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We theoretically study Andreev reflection (AR) -induced conductance at antiferromagnet/antiferromagnet/
superconductor (AF/AF/S) junctions. The AF can become spin-polarized when the parity-time symmetry is
broken. Equal-spin AR occurs due to spin-flip scattering when the Néel vectors of the AFs are noncollinear. We
investigate how the staggered sublattice potential and the electrostatic potential affect the AR-induced conduc-
tance, and we demonstrate that a pure equal-spin AR is achievable. The signature of the equal-spin AR can be
confirmed by studying the conductance spectra. When the left AF is fully spin-polarized, the pairing correlations
involving spin-down quasiparticles decrease rapidly, but the equal-spin triplet pairing correlation (↑↑) becomes
long-range. This results in a conversion from spin-singlet to spin-triplet pairings, providing further evidence
for the existence of equal-spin AR. Specifically, the study focuses on the AR-induced magnetoanisotropic
conductance. The conductance exhibits relatively weak magnetoanisotropy due to the competing contributions
of conventional and equal-spin ARs. In contrast, when only equal-spin AR is present, significant anisotropic
magnetoresistance is observed, which can serve as a distinctive signature of equal-spin AR. The findings suggest
that AF/S junctions are ideal platforms for future superconducting spintronics applications.
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I. INTRODUCTION

Andreev reflection (AR) is a scattering process that oc-
curs at the metal-superconductor (S) interface [1–4]. When
an electron is reflected as a hole at the metal-S contact, it
creates a Cooper pair with a charge of 2e on the S side. At bias
voltages below the superconducting gap, this process converts
a conventional dissipative current into a dissipationless super-
current. In ferromagnet (F)/S junctions with a homogeneous
exchange field, conventional AR occurs when the incident
electron and the Andreev-reflected hole are from different spin
bands. The conventional AR has a strong influence on trans-
port behavior, allowing for the experimental extraction of the
spin polarization of the F [5]. Nevertheless, this conventional
AR is easily destroyed by an exchange field as it involves
both spin-up and spin-down quasiparticles. On the other
hand, equal-spin AR is created through spin-flip scattering, in
which the incident electron and the Andreev-reflected hole are
from the same spin band. Inhomogeneous exchange fields in
real-space [6–10] and/or spin-orbit fields in reciprocal-space
[11–14] at engineered F/S interfaces have been investigated
as potential sources of equal-spin AR. The signature of equal-
spin AR can be identified through the conductance spectra
[6–13]. For example, Linder and Sudbø [6] studied the sig-
nature of the equal-spin AR, or retroreflected holes with the
same spin as the incoming electron, in an F/s-wave S junction.
The conductance spectra of half-metallic F/s-wave S contacts
should show zero-bias conductance vanishing, providing clear
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evidence for the presence of equal-spin AR [7]. Costa and
Fabian [11] investigated anisotropic magnetoresistance effects
and spin-triplet pairs in F/S/F double-barrier junctions. Sig-
nificant anisotropic magnetoresistance was observed at the
interface between a quasi-two-dimensional van der Waals F
and an s-wave S, providing potential experimental evidence
for equal-spin AR [12]. Nevertheless, magnetic multilayers
and the desired noncollinear alignment of their magnetization
directions below the exchange length scales are rare and re-
main difficult to control, which makes controllable equal-spin
AR difficult to generate experimentally.

On the other hand, superconducting spin-singlet pairing
correlations can evolve into spin-triplets via spin mix-
ing and spin-flip scattering processes at the F/S interface
[15–29]. Superconducting spin-triplet pairing correlations
have been predicted theoretically [16–20], and then much
effort has been put into verifying their existence [21–29]. In
contrast to spin-singlet pairings, which are limited by fer-
romagnetic polarization, equal-spin spin-triplet pairings can
generate long-range Josephson coupling in the F that is im-
mune to strong spin polarization, which is necessary for
superconducting spintronics. Consequently, the spin-triplet
pairings have been extensively studied experimentally using
the Josephson current technique. For example, Keizer et al.
[21] demonstrated the long-range Josephson supercurrent in
NbTiN/CrO2/NbTiN lateral Josephson devices. Equal-spin
triplet superconductivity can also be created by introducing
a thin Ni film into the CrO2/S contact [27,29]. Further-
more, Manzano et al. [28] demonstrated a high-temperature
spin-triplet Josephson supercurrent in YBCO/half-metal het-
erostructures. Evidence for long-range spin-triplet pairings in
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these F/S junctions has been revealed through investigations
into the dependence of the superconducting critical temper-
ature on the magnetic state [29–33]. Spectroscopic evidence
of spin-triplet states has been reported through the analysis of
subgap states in the superconducting density of states [34–38].
Therefore, the existence of spin-triplet pairing correlations
serves as another manifestation of equal-spin AR.

