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Nonlocality of local Andreev conductances as a probe for topological Majorana wires
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We propose a protocol based only on local conductance measurements for distinguishing trivial from topo-
logical phases in realistic three-terminal superconducting nanowires coupled to normal leads, capable of hosting
Majorana zero modes (MZMs). By using Green’s functions and the scattering matrix approach, we calculate
the conductance matrix and the local density of states (LDOS) as functions of the asymmetry in the couplings
to the left (�L) and right (�R) leads. In the trivial phase, we find that the zero-bias local conductances are
distinctively affected by variations in �R (for fixed �L): while GLL is mostly constant, GRR decays exponentially
as �R is decreased. In the topological phase, surprisingly, GLL and GRR are both suppressed with GLL ∼ GRR.
This nonlocal suppression of GLL with �R scales with the MZM hybridization energy εm and arises from
the emergence of a dip in the LDOS near zero energy at the left end of the wire, which affects the local
Andreev reflection. We further exploit this nonlocality of the local Andreev processes and the gate-controlled
suppression of the LDOS by proposing a Majorana-based transistor. Our results hold for zero and low electron
temperatures T < 20 mK. For T = 30, 40 mK, GLL and GRR become less correlated. As an additional nonlocal
fingerprint of the topological phase at higher T ′s, we predict modulations in our asymmetric conductance
deviation δGasym

LL = G�R=�L
LL − G�R��L

LL that remains commensurate with the Majorana oscillations in εm over
the range 30 < T < 150 mK.

DOI: 10.1103/PhysRevB.110.014504

I. INTRODUCTION

Semiconducting nanowires with proximity-induced super-
conductivity, in principle capable of hosting Majorana zero
modes (MZMs) [1], have become paradigmatic systems to in-
vestigate topological matter. Following theoretical predictions
[2,3], some of the early experiments [4–6] relied on observing
zero-bias (local) conductance peaks as primary signatures of
MZMs. However, it was soon realized that these zero-bias
peaks (ZBPs) could also arise from other mechanisms, e.g.,
the Kondo effect, disorder, and Andreev bound states [7,8].
Despite recent advances in materials and device optimization,
there is still no clear-cut experimental evidence of MZMs in
these systems.

A step towards changing the above scenario was taken by
Microsoft Quantum, which proposed [9] and implemented
[10] a protocol to identify topological phases in hybrid
semiconductor-superconductor three-terminal devices. This
protocol relies on the observation of coexisting ZBPs in the
local conductance on the left GLL and right GRR ends of the
nanowire and a closing and reopening of the bulk transport
gap as probed via the nonlocal conductance GLR [11]. Interest-
ingly, Refs. [12,13] show that trivial mechanisms can mimic
similar features of the topological gap protocol.

In this paper, we consider state-of-the-art three-terminal
semiconductor-superconductor wires, Fig. 1, similar to those
in Refs. [9–12,14]. Unlike previous studies [9–11], however,
here we propose only the zero-bias local conductances GLL

and GRR as sufficient probes to tell apart trivial and topological
phases (bulk criterion) [15]. Our proposal exploits a pecu-
liar nonlocality of dominant local Andreev reflection (LAR)
processes in the topological phase; comparatively, direct

tunneling and crossed Andreev reflection (CAR) are less rele-
vant in the parameter range investigated, see Appendix A for
details [e.g., Fig. 6(b) below]. These retroreflections involve
an incoming electron and an outgoing hole with either op-
posite (usual LAR) or same (spin-selective LAR [16]) spins,
Fig. 2(a). We use the scattering matrix and Green’s function
approaches to obtain the conductance matrix and the LDOS
for generic asymmetric couplings �L and �R, tunable via the
barriers UL and UR, respectively, Fig. 1(a).

Next, we discuss our main results for pristine and
disordered/nonuniform nanowires at T = 0, as well as at
finite temperatures.

A. Pristine nanowires

For single-subband nanowires with no disorder or nonuni-
formities, interestingly, as we increase the ratio UR/UL we
find that (i) GLL ∼ GRR decreases in the topological phase
[solid-blue lines in Figs. 1(b) and 1(c)] while (ii) in the trivial
phase GLL is constant and GRR is exponentially suppressed
[dashed-blue lines in Figs. 1(b) and 1(c)].

The nonlocal behavior of GLL [17] in the topological
regime arises from the suppression of LAR processes at the
left end of the wire, Fig. 2(a). This follows from the LDOS
developing a zero-energy nonlocal dip at this same left end
as the right barrier UR is raised, Fig. 3(a) [note the corre-
sponding suppression in GLL, inset Fig. 3(b)]. This potential
height increase also suppresses GRR, even though the LDOS
at the right side is enhanced. Here the spin-selective LAR
[16], whose reflection probability is Aα

σσ (α = L, R), is the
dominant process, Fig. 2(b). In fact, in the pristine case, all
LAR probabilities Aα

σσ ′ are mediated by (quasi-) zero-energy
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FIG. 1. (a) Semiconductor-superconductor Rashba nanowire
coupled to left (L) and right (R) normal leads via gates UL and
UR. The chemical potentials μS (x) and μN refer to the supercon-
ducting and normal parts of the nanowire, respectively. Zero-bias
conductances (b) GLL and (c) GRR as functions of UR/UL . Solid
(dashed) lines denote topological (trivial) phases for T = 0. Sym-
bols illustrate electron temperatures T = 10, 20, 30, 40 mK for
topological (•, ◦,�,�) and trivial (�,�: only 10, 20 mK shown)
phases. We consider pristine μS (x) = μ], quasi-Majorana [nonuni-
form μS (x)] and disordered nanowires. In the topological regime
and T � 20 mK, GLL ∼ GRR, and are similarly suppressed as UR/UL

increases, while for T = 30, 40 mK they become less correlated.
In the trivial regime, GLL remains essentially constant, while GRR

is exponentially suppressed. The contrasting behavior of GLL and
GRR in the topological and trivial phases should enable the distinction
between these phases. Parameters used [meV]: t = h̄2/2m∗a2 = 102,
μ = 1, μN = 0.2, � = 0.5, α = αR/2a = 3.5, with a = 5 nm [12],
and UL = 5. Lengths [µm]: LS = 2, LN = 0.1, and LB = 0.02.

