but may be more
easily observed because it generates magnetic field. We find
its magnitude to be tens to hundreds of nT which is above the
detection threshold of modern magnetometry techniques. As
we emphasized, the amplitude of the current is nonuniversal
and exhibits fairly significant dependence on the edge con-
figuration; the above estimates pertain to the simplest types
of edges that we expect to occur in physical systems. An
important caveat will be to stay away from pair-breaking
edges which tend to produce even larger edge currents through
a physically distinct mechanism that applies already in the
monolayer limit. Such currents are independently interesting
but are unrelated to the chiral d + id ′ phase that is only ex-
pected to occur in twisted bilayers.

Detection of the edge currents in twisted cuprate bilay-
ers thus poses a significant experimental challenge but it
is a challenge well worth pursuing. The high-temperature
topological phase predicted to occur near the 45◦ twist has
been extensively discussed in the literature as a basis for a
number of novel phenomena and applications. These include
charge-4e superconductivity [48], higher-order topology [49],
fractional and coreless vortices [29] and Majorana fermions
[50,51]. In addition, the idea of assembling superconducting
monolayers with a twist has numerous interesting applications
outside the realm of high-Tc cuprates; these include twisted
iron-based bilayers [52], non-Abelian topology in twisted
spin-singlet valley-triplet superconductors [53], and related
innovative proposals [54,55], as well as a proposed applica-
tion to improve the performance of transmon qubits [56,57]
which power the large majority of superconducting quantum
processors currently in operation.
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APPENDIX: EDGE CURRENT
FROM SPECTRAL FUNCTION

In this Appendix we give details pertaining to the deriva-
tion of Eq. (11). We begin by rewriting Eq. (10) for the bond
current operator as

ji j = − it (c†
i↑c j↑ + ci↓c†

j↓) + H.c.

= − itTr(ψ jψ
†
i ) + H.c., (A1)

where we defined a Nambu spinor ψ j = (c j↑, c†
j↓)T . To avoid

clutter we focus here on the current in a single layer and take
e = h̄ = 1. Regarding ψ j as a field operator in imaginary time
we can further express the current expectation value as

〈 ji j〉 = − it lim
τ→0+

Tr〈ψ j (τ )ψ†
i (0)〉 + c.c.

= − itTr G ji(τ = 0+) + c.c., (A2)

where G ji(τ ) = 〈Tτψ j (τ )ψ†
i (0)〉 denotes the imaginary time

Gorkov Green’s function.
For a long strip geometry it is convenient to switch to a

notation there r = (x j, y j ) denotes the position of site j. The
current along an x-bond a distance y from the edge can then
be expressed as

Jx̂(y) = −it
1

Nx

∑
x

Tr Gr+x̂,r(0
+) + c.c. (A3)

Exploiting translation invariance along x we introduce mixed
Fourier representation Gr+x̂,r(τ ) = N−1

x

∑
k eikGk (y, τ ) and

obtain for the current

Jx̂(y) = 2t
1

Nx

∑
k

sin k Tr Gk (y, 0+). (A4)

As the final step we pass to the Matsubara frequency
Gk (y, τ ) = β−1 ∑

n e−iωnτGk (y, ωn) and express G in terms of
its spectral representation

Gk (y, ωn) =
∫ ∞

−∞

dω′

2π

Ak (y, ω′)
iωn − ω′ , (A5)

with Ak (y, ω) = −2ImGret
k (y, ω). Here Gret denotes the re-

tarded Green’s function obtained from G by analytic contin-
uation iωn → ω + iδ. Substituting Eq. (A5) into Eq. (A4) and
performing the required Matsubara sum using

1

β

∑
n

e−iωn0+

iωn − ω
= 1

eβω + 1
, (A6)

we obtain Eq. (11) of the main text.
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