The interplay between antiferromagnetism and supercon-
ductivity has yielded fascinating phenomena in antiferromag-
net (AF)/S hybrid structures [39–57]. Theoretical predictions
suggest that AF/S junctions will exhibit unconventional AR
and bound states [48–52]. For example, Jakobsen et al. [44]
displayed a strong signal of perfect crossed AR in the nonlocal
differential conductance of AF/S/AF junctions with hexago-
nal lattices. Yan et al. [45] investigated AR in graphene-based
AF/F/S junctions and discovered that equal-spin AR can arise
due to spin-flip scattering induced by the F. Rashba spin-orbit
coupling in the normal layer at the AF/normal/S junctions
can lead to equal-spin AR via spin-flip scattering [46]. The
dc Josephson current across S/AF/S junctions typically ex-
hibits short-range atomic scale 0-π transitions [51–57]. In
particular, Rashba spin-orbit coupling is predicted to cause
an anomalous supercurrent in AF Josephson junctions [53].
In contrast to previous work [51–57], Jeon et al. [41] discov-
ered a spin-polarized long-range supercurrent in a topological
noncollinear S/AF/S junction. This was achieved through
spin-mixing and spin-rotation from fictitious magnetic fields
generated by a nonzero Berry phase. Although topological
long-range supercurrents have been demonstrated experimen-
tally, a detailed theory behind spin-triplet superconductivity
remains poorly understood. It remains unclear whether long-
range supercurrents may be observed at topologically trivial
AF Josephson junctions with zero Berry curvature. In partic-
ular, equal-spin AR, which is responsible for the conversion
of spin-singlet to spin-triplet pairings at the AF/S interface,
remains underexplored.

Inspired by previous work, we theoretically study the AR-
induced conductance in AF/AF/S junctions with hexagonal
lattices. Simultaneous time reversal and spatial inversion,
known as parity-time (PT) symmetry, is broken in the AF
[39,42,58] when the staggered sublattice potential is intro-
duced. The AF becomes spin splitting in this case [39,58,59].
Spin-flip scattering occurs when the Néel vectors of the AFs
are noncollinear, leading to equal-spin AR. We first analyze
the effect of the staggered sublattice potential and the elec-
trostatic potential on the AR-induced conductance spectra,
and we discover that the conductance spectra can be used to
confirm the equal-spin AR signature. Further evidence for the
existence of equal-spin AR can then be obtained by inves-
tigating the conversion of spin-singlet to spin-triplet pairing
correlations. Pairing correlations with spin-down quasiparti-
cles decrease rapidly when the left AF is fully spin-polarized.
Meanwhile, the long-range equal-spin triplet pairing cor-
relation f↑↑ leads to the conversion from spin-singlet to
spin-triplet pairing in the left AF. The study focuses on
the magnetoanisotropic conductance induced by conventional
and equal-spin ARs. The magnetoanisotropy of the conduc-
tance is relatively weak due to the competing contributions
of conventional and equal-spin ARs. However, significant
anisotropic magnetoresistance is shown when only equal-spin

FIG. 1. The schematic diagram for the AF/AF/S junction with
the Néel vector �n along the z (�n = (sinα, 0, cosα)) direction for the
left (central) AF.

AR is present. It should be noted that while Ref. [46] studied
the impact of Rashba spin-orbit coupling and the interaction
between the staggered sublattice potential and the antifer-
romagnetic field on conductance spectra in AF/normal/S
junctions, it differs significantly from our work and does not
affect novel physics and understanding in our study. Our find-
ings contrast with those of Ref. [46] for several reasons: (i)
The equal-spin AR in Ref. [46] and our present work stems
from distinct spin-flipping scattering mechanisms. We inves-
tigate spin-flipping scattering arising from the noncollinear
Néel vectors between the AFs, whereas Ref. [46] consid-
ers spin-flipping scattering from Rashba spin-orbit coupling.
While Ref. [46] observes a transition from a conductance
peak to conductance peak splitting around E = �0, this phe-
nomenon is not present in our results. (ii) Our main focus is on
the anisotropic AR, which can serve as a distinctive signature
of equal-spin AR, but this is not covered in Ref. [46]. (iii) The
pairing correlations are studied in our work, providing further
evidence for the existence of equal-spin AR. This aspect is not
covered in Ref. [46].

The rest of the paper is organized as follows. Sec-
tion II describes the system Hamiltonian and the low-energy
band structures before establishing the conductance formula
through the AR and quasiparticle transmission coefficients,
as well as spin-singlet and spin-triplet pairing correlations.
Section III focuses on the AR-induced conductance and how
the electrostatic potential and the staggered sublattice affect
it. The effect of the electrostatic potential and the orientation
of the Néel vector of the central AF on the spin-singlet and
spin-triplet pairing correlations in the AFs is then discussed.
Finally, the magnetoanisotropy of the conductance induced by
equal-spin and conventional ARs is addressed. Section IV is a
summary of our key findings.

II. MODEL AND FORMULATION

Figure 1 shows a two-dimensional AF/AF/S junction
formed by sandwiching an AF layer between an AF and S
with hexagonal lattices along the x direction. The AF order in
hexagonal lattices would be naturally realized in transition-
metal oxides [60] or caused by the substrate [39,58,59].
The AF is typically a spin degeneracy protected by the PT
symmetry. If the PT symmetry is broken by introducing
the staggered sublattice potential, the AF can become spin
splitting [39,42,58,59]. The Néel vector of the left AF is
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considered to be along the z axis, whereas that of the central
AF lies within the x-z plane at an angle of α to the z axis.
In the S, the superconductivity is induced by attaching an s-
wave S to the hexagonal lattices [39,42–44]. The tight-binding
Hamiltonian of the junction can be expressed as

H = − t
∑
〈i j〉σ

c+
iσ c jσ +

∑
jσσ ′

ξ j[�σ0 − �AF (�σ · �n)]σσ ′c+
jσ ′c jσ ′

−
∑

jσ

Ujx c
+
jσ c jσ +

∑
jσ

(σ�0c+
jσ c+

j−σ + σ�+
0 c j−σ c jσ ).