modes with AL = AR, where Aα = ∑
σ,σ ′ Aα

σσ ′ . In the trivial
regime, on the other hand, the usual LAR Aα

σ σ̄ with opposite
spins σ , σ̄ is the only significant contribution [20]. In this case,
AL

σ σ̄ remains constant while AR
σ σ̄ exponentially decreases as

UR increases (UL is kept constant).
As a way of exploiting this nonlocality of the LAR pro-

cesses and the gate-tunable suppression of the LDOS around
zero energy, we propose a Majorana-based transistor, con-
sisting of a quantum dot (QD) connected to leads 1 and 2,
and side-coupled to our nanowire, Fig. 4(a). A third lead R
coupled to the wire controls the current through the QD. As
the coupling �R (controlled by UR) increases, the Majorana
mode in the nanowire leaks into the dot and a zero-bias peak
emerges in the LDOS, Figs. 4(b) and 4(c), thus enabling a
current flow.

B. Disordered/nonuniform nanowires

We also investigate the effects of disorder and nonuniform
chemical potential profiles (“quasi-Majoranas”), Fig. 1. Quite
surprisingly, even in these regimes GLL and GRR behave like

the pristine case as a function of UR/UL, see Figs. 1(b) and
1(c). Moreover, we have verified that the conductances shown
in Figs. 1 and 2 are stable against variations of, e.g., the
applied magnetic field B [see Figs. 2(b) and 2(c)], the wire
carrier density, the barrier transparency, and the wire length
(not shown). Hence, we contend that by (independently) mea-
suring only GLL and GRR versus UR/UL, one can distinguish
the trivial (GLL �= GRR) and topological (GLL ∼ GRR) phases.
In passing, we note that for true MZMs (i.e., with exactly
zero energy) GLL = GRR displays a plateau at 2e2/h as a
function of UR/UL. All our results are symmetric with respect
to exchanging UR by UL and vice versa.

C. Temperature effects

The above results for GLL and GRR hold at T = 0 and elec-
tron temperatures T < 20 mK, Figs. 1(b), 1(c) (•, ◦,�,�),
and 5(a) below. Even though these temperatures are smaller
than the experimentally reported values in similar setups
[10,21,22], electron temperatures ∼10 mK have been mea-
sured in related transport experiments [23]. For T = 30,
40 mK, GLL and GRR become increasingly less correlated
in the topological phase, see (�,�) in Figs. 1(b) and 1(c).
On the other hand, the asymmetric conductance deviation
δGasym

LL = GUR=UL
LL − GUR�UL

LL can still be used as a nonlo-
cal probe at much higher and currently available electron
temperatures. Remarkably, for 30 < T < 150 mK, δGasym

LL
exhibits sizable modulations that are commensurate with
Majorana oscillations (in the hybridization energy εm) as
the magnetic field is varied, Fig. 5(b). These modulations
in δGasym

LL provide yet another signature of the topological
phase.

II. MODEL HAMILTONIAN

In the Nambu basis �(x) = {ψ↑(x), ψ↓(x), ψ†
↓(x),

−ψ
†
↑(x)}T , with ψσ (x) the electron field operator for spin σ

at position x, the nanowire is modeled by [2,3]

HNW = 1

2

∑
σ

∫
dx�†(x)

[(
h̄2∂2

x

2m∗ − iαR∂xσy − μS (x)

)
τz

+ Vzσx + �τx

]
�(x), (1)

where m∗ is the effective mass of the electron, αR the Rashba
spin-orbit coefficient, μS the chemical potential, Vz the Zee-
man energy, � the proximity-induced superconducting gap,
and σi and τi the Pauli matrices acting on the spin and particle-
hole spaces, respectively.

Our nanowire also contains two outer barriers (LB, μB)
followed by normal regions (LN , μN ), with μB = μN − UL,R,
and � = Vz = 0. The central region, described by Hamilto-
nian (1), has length LS , Fig. 1(a). The system is coupled to
L and R metallic leads at chemical potentials μL and μR, re-
spectively, with respect to the grounded SC. We consider three
different scenarios: (i) μS (x) = μ, uniform (“pristine wire”),
(ii) μS (x) = μN + (μ − μN ) tanh[(x − Ls)/λ], a “confining
potential” on the left side of the wire such that λ = 0.3 µm
controls the smoothness of the transition μN → μ. Near-zero
energy states called quasi-Majoranas emerge in the trivial
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phase, according to the bulk criterion Vc =
√

μ2 + �2, con-
fined in the potential region [24,25], (iii) μS (x) = μ − Vdis(x),
Anderson-type on-site disorder potential Vdis(x) with values
randomly taken from the interval [−W,W ]. We use (i) exact
numerical diagonalization to obtain the spectrum and wave
functions of the Bogoliubov de-Gennes Hamiltonian, and (ii)
the package KWANT [26] to calculate the Andreev probabili-
ties Aα

σσ ′ and the conductance coefficients Gαβ .