(1)

Here, c+
jσ (c jσ ) represents the creation (annihilation) operator

of an electron with spin-σ at site j = ( jx, jy), and σ0 is the unit
matrix. The first term accounts for nearest-neighbor hopping

with a hopping energy t . � corresponds to the staggered
sublattice potential, where ξ j = + (−) indicates the A (B)
site, which can be intrinsic [60] or induced by the substrate
[39,42,58]. � is denoted as �L(c) for the left (central) AF.
The third term describes the collinear antiferromagnetic ex-
change field with strength �AF. In the left AF, the Néel vector
is aligned with the z axis; in the central AF, it is aligned
with the �n = (sinα, 0, cosα). Ujx represents the electrostatic
potential, with Ujx = U for the left AF ( jx � N), Ujx = eVg

(N < jx � N + Nx) for the central AF, and Ujx = μs for the
S ( jx > N + Nx). The last term denotes the superconducting
pairing term with the superconducting gap �0. L = Nx

√
3a/2,

with a as the lattice constant, representing the length of the
central AF. Along the y direction, the translational symmetry
is conserved, allowing the electron momentum ky to serve as a
good quantum number. Consequently, summation over jy sites
in Eq. (1) can be transformed into momentum space,

H = −t
∑
jxkyσ

[
cA+

jxkyσ
cB

jx+1kyσ
e− i

2 kya + cA+
jxkyσ

cB
jx−1kyσ

e− i
2 kya + cA+

jxkyσ
cB

jxkyσ
eikya + c.c.

]

+
∑

jxkyσσ ′
[�σ0 − �AF(�σ · �n)]σσ ′

[
cA+

jxkyσ
cA

jxkyσ ′ − cB+
jxkyσ

cB
jxkyσ ′

]

−
∑
jxkyσ

Ujx

[
cA+

jxkyσ
cA

jxkyσ
+ cB+

jxkyσ
cB

jxkyσ

] +
∑
jxky

�0
[
cA+

jxky↑cA+
jx−ky↓ + cB+

jxky↑cB+
jx−ky↓ + c.c.

]
. (2)

The low-energy band structures can provide clear insights into
the properties of the AR processes, which are responsible
for the subgap conductance. The Hamiltonian in momentum
space can be obtained by performing a Fourier transform on
the Hamiltonian (1). The low-energy Hamiltonian of the AF
is given by [8,42,60]

H = h̄vF (ηkxτx + kyτy) + (� − σ�AF)τz − Ujx . (3)

Here, η = + (−) corresponds to the K (K ′) valley, and τ =
(τx, τy, τz ) is the Pauli matrix denoting the sublattice pseu-
dospin. vF = 3at/2h̄ is the Fermi velocity, and kx and ky are
the wave vectors in the x and y directions. The band structure
for the spin-σ electrons can be described as

E = ±
√

(h̄vF )2
(
k2

x + k2
y

) + (� − σ�AF)2 − Ujx , (4)

where + and − refer to the conduction and valence bands.
When both � and �AF are finite simultaneously, the spin
degeneracy in the AF is removed.

Consider an electron with energy E incident from the AF.
The conductance calculated by the nonequilibrium Green’s
function method is expressed as [8,46,61,62]

G = e2

h
(2TA + TQ), (5)

where TA represents the AR coefficient, and TQ =
1

W

∑
ky

Tr[	Le(Gr	RGa)ee] is the quasiparticle transmission
coefficient. ky = 2πn/W is the transverse momentum,
with W representing the transverse width of the junction
and n being an integer to denote the channels. Gr (a) is
the retarded (advanced) Green’s function of the central

AF, with the linewidth function for the left (right) lead
denoted as 	L (R) (for more details, refer to Appendix A).
In the presence of spin-flip scattering, TA can be written as
TA = ∑

σ (TARσ σ̄ + TARσσ ), where TARσ σ̄ and TARσσ are the
conventional and equal-spin AR coefficients, respectively.
The conventional AR coefficient can be expressed as [8,46,61]

TARσ σ̄ = 1

W

∑
ky

Tr
(
	σ

LeGr
ehσ σ̄ 	σ̄

LhGa
heσ σ̄

)
, (6)

where the electron and hole come from different spin bands,
leading to a spin-singlet pairing with opposite spins. Here σ̄

is opposite to σ with σ =↑,↓. e (h) labels the electron (hole)
component of the Nambu space. 	↑(↓)

Le or 	
↑(↓)
Lh are the spin-up

(spin-down) electron or hole block of the linewidth function
	L, while the equal-spin AR coefficient is written as [8,46,61]

TARσσ = 1

W

∑
ky

Tr
(
	σ

LeGr
ehσσ	σ

LhGa
heσσ

)
, (7)

where the incident electron and Andreev-reflected hole come
from the same spin band, forming a spin-triplet pairing with
parallel spins. Here, we compare the conductance formula
with the one derived from the Blonder-Tinkham-Klapwijk
approach as presented in Ref. [63]. For E < �0, TQ is

zero and we have the relationship 1 − k+
↑1

k+
s1

|bs↑|2 − k+
↓1

k+
s1

|bs↓|2 =
k−
↑1

k+
s1

|as↑|2 + k−
↓1

k+
s1

|as↓|2 [63]. This relation allows us to calculate

the conductance as G = ∑
s 2(

k−
↑1

k+
s1

|as↑|2 + k−
↓1

k+
s1

|as↓|2) = 2TA.
Considering a spin-up electron incident from the left AF, we
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observe the relation TAR↑↑ = k−
↑1

k+
↑1

|a↑↑|2 and TAR↑↓ = k−
↑1

k+
↑1

|a↑↓|2.