III. NONLOCALITY OF THE LOCAL CONDUCTANCE

In this section, we investigate in detail several aspects of
the transmission coefficients (LAR processes) and local con-
ductances for the Majorana nanowire depicted in Fig. 1(a).

A. Topological Andreev bound states

In the trivial phase, and in particular for Vz << m∗α2
R/h̄2,

electrons are reflected as holes of opposite spin with proba-
bility Aα

↑↓ [20]. In contrast, the topological phase (Vz > Vc) is
characterized by the emergence of same-spin LAR processes
Aα

↑↑ and Aα
↓↓, in addition to opposite-spin LAR Aα

↑↓ . Here,
we will refer to these modes as topological Andreev bound
states (ABS), because they arise from the hybridization of true
MZMs. The eigenenergies of these quasi-degenerate states are
entirely due to this hybridization [27], as opposed to ordinary
ABSs, whose energies are mostly due to confinement. The
probabilities Aα

↑↑ and Aα
↓↓ are in principle measurable via

polarized leads [16] or spin-selective QDs [30].
In Fig. 2(a), we show AL

σσ ′ for UL = UR as functions of
Vz for opposite-spin LAR (blue curves) and same-spin LAR
(grey curves); a similar plot holds for AR

σσ ′ . The total LAR
probability Aα (Aα = ∑

σσ ′ Aα
σσ ′) is equal on both ends of the

pristine wire, AL = AR. To see that the dominant same-spin
LAR processes are directly related to topological ABSs (i.e.,
energy-split MZM), let us consider the strictly E = 0 case
(true Majoranas). For simplicity, we consider the L lead and
the SC as forming an NS junction, whose LAR matrix in ze-
roth order in the Rashba coupling (2m∗α2

R/h̄2 <<
√

V 2
z − �2)

and for Vz > Vc is [16]

rhe(Vz ) =
(

rhe
↑↑ rhe

↑↓
rhe
↓↑ rhe

↓↓

)
=

⎛
⎜⎝

Vz−
√

V 2
z −�2

2Vz
− �

2Vz

− �
2Vz

Vz+
√

V 2
z −�2

2Vz

⎞
⎟⎠.

(2)

Within this approximation, AL
↓↓ ≈ |rhe

↓↓|2 ≈ 1 − �2/2V 2
z ,

AL
↑↑ ≈ |rhe

↑↑|2 ≈ �4/16V 4
z , AL

↑↓ = AL
↓↑ ≈ |rhe

↑↓|2 ≈ �2/4V 2
z ,

and AL ≈ 1 (up to O(�/Vz )2), which qualitatively describe
the behavior shown in Fig. 2(a). Note that AL

↓↓ oscillates
as Vz increases, exhibiting a dip at Vz ≈ 1.5Vc; at this
point, direct tunneling and CAR processes are favored
[29], see Appendix B. This oscillating behavior follows
from the lowest topological ABS pair crossing at E = 0
as Vz varies (Majorana oscillations) [31–33]. In an
NSN junction, AR

↑↑ ≈ 1 − �2/2V 2
z , AR

↓↓ ≈ �4/16V 4
z ,

AR
↑↓ = AR

↓↑ ≈ �2/4V 2
z , such that AR ≈ 1. Note that as Vz

increases, the dominant component is AR
↑↑. Here the MZM

on the right side of the wire couples more strongly to the
spin-up component of the incident electron, as opposed to

FIG. 2. Local Andreev reflection probabilities AL
σσ ′ and local

conductances GLL and GRR in the pristine wire. (a) AL
σσ ′ as a function

of the Zeeman field. The topological phase is followed by the rapid
increase of AL

↑↑ and AL
↓↓ in grey. (b) AL

σσ ′ as a function of UR/UL in
the topological phase, Vz = 1.15Vc. We observe a suppression of the
LAR components as UR/UL increases. (c) GLL and (d) GRR as func-
tions of UR/UL . For Vz > Vc (orange, cyan, and purple curves), GLL =
GRR is suppressed as UR increases. For Vz < Vc (green and black) and
for fine-tuned ABSs in a nontopological (NT) wire (magenta), i.e.,
α = Vz = 0 in the superconducting region of the wire, GLL remains
constant while GRR is exponentially suppressed. Parameters: same as
those in Fig. 1, except for Ls = 2.5 µm. In the NT case, Vz = 1.16Vc

and μN = 2.58. In (a) UR = 5 meV.

the MZM on the left side, which couples more strongly to the
spin-down, see Appendix B. In this approximate description
of the pristine wire, we verify that AL = AR.

B. Nonlocality of local Andreev reflection

In the topological phase, the LAR processes on both sides
of the wire are sensitive to the increase of UR/UL, as shown
in Fig. 2(b), in which we choose Vz = 1.15Vc [dotted-vertical
line in Fig. 2(a)], UL = 5, and vary UR. As the right barrier UR

increases, the left LAR probability AL
σσ ′ decreases. Similarly,

the right LAR probability AR
σσ ′ is nonlocal for variations of the

left barrier UL.
At zero bias and T = 0, the local conductance reads Gαα =

2e2

h (2Aα + Tᾱα + Aᾱα ), where Tᾱα and Aᾱα are the proba-
bilities of an incoming electron in lead α = L (R) to be
transmitted as an electron or as a hole, respectively, to lead
ᾱ = R (L) [34]. In Figs. 2(c) and 2(d), we show, respec-
tively, GLL and GRR as functions of UR/UL in the topological
phase for Vz = 1.15Vc (orange curve), Vz = 1.20Vc (cyan),
and Vz = 1.40Vc (purple). We observe that they are both
equally suppressed following the nonlocal behavior of AL =
AR in Fig. 2(b). The hybridization εm between the MZMs
on the left and right sides of the wire is responsible for this
nonlocality. Hence the GLL ∼ GRR suppression is more promi-
nent for Vz = 1.15Vc and Vz = 1.40Vc as compared to Vz =
1.20Vc since εm(Vz = 1.40Vc) > εm(Vz = 1.15Vc) � εm(Vz =
1.20Vc), where εm is the energy of the lowest topological
ABS mode. For the cyan curve, we choose Vz near a parity

014504-3



DOURADO, PENTEADO, AND EGUES PHYSICAL REVIEW B 110, 014504 (2024)

crossing point, such that εm is close to zero (see, e.g., Fig. 6
in Appendix A). In this case, the dependence on UR is no-
ticeable only for UR/UL ∼ 30. In the limit εm → 0, we regain
GLL = GRR = 2e2/h, i.e., the quantized strictly zero-energy
Majorana conductance [16].

In the trivial phase, Vz = 0.10Vc (green curve) and Vz =
0.95Vc (dashed-black line), GLL does not have any dependence
on UR, while GRR exponentially decreases when the tunnel
barrier height increases, in agreement with Ref. [35] for an
s-wave SC. These results remain valid as long as LS � ξ , with
ξ the localization length of the superconductor [36], when
LAR is the dominant process. Interestingly, we observe a
crossing point where AL

↓↓ drops below AL
↓↑ = AL

↑↓ [see inset of
Fig 2(b)]. The latter reaches a plateau for larger UR values, in-
dicating a residual contribution from usual, as opposed to the
(quasi-) zero-energy-mediated LAR. In Figs. 1(b), 1(c), 2(c),
and 2(d), we normalize the conductances by their respective
values at UR = UL. The values of Gαα (UR = UL ) are shown in
Table I of Appendix A and are within the reach of standard
state-of-the-art experimental techniques [21,37].

C. GLL and GRR as probes for topological phases

The dependence of GLL and GRR on UR can be used to dis-
tinguish between trivial and topological phases. In Figs. 1(b)
and 1(c), respectively, we compare GLL and GRR as functions
of UR/UL for the trivial (dashed lines) and topological (solid
lines) regimes for the pristine wire, in the presence of a smooth
nonuniform μS (x) (quasi-Majorana), and moderate disorder
(with W = 3.5� and averaging over 100 disorder realiza-
tions) [38]. Notice that only in the topological phase GRR

exhibits a similar dependence on UR/UL as GLL. Strikingly,
this result remains true in the presence of inhomogeneities
in the wire (green and orange solid lines), with GLL ∼ GRR

qualitatively reproducing the nonlocal behavior of the clean
case, which signals the robustness of the topological phase. In
the trivial phase, quasi-Majoranas and disorder-driven states
do not reproduce this feature; GLL and GRR are uncorrelated in
this case (dashed lines). These results also hold for symmetric
and asymmetric μS (x) profiles. The nonlocal suppression of
LAR leading to GLL ∼ GRR follows from the strong correla-
tion (hybridization εm) between MZM wave functions, absent
in trivial ABS as discussed in Appendix C (see Fig. 12 below
and text after Fig. 13). This leads to a symmetric response
of the local conductances in the topological case to varia-
tions of the gate potentials about UL = UR and, ultimately,
to GLL ∼ GRR. As shown in Figs. 1(b) and 1(c) (symbols)
[see also Fig. 5(a)], this unique correlation of the local con-
ductances holds for both T = 0 and electron temperatures
T < 20 mK.

D. Identifying fine-tuned trivial peaks

The nonlocality of LAR is an experimentally accessible
test of whether left and right zero-bias peaks are correlated.
A mere coincidental appearance of zero-bias peaks at simi-
lar regions in parameter space is insufficient as a signature
of MZMs. To illustrate this point, we show in Figs. 2(c)
and 2(d) that fine-tuned nontopological ABSs (pink-dotted
curves) yield GLL �= GRR as functions of UR/UL, consistent

FIG. 3. (a) LDOS (color map) as a function of E for different
values of ν. Around zero energy, a dip emerges in the LDOS on the
left side. On the right side, the LDOS is enhanced at zero energy as ν

increases (�R → 0). (b) LDOS at E = 0 for different values of ν. The
local conductance (inset) follows the dip in the LDOS. The nanowire
parameters are the same as those used in Fig. 2, Vz = 1.40Vc, and
�L = 1.6�. We consider εm as the energy of the lowest mode. The
values of the LDOS were normalized by their maximum at ν = 0.

with the results for the trivial phase. These nontopological
ABSs are symmetrically localized in the normal parts of the
wire, Fig. 1(a), which act as quantum wells, and perfectly
mimic the zero-bias peak characteristic of MZMs, i.e., GLL =
GRR = 1.99e2/h at UR = UL [39]. Upon varying UR/UL, one
can tell apart these accidental ABSs (GLL �= GRR) from true
topological states (GLL ∼ GRR). We point out that for sig-
nificantly smaller wires (LS < ξ ), such that the trivial ABSs
hybridize, the pink curves could, in principle, mimic the topo-
logical case. However, since these ABSs are fine-tuned, the
conductance is not robust against variations of the parameters,
e.g., μN and Vz. For wires of length 2 µm or longer, currently
used in experiments [10,40], our proposal for distinguishing
topological from trivial phases by measuring only GLL and
GRR could be implemented.