However, for E > �0, the equation changes to 1 − k+
↑1

k+
s1

|bs↑|2 −
k+
↓1

k+
s1

|bs↓|2 	= k−
↑1

k+
s1

|as↑|2 + k−
↓1

k+
s1

|as↓|2, indicating that electrons or
holes can tunnel into the S, and TQ becomes finite.

To gain a better insight into conventional and equal-spin
ARs, we study the spin-singlet and spin-triplet pairing cor-
relations in the AF regions. This helps us to understand the
conversion from spin-singlet to spin-triplet pairings. We cal-
culate the retarded Green’s function at site jx in the Nambu
basis,

Gr ( jx, jx, ky, ω) =
(

Gr
ee Gr

eh

Gr
he Gr

hh

)
, (8)

where Gr
ee and Gr

eh correspond to the normal and anoma-
lous components. In this case, we have the pair amplitudes
f = 1

W

∑
ky

Gr
eh( jx, jx, ky). The spin-singlet and mixed spin-

triplet pairing correlations (↑↓ ∓ ↓↑) with spin-projection
Sz = 0 are represented by f0 and f3, respectively, whereas
the spin-polarized triplet pairing correlations (↑↑ and ↓↓)
with spin-projection Sz = 1 are denoted by f↑↓ and f↓↓
(Appendix B) [64–67]. According to Fermi-Dirac statistics,
f0 is even in frequency, while the other pairing correlations
are odd in frequency [65]. Since the pairing correlation fβ
(β = 0, 3,↑↑, and ↓↓) is often a complex number, we will
focus throughout this paper on the amplitude of fβ , which is

defined as | fβ | =
√

fβ f ∗
β [65].

III. RESULTS AND DISCUSSIONS

A. Conventional and equal-spin ARs

We first study the band structures of the left AF described
by Eq. (4), as they can provide clear insights into the AR pro-
cesses. The AF is typically spin degeneracy protected by the
PT symmetry. Introducing the staggered sublattice potential
�L can break this symmetry. In this case, the energy gap in
one spin band decreases, while the energy gap in the opposite
spin band increases. The band of the AF is split into spin-up
and spin-down bands, with a spin-dependent energy gap of
Egσ = 2|λv − σλAF|. |E + U | > Egσ /2 should be satisfied to
generate propagating incident modes in the spin-σ channel.
The spin polarization of the AF increases as U decreases,
reaching 100% spin polarization at low U , when only one
spin band is active. Thus, adjusting �L and U enables the
manipulation of the AF’s spin polarization. Similarly, spin
polarization can be realized in the central AF due to the
interplay of the staggered sublattice potential and the antifer-
romagnetic exchange field. We assume that both the spin-up
and spin-down bands are active in the central AF, enabling
the coexistence of spin-singlet and spin-triplet pairing cor-
relations in this region. Consider an incoming electron with
incident energy E from the left AF. If |E + U | < |�L − �AF|
is satisfied, the incident energy resides in the energy gaps of
the spin-up and spin-down electrons. This means that there
are no propagating incident modes in the left AF, hence the
conductance is zero. Tuning U or �L can lead to |�L −
�AF| < E + U < �L + �AF, in which incident energy only

FIG. 2. GAR vs E at different U with the Néel vectors of the AFs
collinear. The parameters are �L = �AF = 0.1, �c = 0.2, eVg =
0.5, μs = 0.2, and Nx = 10.

crosses the spin-up band, resulting in 100% spin polarization.
In this case, the AR processes involving spin-down quasipar-
ticles are excluded, so the conventional AR is not allowed.
Spin-flip scattering occurs when the Néel vectors of the AFs
are noncollinear. An equal-spin AR appears when an incom-
ing spin-up electron is reflected into a spin-up hole. When
E + U > |�L + �AF| is satisfied, the incident energy crosses
the conduction bands of the spin-up and spin-down quasi-
particles, allowing both conventional and equal-spin ARs to
occur simultaneously. The above discussion suggests that U
and �L play a significant role in the spin polarization of
the left F; consequently, these parameters can be tuned to
control the magnitude of both conventional and equal-spin
ARs.

Figure 2 shows the conventional AR-induced conductance
GAR = 2e2

h (TAR↑↓ + TAR↓↑), which occurs when an incoming
spin-σ electron reflects into the hole with the opposite spin.
We have scaled U , eVg, �L, �c, and �AF in units of t with
t = 1. The superconducting gap �0 is fixed at 0.001. The
band structures of the central AF are spin-polarized due to the
interaction between �c and �AF. In this work, the incident
energy lies in the spin-up and spin-down conduction bands of
the central AF. We assume that the Néel vectors of the AFs
are collinear (α = 0), so that spin-flip scattering is absent and
only conventional AR is possible. For the parameters used
here, the spin-down band exhibits an energy gap, while the
spin-up band is gapless. The incident energy is only in the
spin-up band of the left AF for |E + U | < 0.2. At U = 0.1,
GAR is zero because the conventional AR disappears due to the
lack of spin-down quasiparticles. Subsequently, at U = 0.2,
the incident energy is located at the bottom of the spin-down
conduction band of the left AF. Although an incident spin-
down electron can be reflected into a spin-up hole in the
left AF, the low density of states results in vanishing GAR.
Conversely, at U = 0.3, both spin-up and spin-down quasi-
particles are present, leading to a large GAR.
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(a) (b)

FIG. 3. (a) GAR (solid) and GESAR (dashed); (b) G vs E at different U , with the Néel vectors of the AFs noncollinear (α = π/2). The black,
red, and blue lines correspond to U = 0.1, 0.2, 0.3, respectively. Other parameters are the same as in Fig. 2.