IV. LOCAL DENSITY OF STATES

The suppression of the (quasi-) zero-energy mediated LAR
observed in the topological phase of Fig. 2(b) can be explained
by the emergence of a zero-energy dip in the LDOS at the
left side of the wire as �R decreases (i.e., UR increases),
Fig. 3(a). We obtain the LDOS from the imaginary part of
the retarded Green’s function [41] within the Bogoliubov-de
Gennes formalism [42], Gr = (E − HBdG − �)−1, where � is
the self-energy.

In Fig. 3(a) we show the LDOS (color map) as a function of
the energy E for Vz = 1.40Vc. We observe a suppression (en-
hancement) of the LDOS around E = 0 on the left (right) side
of the wire for large values of the lead-asymmetry ν = (�L −
�R)/(�L + �R). More specifically, we show in Fig. 3(b) the
LDOS at E = 0 for several values of ν. At ν = 0 (UR = UL ⇔
�R = �L, blue curve), the LDOS has equal weights on the left
and right ends of the wire. As �R decreases (i.e., UR increases)
for a fixed �L (UL), black and orange curves, an asymmetry
develops between the left and right sides with the LDOS
building up on the right side. The local conductance GLL,
which we calculate here analytically for the effective model
(see Appendix B), shows a suppression as �R is decreased
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[see inset in Fig. 3(b)]. This suppression is similar to those
in Figs. 1(b), 1(c), 2(c), and 2(d) as UR/UL is increased. In
the topological phase, the local conductances are correlated,
i.e., GLL ∼ GRR, but suppressed for different reasons. While
GLL is reduced due to the emergence of a dip in the LDOS
on the left end of the wire (UL fixed), GRR is suppressed
because the right tunnel barrier UR increases, even though
the LDOS on the right end of the wire is correspondingly
enhanced. Thus, the lead-asymmetry ν, controlled by UL and
UR, allows us to manipulate the LDOS. Our analysis agrees
with the result of Ref. [43], where it is shown that for one
lead, i.e., �R = 0 ⇔ ν = 1, the conductance vanishes for an
even number of MZMs.

A complementary analysis using non-Hermitian topology
[44] is provided in Appendix D. Here, the asymmetry in the
LDOS can be understood by a bifurcation of the imaginary
part of the energy of the lowest mode and its particle-hole part-
ner. This means that one of the Majorana components leaks to
the lead, causing the zero-energy dip in the LDOS, while the
other has its lifetime increased. It is worth mentioning that
after the bifurcation (exceptional point), the real part of the
energy of the lowest mode is exactly zero, suggesting that it
is possible to artificially create non-hybridized Majorana-like
zero modes in finite wires by exploring the lead asymmetry
[44]. However, the suppression of GRR due to the barrier
height shows that this is not a true zero-energy Majorana
mode, which instead would present a universal zero-bias peak
of 2e2/h [45]. In passing, we mention that, in principle, our
results can also be analyzed within the scattering theory of
topological invariants [46].

V. MAJORANA-BASED TRANSISTOR

The manipulation of the LDOS via lead asymmetry allows
us to gate control the currents in multiterminal devices. To
illustrate this, we propose a Majorana-based transistor using a
QD coupled to leads 1 and 2, and to a Majorana wire [47,48],
Fig. 4(a). The right side of the topological wire is then coupled
to a third lead that acts as a “base gate” (UR), controlling the
current flow through the QD. For simplicity, we consider a
spinless effective model since the MZMs only couple to one
spin direction [16]. Experimentally, this polarization can be
realized via a global Zeeman field.

The Hamiltonian of the system is given by [45,47,49,50]

H = iεmγ1γ2 + εd c†
d cd + t0(c†

d − cd )γ1 + HT , (3)

with γi = γ
†
i the Majorana operators, εm the hybridization

energy, εd the dot level (tunable via an external gate), and cd

(c†
d ) the annihilation (creation) operator of an electron in the

QD. The hopping parameter t0 couples the QD to γ1 and HT

corresponds to the tunneling Hamiltonian between the system
and the external leads,

HT =
∑

k,i=1,2

tk,i(c
†
d dk,i + H.c.) +

∑
k

tk,R(d†
k,R − dk,R)γ2,

(4)
where tk, j is the hopping amplitude and dk, j (d†

k, j) annihilates
(creates) an electron with momentum k on lead j. Note here
that tk,R = tk,R(UR).

FIG. 4. (a) Setup of the Majorana-transistor. QD coupled to leads
1 and 2 and to a Majorana wire connected to a third lead R. (b) DOS
of the QD for different values of �R, solid lines. At zero energy,
ρdot ∝ F , the latter is shown as dotted lines. The control over the
coupling to the right lead (UR) allows us to manipulate the QD DOS,
thus suppressing or enhancing it around zero energy. (c) DOS of the
QD at E = 0 as a function of �R for different εm. At �R = 0, the
zero-bias peak vanishes. The parameters used are t0 = �L = 100εm,
and εd = 53.3t0.

To obtain the LDOS, we first calculate the retarded Green’s
function (GF) of the system using the basis {cd , c†

d , γ1, γ2},

Gr (E ) =
(
Gr

dot F̃

F̃ Gr
MW

)
(5)

where Gr
dot and Gr

MW are the GFs of the QD and Majorana
wire, respectively. Since the leaking of the Majorana mode
into the QD can be characterized by ρdot = − 1

π
Im[Gr

dot], here
we mostly focus on Gr

dot, written as

Gr
dot =

(Ge F

F Gh

)
, (6)

with Ge and Gh the electron and hole components, respec-
tively, and F the so-called anomalous part. Up to first order
in the energy E [51], we obtain

Ge(h) = Z̃−1[−ε2
m(±εd + i�L + E ) + E (±iεd�R − �L�R)

]
+ F, (7)

F = −t2
0 (E + i�R)Z̃−1, (8)

where +(−) εd refers to electrons (holes), �L = (�1 + �2)/2
is the effective coupling between the QD and leads 1 and 2,
with �i = 2π |ti|2ρi and ρi the DOS of lead i, and

Z̃ = ε2
m

(
ε2

d + �2
L − 2i�LE

) + 2�L�Rt2
0

− iE
[
�R

(
ε2

d + �2
L

) + 2t2
0 (�L + �R)

]
. (9)

A detailed derivation of the equations above can be found in
Appendix E. We now analyze some limiting cases.
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For εm = 0, ρdot (E = 0) = 1/2π�L, regardless of �R and
εd , in agreement with our numerical results, which show
that as εm → 0, the left side of the wire becomes insensi-
tive to variations in �R, see, for instance, the cyan curve
in Fig. 2(b). In finite wires, however, there is, in general, a
finite-hybridization energy. Hence, in what follows we assume
εm �= 0, εd � �L ∼ t0 � εm, and take E → 0.

If the right lead is pinched off, the conductance is not
mediated by the MZM. This can be seen from Eqs. (7)–
(9), in which, for �R = 0, Ge(h) ≈ (∓εd − i�L )/ε2

d . Hence,
the entire contribution to the LDOS comes from the distant
dot level. This result agrees with the LDOS discussion from
the previous Sec. IV. Since γ2 is uncoupled from the right
lead, this characterizes the situation with ν = 1. This highly
asymmetric configuration enforces a zero-energy dip in the
LDOS of the Majorana wire, as shown in Fig. 3(a) (last panel).
Therefore, the conductance is negligible, with no contribution
from the Majorana mode.

The right lead unlocks the leakage of the Majorana mode
into the QD. We start by weakly coupling the wire to the right
lead, �R � εm. In this case, we obtain F ≈ �Rt2

0 /ε2
mε2

d and

ρdot ≈ �L

πε2
d

+ �Rt2
0

πε2
mε2

d

, (10)

where we identify the first term as the residual contribution
of the dot level and the second as the Majorana contribution
enabled by �R. If we now take �R � ε2

mε2
d/t2

0 (strong cou-
pling),

Ge(h) ≈ F ≈ −i/2�L, ρdot = 1/2π�L, (11)

which is precisely the value of the DOS of the dot for the infi-
nite wire (εm = 0). Interestingly, as long as εm is the smallest
energy scale, ρdot ∝ −Im[F ]. This is shown in Fig. 4(b); the
dotted (Im[[F ]) and solid (ρdot) lines fall on top of each other.
The Majorana wire induces superconductivity on the dot so
that the Majorana leakage comes entirely from the anomalous
term of the GF. Figure 4(b) also shows that the larger the
hybridization energy, the larger the coupling to the right lead
has to be to converge to the value of ρdot (�R � ε2

d ), which
depends only on �L, in agreement with Eqs. (10) and (11). In
Fig. 4(c), we show ρdot as a function of E . We observe that
only when �R is increased, a peak around E = 0 emerges.

Finally, using a symmetrical potential drop between leads 1
and 2, i.e. V = VL/2 = −VR/2, and defining the conductance
through the dot as G = dI1/dV , we obtain

G =
{

0, for �R = 0,

e2/2h, for �R � ε2
mε2

d/t2
0 .

This result highlights the role of the tunnel voltage UR (�R) in
the control of the current, which characterizes a transistor.

VI. TEMPERATURE EFFECTS

We now analyze how temperature effects modify our
previous results. Finite temperatures tend to suppress the
correlation between GLL and GRR, as shown in Fig. 5(a).
This occurs because GLL and GRR are affected distinctively
by the interplay of the LDOS and the Fermi function f (ε).
More specifically, in a linear-response conductance calcu-

FIG. 5. Temperature effects on GLL , GRR, and δGasym
LL in the

topological phase. (a) Local conductances GLL and GRR as func-
tions of UR/UL for T = 0, 1, 10, 30, 20, 40, 80, 150 mK and Vz/Vc =
1.569 for a disordered wire (single realization). (b) Hybridization
energy εm and asymmetric conductance deviation δGasym

LL as func-
tions of Vz/Vc > 1. The dotted-red line in (b) corresponds to the
Vz/Vc in (a) that maximizes εm. For T < 20 mK GLL ∼ GRR, first
decreasing then attaining a plateau as UR/UL increases, similarly to
Figs. 1(b) and 1(c). The magnitude of the plateaus in GLL strongly
depends on εm and T . In contrast, GRR vs UR/UL is insensitive to
T , maintaining its T = 0 behavior. For T = 30, 40 meV, GLL and
GRR become less correlated (red and green lines). For even higher
temperatures 40 < T < 150 mK, GLL still displays nonlocal effects
as quantified by the asymmetric deviation δGasym

LL , which shows siz-
able oscillations as a function of Vz/Vc. These modulations in δGasym

LL

are commensurate with the Majorana oscillations in εm as shown in
(b) (black line); they provide an additional probe for the topological
phase. Parameters are same as in Fig. 1.

lation, ∂ f (ε)/∂ε (width ∼kBT ) multiplies the LDOS, i.e.,
GLL ∼ ∂ f (ε)/∂ερL(ε) and GRR ∼ ∂ f (ε)/∂ερR(ε), where ρL