Since our focus is on the equal-spin Andreev reflection,
which occurs when the Néel vectors of the left and cen-
tral AFs are noncollinear, we set α = π/2. In Fig. 3(a),
we plot GAR and the equal-spin AR-induced conductance
GESAR = 2e2

h (TAR↑↑ + TAR↓↓) as functions of E at different
U . In addition to conventional AR, spin-flip scattering also
generates equal-spin AR. Similar to Fig. 2, at U = 0.1 and
0.2, GAR tends to zero because there are no spin-down inci-
dent quasiparticles. For high U , both spin-up and spin-down
quasiparticles are present in the left AF, leading to a large
GAR. Unlike GAR, the spin-up linear band structure ensures
that GESAR is always finite. GESAR shows different behavior
for U = 0.1, 0.2 compared to U = 0.3. For U = 0.3, GESAR

increases with E and peaks at E = �0, comparable to GAR.
However, GESAR dips at E = 0, increases with E , and peaks

at the subgap energy rather than E = �0. Figure 3(b) shows
the conductance spectra at different U . For U = 0.1 and 0.2,
G is determined by GESAR. In these cases, G increases with
E , reaches a peak at some E within the superconducting gap
rather than E = �0, and then begins to decrease. At U = 0.3,
G comes from both GAR and GESAR and is determined by GAR,
in contrast to U = 0.1, 0.2. G increases with E and reaches
its maximum at E = �0. Since the conductance spectra of the
conventional and equal-spin ARs are different, the signature
of the equal-spin AR can be confirmed by studying the con-
ductance spectra.

We study how �L affects GAR and GESAR at U = 0.3 and
α = π/2 in Fig. 4(a). For �L = 0.1, the spin-down band
structures have an energy gap of 0.2, but the spin-up ones have
the linear dispersion relation with no energy gap. In this case,

FIG. 4. (a) GAR (solid) and GESAR (dashed), and (b) G vs E at different �L , with α = π/2. The black, red, and blue lines correspond to
�L = 0.1, 0.2, 0.3, respectively. Other parameters are the same as in Fig. 2.
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FIG. 5. Panels (a) and (b) depict GAR and GESAR as functions of U and �L . Here, we set E/�0 = 0.5 and α = π/2, and other parameters
are the same as in Fig. 2.

both spin-up and spin-down states are present, and thus a high
GAR is observed. When �L = 0.2, the spin-down (spin-up)
quasiparticles have an energy gap of 0.3 (0.1). The incident
energy is positioned at the bottom of the spin-down conduc-
tion band of the left AF. Given the low density of states,
GAR approaches 0, while for �L = 0.3 the spin-down (spin-
up) quasiparticles have an energy gap of 0.4 (0.2). Since the
incident energy resides in the energy gap of spin-down quasi-
particles, conventional AR is forbidden due to the absence
of spin-down states. In contrast to GAR, GESAR remains finite
since the incident energy falls within the spin-up conduction
band. When both spin-up and spin-down states are present,
both GAR and GESAR exhibit similar behaviors. Conversely,
when only spin-up quasiparticles are available, GAR becomes
zero while GESAR shows distinct behavior [as depicted by the
blue lines in Fig. 4(a)]. Figure 4(b) displays the conductance
spectra at different �L. For �L = 0.1, G is determined by
GAR, which increases with E and reaches a peak at E = �0,
while for large �L, G only originates from GESAR, which has
a dip at E = 0, increases with E , and then reaches a peak near
E = �0.

To further understand the influence of U and �L on the
AR-induced conductance, a 2D plot of GAR and GESAR as
functions of U and �L is investigated in Fig. 5. In Fig. 5(a), it
is observed that GAR is always zero in the region of E + U <

�L + �AF. This can be attributed to the absence of spin-down
quasiparticles, given that the incident energy resides within
the energy gap of the spin-down band. For high U or small
�L, the incident energy falls within the conduction bands of
both spin-up and spin-down quasiparticles, hence GAR be-
comes finite. For a fixed �L, GAR increases with U as the
density of states increases. In Fig. 5(b), three distinct trans-
port regions are identified based on the behavior of GESAR.
In the first region where E + U < |�L − �AF|, the incident
energy is in the energy gaps of the spin-up and spin-down
quasiparticles, and thus no AR is allowed, resulting in zero

GESAR and GAR [Figs. 5(a) and 5(b)]. In the second region,
defined by |�L − �AF| < E + U < �L + �AF, the incident
energy is in the conduction band of the spin-up quasiparticles
and the energy gap of the spin-down ones, therefore GESAR is
finite with zero GAR. Finally, in the region where E + U >

|�L + �AF|, the incident energy lies in the conduction bands
of spin-up and spin-down quasiparticles, therefore GESAR is
always finite with nonzero GAR. Thus, by adjusting U and �L,
we can control the amplitudes of GAR and GESAR to obtain
pure equal-spin AR.

B. Spin-singlet and spin-triplet pairing correlations

Next, we explore how spin-singlet and spin-triplet pairing
correlations evolve in the AF regions. The amplitude of the
AR is linked to the proximity-induced pairing correlations, as
described by the anomalous Green’s function. Conventional
AR can create superconducting singlet correlations, while
equal-spin AR induces spin-polarized triplet correlations. As
previously stated, by adjusting �L and U , the spin polarization
of the AF can be modified, leading to a substantial impact on
the amplitude of the AR, so the pairing correlations in the AF
regions are expected to be influenced by both �L and U . We
consider two conditions: (i) |�L − �AF| < E + U < �L +
�AF, and (ii) E + U > �L + �AF. Tuning U or �L to satisfy
the first condition, which involves only the spin-up band and
results in 100% spin polarization, the pairing correlation am-
plitudes, including those of spin-down quasiparticles, rapidly
decay to zero as the position within the left AF deviates from
the AFs’ interface. Spin-flip scattering occurs when the Néel
vectors of the AFs are noncollinear, causing the conversion
from spin-singlet to spin-triplet pairings. f↑↑ is immune to
strong spin polarization and can penetrate deeper into the left
AF region. When the second condition of E + U > |�L +
�AF| is satisfied, spin-up and spin-down conduction bands
become active. This allows the conversion of spin-singlet
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FIG. 6. (a) | f0|, (b) | f3|, (c) | f↑↑|, and (d) | f↓↓| at U = 0.3 (black) and U = 0.1 (red) as a function of jx in the AFs. The dotted line
represents the interface between the left and central AFs. Other parameters are the same as in Fig. 5.

pairings into spin-triplet pairings, allowing them to coexist.
We then investigate how varying U affects the spin-singlet and
spin-triplet pairings. It is worth noting that the effect of �L on
these pairing correlations shows a similar behavior (not shown
here).

Figure 6 demonstrates how the pairing correlations vary
with the position jx in the central AF (50 < jx � 60) and the
left AF ( jx � 50). The central region’s �c and eVg are set to
�c = 0.2 and eVg = 0.5, respectively. This suggests that both
the spin-up and spin-down conduction bands are active in the
central AF. The Néel vectors of the AFs are perpendicular,
and thus the spin-triplet pairing correlations in the AF near the
AF/S interface can be generated by spin-flip scattering. The
absolute value of | fβ | (β = 0, 3,↑↑,↓↓) is always finite and
exhibits spatial oscillations within the central AF. At U = 0.3,
both the spin-up and spin-down conduction bands are active
in the left AF, resulting in a finite and spatially oscillating
| fβ |. This corresponds to the existence of both conventional
and equal-spin ARs, as shown in Figs. 3 and 4. For U = 0.1,
the pairing correlations f0, f3, and f↓↓ decrease rapidly when

jx deviates from the interface between the AFs, which can
be attributed to the absence of the spin-down quasiparticles.
However, the equal-spin triplet pairing correlation f↑↑ ex-
hibits long-range behavior, therefore only equal-spin triplet
pairing is seen when the position in the left AF is far from
the interface between the AFs. This observation is consistent
with Figs. 3 and 4, where only equal-spin AR is observed at
U = 0.1.

Figure 7 shows how α affects the spin-singlet and spin-
triplet pairing correlations in the AFs. In the central AF
where both spin-up and spin-down bands are present, any
pairing correlation can exist. We focus on the conversion
from spin-singlet to spin-triplet pairing correlations, so for the
parameters used here, only the spin-up band is active in the
left AF. Due to the absence of spin-flip scattering, equal-spin
spin-triplet pairing correlations (↑↑ and ↓↓) do not exist in the
AFs when the Néel vectors of the AFs are collinear (α = 0).
The amplitudes of f0 and f3 decrease rapidly as jx moves
away from the interface between the AFs due to the lack of
spin-down quasiparticles in the left AF. Spin-flip scattering
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FIG. 7. (a) | f0|, (b) | f3|, (c) | f↑↑|, and (d) | f↓↓| at α = 0 (black), α = π/4 (red), and α = π/2 (blue) as a function of jx in the AFs. The
dotted line represents the interface between the left and central AFs. We set U = 0.15, and other parameters are the same as in Fig. 5.

happens when the Néel vectors of the AFs are noncollinear
(α 	= 0). Spin-singlet pairing correlations decay rapidly with
jx and can be transformed into spin-triplet pairing correla-
tions. f0, f3, and f↓↓, which involve spin-down quasiparticles,
show similar trends, represented by the red and blue lines
in Fig. 7. Conversely, f↑↑ arises solely from spin-up quasi-
particles, exhibits spatial oscillations, and enables long-range
correlations within the left AF. As α increases, the amplitude
of f↑↑ increases, as shown in Fig. 7(c). The long-range super-
current in the AF/S Josephson junction depends strongly on
f↑↑. Indeed, long-range Josephson currents through a chiral
noncollinear AF in the Josephson junction have been experi-
mentally observed [41].

C. Conventional and equal-spin AR-induced
magnetoanisotropic conductance

While the signature of the presence of equal-spin AR
can be confirmed by studying the conductance spectra and

pairing correlations, the magnetoanisotropic transport prop-
erties provide another clear indicator. As previously stated,
when α = 0, only conventional AR and proximity-generated
spin-singlet pairing correlation f0 and the mixed spin-triplet
correlation f3 are present. When α = π/2, equal-spin AR
and spin-polarized triplet pairing correlations f↑↑ and f↓↓ are
also seen. In this section, we study the magnetoanisotropy
of the conventional and equal-spin AR-induced conductance.
Figure 8(a) shows a 2D plot illustrating the dependence of
GAR on U and α at E = �0/2. When U + E is greater than
�L + �AF, the incident energy crosses both the spin-up and
spin-down bands. The behavior of GAR with respect to α

exhibits a nonmonotonic pattern with a π -periodicity in α.
GAR shows a remarkable magnetoanisotropy with maxima at
α = 0, π and 2π and minima at α = π/2 and 3π/2. Mean-
while, GAR is always zero for U + E < �L + �AF because
of the absence of spin-down quasiparticles in the left AF. The
effect of U and α on GESAR is discussed in Fig. 8(b). Similar
to GAR, when U + E is greater than �L + �AF, GESAR is
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FIG. 8. (a) GAR, (b) GESAR, and (c) G vs U , and α at E/�0 = 0.5 and �L = 0.1. Other parameters are the same as in Fig. 3.