(ρR) denotes the left (right) LDOS. As shown in Fig. 3(b),
while ρL(ε) develops a dip of width εm near zero energy
as the left-right asymmetry parameter ν increases, ρR(ε) is
in contrast slightly enhanced and essentially uniform in ε.
For increasing temperatures, the Lorentzian-shaped ∂ f (ε)/∂ε

samples wider energy ranges in both ρL and ρR near zero
energy. As it turns out, GLL vs UR/UL is strongly dependent
on temperature variations, see curves for T = 40, 80, 150 mK
in Fig 5(a), while GRR is mostly insensitive (here all curves
lie on top of the T = 0 purple line). The competition between
εm and kBT determines the behavior of GLL vs UR/UL and, in
particular, the magnitude of the attained plateau for UR � UL,
see Appendix F for a detailed analysis. When εm � kBT ,
which holds in Figs. 1(b), 1(c), and 5(a) for T < 20 mK
and nanowires of ∼2 µm, GLL ∼ GRR. Recent experiments
report T ∼ 30–40 mK for measured electron temperatures
[10,21,22,52]. For higher T ′s the εm � kBT no longer holds
and GLL and GRR become less and less correlated, cf. curves
for T = 30, 40, 80, 150 mK in Fig. 5(a). However, as we
discuss next, the asymmetric deviation δGasym

LL = GUR=UL
LL −

GUR�UL
LL vs Vz/Vc can still be used to identify the topological

phase at these higher temperatures (see also Appendix G).
In Fig. 5(b) we show that for finite temperatures,

δGasym
LL displays modulations as a function of Vz/Vc that are

commensurate with Majorana oscillations, quantified by εm

(solid-black curve). This feature is more clearly visible as
oscillations matching εm in the higher temperature range 30 <

T < 150 mK. Hence, the modulations in δGasym
LL provide a

direct measure of Majorana oscillations as probed by the
nonlocality of GLL at surprisingly high T ′s. In addition, the
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maxima of δGasym
LL can be used to find the optimal Vz/Vc for

which εm is the largest. This ratio can then be used at low
T to enhance the correlation between GLL and GRR [this was
done in Figs. 1(b) and 1(c) for the pristine case, and Fig. 5(a)].
Interestingly, even though trivial (Vz/Vc < 1) quasi-Majorana
or fine-tuned ABS modes can eventually mimic Majorana
oscillations in GLL, the asymmetric deviation δGasym

LL , on the
other hand, does not display modulations in these cases.

As discussed, to observe the nonlocal suppression of the
local conductances the ideal regime is εm � kBT . This limits
the length of the wire for our proposed Majorana transis-
tor. This particular application, however, does not rely on
a specific realization for the central Majorana wire, which
could, for instance, be implemented via an artificial Kitaev
chain [21,53,54] such as a three-quantum dot array, with an
additional QD as a probe, similarly to the setup studied in
Ref. [55]. In this case, the control over the hybridization εm

can be realized via external gates and the regime in which
temperature effects are negligible can be enabled.

VII. PROTOCOL USING ONLY
THE LOCAL CONDUCTANCE

We propose a simplified protocol consisting of only local
conductance measurements. (i) One should vary the tunnel-
barrier ratio UR/UL (UL kept fixed) and check whether the
local conductances exhibit approximately equal suppressions,
i.e., GLL ∼ GRR, as UR/UL increases, similar to Figs. 1(b) and
1(c). This response should be the same (i.e., symmetric) when
one increases UL/UR (UR kept fixed). (ii) One should measure
the asymmetric deviation δGasym

LL as a function of the Zeeman
field to see whether it is modulated with well-defined zeros,
similar to Fig. 5(b), thus signaling Majorana oscillations. If
either (i) or (ii) or both hold true and are robust upon variations
of the system parameters [10], the protocol has identified a
topological phase. The above procedure could also be used as
a diagnostic tool in combination with the so-called topological
gap protocol [10] to identify a topological phase.

VIII. VALIDITY OF THE PROPOSED PROTOCOL

In this section, we elaborate on the validity of our proposed
protocol by investigating several types of effects that can be
detrimental to our proposal (Appendices C and H).

Inhomogeneities in the parameters of Eq. (1), in particular,
charge impurities [38], are one of the main obstacles to the
detection of MZMs. We have taken this effect into account
by including disorder in the chemical potential in Figs. 1 and
5. For these results, we set W = 3.5�, which is a moderate
disorder strength [38]. In Appendix C, we consider larger
values of disorder and analyze when our proposal breaks
down. Our results indicate that our protocol remains viable for
W � 10.5�. At this point, the correlation between the local
conductances is partially lost even at T = 0, see Fig. 11 below,
similarly to the quasi-Majorana case shown in Figs. 1.

We note that, even in the moderate disorder case, there may
be rare disorder realizations having correlated zero-bias peaks
(due to hybridization of the trivial modes); these are irrelevant
if self-averaging holds, otherwise, these zero-energy modes
fall under “fine-tuned” cases because they move away from

the zero-energy when some other parameter is varied. We also
analyze the emergence of extended ABSs as both disorder and
wire lengths are varied, Fig. 12 below. We conclude that long
wires are less susceptible to the emergence of trivial extended
states, see Appendix C for details. Finally, we mention that in
Ref. [56], germanium hole nanowires are considered potential
platforms to reduce disorder in Majorana wires, which could
be used to avoid trivial extended ABSs.

We have also introduced other possible detrimental ef-
fects in our setup, such as (i) nontopological superconducting
nanowire segments of length �, (ii) normal (� = 0) nanowire
sections of length �N , and (iii) potential barriers of different
lengths, see Appendix C for details. We have verified that our
protocol is robust against those types of defects and remains
valid provided that �, �N � 0.6LS . We acknowledge, however,
that this is not an exhaustive list of undesirable effects.