finite and shows a π -periodic dependence on α. A comparison
between Figs. 8(a) and 8(b) reveals that the maxima in GAR

correspond to the minima in GESAR and vice versa. This is
because spin-flip scattering can induce the conversion from
spin-singlet to spin-triplet pairing correlations. Unlike GAR,
GESAR is nonzero even in the completely spin-polarized region
of U + E < �L + �AF. As GESAR has a π -periodic depen-
dence on α, we specifically analyze its behavior within the
range of 0 � α � π . GESAR is zero for α = 0, π due to the
absence of spin-flip scattering. The strength of the spin-flip
scattering increases with α and reaches its maximum at α =
π/2 before decreasing, leading to a nonmonotonic depen-
dence of GESAR on α. Given that actual experiments primarily
investigate the total subgap conductance G = GAR + GESAR,
rather than focusing solely on GAR and GESAR, Fig. 8(c)

illustrates how G varies with U and α. For U + E > �L +
�AF, the magnetoanisotropy of G is quite weak due to
the competing contributions of GAR and GESAR. Conversely,
when U + E is less than �L + �AF, the left AF is fully
spin-polarized, and thus G comes only from GESAR. The
anisotropic equal-spin AR leads to a low (high) conductance
state at α = 0 (α = π/2) [Fig. 8(c)], consequently resulting
in significant anisotropic magnetoresistance. Indeed, Cai et al.
[12] found highly anisotropic magnetoresistances at F/S junc-
tions and emphasized that this magnetoanisotropy provides
experimental support for equal-spin AR and induced spin-
triplet superconductivity at the F/S junction.

Since the AR-induced conductance depends strongly on
�L and α, a 2D plot of GAR at E = �0/2 as a function of
�L and α is shown in Fig. 9(a). For small �L, the condition of
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FIG. 9. (a) GAR, (b) GESAR, and (c) G vs �L , and α at E/�0 = 0.5 and U = 0.15. Other parameters are the same as in Fig. 3.

U + E > �L + �AF is satisfied, thus both spin-up and spin-
down conduction bands are involved, resulting in a finite GAR.
GAR shows remarkable magnetoanisotropy with a π -periodic
dependence on α, with maxima at α = 0, π and 2π and min-
ima at α = π/2 and 3π/2. Conversely, for large �L, GAR

becomes zero due to the absence of spin-down quasiparticles.
In contrast to GAR, GESAR is always finite with a π period of
α [Fig. 9(b)]. In particular, for �L > 0.2, GESAR is observed
without GAR. Figure 9(c) describes G as a function of �L and
α. For �L < 0.2, GAR and GESAR are finite, and the maxima in
GAR correspond to the minima in GESAR and vice versa. The
competition between GAR and GESAR tends to diminish the
magnetoanisotropy of G. Conversely, for large �L, G comes
only from GESAR and shows significant magnetoanisotropy.
As a result, equal-spin AR can generate significant anisotropic

magnetoresistance at the AF/S interface, providing a signa-
ture for the existence of equal-spin AR and spin-triplet pairing
in AF/S junctions.

IV. SUMMARY

In summary, we study the AR-induced conductance in
AF/AF/S junctions using the nonequilibrium Green’s func-
tion method. The AF becomes spin-polarized when the PT
symmetry is broken. The spin polarization can be controlled
by �L and U . Equal-spin AR arises from spin flip scattering
when the Néel vectors of the AFs are not collinear. If G is
determined by GAR, it increases with E and peaks at E = �0.
Conversely, if G comes only from GESAR, it peaks at E in
the superconducting gap, increases with E , and dips at E = 0.
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Pure equal-spin AR can be obtained by varying U and �L. The
different behavior of the conductance spectra for conventional
and equal-spin ARs allows the identification of the signature
of equal-spin AR. We further investigate how spin-singlet
and spin-triplet pairing correlations are formed in the AFs.
In a fully spin-polarized left AF, the pairing correlations f0,
f3, and f↓↓ decrease rapidly, while f↑↑ shows a long-range
behavior, so that only equal-spin triplet pairing is seen when
the position is deeper in the left AF. Here, we focus on the
static limit with zero bias, and our results are consistent with
those in Ref. [64], where the inhomogeneous nature of the
magnet enables all odd triplet pairing components to be in-
duced in conical-F/S bilayers. When an external bias between
the left AF and S is applied, the dynamic part should be
added constructively to the static part of the triplet amplitudes
[63]. Similar to Ref. [63], long-range spin-triplet correlations
may emerge in the AFs under dynamic conditions, which will
be investigated in our future work. The magnetoanisotropy
of G is quite weak when GAR and GESAR coexist due to
their competing contributions. Conversely, in the presence
of anisotropic equal-spin AR alone, significant anisotropic
magnetoresistance is observed, suggesting the existence of
equal-spin AR and spin-triplet pairing in AF/S junctions.

APPENDIX A: CALCULATION OF THE RETARDED
GREEN’S FUNCTION

To study the conventional and equal-spin AR-induced
conductance in AF/AF/S junctions, we first introduce
the generalized Nambu representation as follows: ψ+

jxky
=

(cA+
jxky↑ cB+

jxky↑ cA+
jxky↓ cB+

jxky↓ cA
jx−ky↓ cB

jx−ky↓ cA
jx−ky↑ cB

jx−ky↑).
The Hamiltonian (2) can be rewritten as

H=
∑
jxky

(
ψ+

jxky
H00ψ jxky + ψ+

jxky
H01ψ jx+1ky + ψ+

jx+1ky
H10ψ jxky

)
,

(A1)

where for the AFs we introduce the terms

He =

⎛
⎜⎜⎜⎜⎜⎝

x − Ujx −teikya −�AF sin α 0

−te−ikya −x − Ujx 0 �AF sin α

−�AF sin α 0 y − Ujx −teikya

0 �AF sin α −te−ikya −y − Ujx

⎞
⎟⎟⎟⎟⎟⎠,

(A2)

Hh =

⎛
⎜⎜⎜⎜⎜⎝

−y + Ujx teikya �AF sin α 0

te−ikya y + Ujx 0 −�AF sin α

�AF sin α 0 −x + Ujx teikya

0 −�AF sin α te−ikya x + Ujx

⎞
⎟⎟⎟⎟⎟⎠.

(A3)

By using H00 and H01, H00 can be defined as

H00 =
(

He 0
0 Hh

)
. (A4)

H01 can be expressed as

H01 = te− i
2 kya

(−σ0 ⊗ σx 0
0 σ0 ⊗ σx

)
(A5)

with H10 = H+
01. We define x = � − �AF cos α and y = � +

�AF cos α. � in the left (central) AF is set as �L(c). Ujx repre-
sents the electrostatic potential, with Ujx = U (eVg) for the left
(central) AF. α is set to zero for the left AF. In Eqs. (A4) and
(A5), 0 is a 4 × 4 zero matrix. For the S, we assume x = y = 0
and Ujx = μs in Eqs. (A2) and (A3), and V = �0σz ⊗ σ0 and
H00 is

H00 =
(

He V
V Hh

)
. (A6)

The retarded Green’s function of the central AF is deter-
mined by

Gr =
[

(E + iη)I − Hc −
r∑
L

−
r∑
R

]−1

. (A7)

Here, Gr is an 8Nx × 8Nx matrix, and Hc is the Hamiltonian
of the central AF with a unit matrix I , as determined from
Eq. (A1).

∑r
L(R) represents the self-energy due to the coupling

between the central AF and the AF (S) lead. As an example,
considering a short central AF with Nx = 4, the retarded func-
tion and the self-energies would be 32 × 32 matrices.

∑r
L and∑r

R can be expressed as

r∑
L

=

⎛
⎜⎜⎝

∑r
L0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (A8)

r∑
R

=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

∑r
R0

⎞
⎟⎟⎠. (A9)

In Eqs. (A8) and (A9), 0 is an 8 × 8 zero matrix.
∑r

L(R)0 is
defined as

∑r
L(R)0 = HcL(R)gr

L(R)HL(R)c, where HcL(R)(HL(R)c)
represents the coupling matrix between the left (right) lead
and the central AF. The surface retarded Green’s functions of
the left and right leads, denoted as gr

L and gr
R, can be calcu-

lated numerically [68,69]. The linewidth function for the left
(right) lead is given by 	L(R) = i(

∑r
L(R) −

∑+
L(R) ). By using

the relation Ga = Gr+, we can obtain the advanced Green
function Ga. Once we have obtained the retarded (advanced)
Green’s function of the central AF and the linewidth function,
we can use Eqs. (5)–(7) to calculate the conductance G and the
conventional and equal-spin AR coefficients TARσ σ̄ and TARσσ ,
respectively.

APPENDIX B: SPIN-SINGLET AND SPIN-TRIPLET
PAIRING CORRELATIONS

To analyze spin-singlet and spin-triplet pairings, super-
conducting pairing correlations can be determined using
anomalous electron-hole Green’s function components. We
define the retarded Green’s function in the Nambu basis as
follows:

Gr = [(ω + iη)I − H]−1. (B1)

ω denotes the frequency, and the Hamiltonian H can be
determined from Eq. (2). We assume that the size of the
device is finite along the x direction. The component
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Gr
eh, defined in Eq. (8) in the main text, can be obtained

from Eq. (B1). This component is used to calculate the
pairing correlations at site jx. In the Nambu basis, the
spin-singlet pairing correlation f0 and the spin-triplet
pairing correlation with Sz = 0 f3 are given by f0 =
1

W

∑
ky

[(Gr
eh)11 + (Gr

eh)22 − (Gr
eh)33 − (Gr

eh)44] and f3 =
1

W

∑
ky

[(Gr
eh)11 + (Gr

eh)22 + (Gr
eh)33 + (Gr

eh)44], respectively.

f↑↑ and f↓↓ are given by f↑↑ = 1
W

∑
ky

[(Gr
eh)13 + (Gr

eh)24]

and f↓↓ = 1
W

∑
ky

[(Gr
eh)31 + (Gr

eh)42]. We focus specifically
on intrasublattice pairing correlations, without considering
intersublattice pairing correlations [70]. It is important to
note that when dealing with negative frequency (ω < 0),
the advanced Green’s function should be used instead of
the retarded Green’s function. According to Fermi-Dirac
statistics, f0 is an even function of the frequency, while the
other pairing correlations are odd functions of the frequency.
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