IX. CONCLUSIONS

We have identified nonlocal effects on the zero-bias local
conductances GLL and GRR vs the tunnel-barrier ratio UR/UL

as unique probes, within a protocol, for topological phases in
three-terminal hybrid nanowires. For T < 20 mK, GLL ∼ GRR

only in the topological phase, while for T = 30, 40 mK,
their correlation becomes weaker. At higher temperatures
40 < T < 150 mK, we predict that the asymmetric devia-
tion δGasym

LL = GUR=UL
LL − GUR�UL

LL vs Vz shows modulations
commensurate with Majorana oscillations as an additional
signature of the topological phase.

To understand the mechanism behind the local conduc-
tance (GLL) suppression upon disconnecting a distant metallic
lead (�R), we have investigated the LDOS and found that a
dip in the zero-energy local density of states, ρ(E = 0, i = 0),
causes the conductance drop (GLL → 0). We have then ex-
ploited this nonlocal control over the LDOS and proposed a
Majorana-based transistor, where the current flowing through
a side-coupled quantum dot is controlled by tuning the cou-
pling to the right lead.

Finally, we have analyzed several detrimental effects such
as temperature, disorder, and other inhomogeneities in the
Majorana nanowire in order to provide realistic parameter
regimes where the nonlocalities of local conductances due to
the presence of MZMs can be tested.
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APPENDIX A: SEMICONDUCTING NANOWIRE:
CONDUCTANCE SIMULATIONS

For the numerical calculation, we discretize the continuum
BdG Hamiltonian in Eq. (1) of the main text and obtain the
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TABLE I. Local conductances GLL and GRR at UL = UR for the
pristine wire and in the presence of a smooth confining potential. The
parameters are detailed in Fig. 1 of the main text

Pristine wire

Vz/Vc GLL (UR = UL )[e2/h] GRR(UR = UL )[e2/h]
0.10 0.012 0.012
0.95 0.038 0.038
1.15 1.997 1.997
1.20 1.999 1.999
1.40 1.995 1.995
NT–ABS 1.991 1.991

Smooth confining potential

Vz/Vc GLL (UR = UL )[e2/h] GRR(UR = UL )[e2/h]
0.10 0.015 0.012
0.95 0.178 0.044
1.15 1.997 1.997
1.40 1.927 1.927

tight binding model [38]

HTB =
N−1∑
j=1

[−t | j + 1〉〈 j|τz + iα| j + 1〉〈 j|σyτz + H.c. ]+

+
N∑

j=1

[�| j〉〈 j|τx + (2t − μ j )| j〉〈 j|τz + VZ | j〉〈 j|σx],

(A1)

where t = h̄2/2m∗a2 and α = αR/2a, with a being the “lat-
tice” parameter. In the main text, we use a = 5 nm [12].

For convenience, the conductances GLL and GRR in
Figs. 1(b), 1(c), 2(c), and 2(d) were normalized by their re-
spective values at UR = UL, Gsym

LL and Gsym
RR . In Table I, we

show the actual values of Gsym
LL and Gsym

RR for the pristine
2.5 µm wire and in the presence of a smooth confining po-
tential at Vz/Vc = 0.10, 0.95, 1.15, and 1.40. For the pristine
wire, we also show the case Vz/Vc = 1.20 and the fine-tuned
ABS in a nontopological nanowire (no spin-orbit coupling in
the superconducting part of the wire) [12].

In Fig. 6(a), we show the spectrum of the pristine nanowire
[superconducting section of the wire in Fig. 1(a)] as a func-
tion of Vz/Vc. The bulk topological phase transition occurs at
Vc =

√
�2 + μ2 (vertical-red line). For Vz > Vc, the Majorana

zero modes located at the ends of the wire mediate a zero-bias
conductance peak [Figs. 1(b), 1(c), 2(c), and 2(d) of the main
text], which is dominated by LAR processes, as shown in
Fig. 6(b). As we discuss in the next Appendix, the direct
tunneling (TRL, blue line) and crossed Andreev reflection (ARL,
orange line) have the same amplitude and increase with the
hybridization energy between the MZMs located at opposite
ends of the wire. We observe that as the energy of the lowest
mode (topological ABS) reaches a local maximum due to
the oscillations seen in Fig. 6(a) [31–33], TRL and ARL also
peak. These numerical results are consistent with the findings
obtained via an effective model describing only the lowest
modes coupled to metallic leads [29], as we show in the
following.

FIG. 6. (a) Spectra of the pristine superconducting nanowire,
described by equation (A1) as a function of the Zeeman field.
In the inset, we show the Majorana oscillations. (b) Transmission
probabilities for local Andreev reflection (green), AL = AR, direct
transport (blue), TRL = TLR, and crossed Andreev reflection (orange),
ARL = ALR, as a function of the Zeeman field. We note by comparing
(a) and (b) that TRL and ARL follow the oscillations of the energy of
the lowest mode. In addition, the conductance is dominated by LAR,
which is enhanced by the emergence of the MZMs, in the regime of
parameters considered. The parameters for the nanowire are detailed
in Fig. 2.

APPENDIX B: LOW-ENERGY EFFECTIVE HAMILTONIAN

In this section, we derive a low-energy effective
Hamiltonian for the nanowire and its coupling to metallic
leads. We start with a simple normal/superconductor (NS)
junction with the superconductor in the topological phase.
Projection onto the N + S basis, described by the eigenvectors
|N〉 and |S〉, results in the tunneling Hamiltonian

HT =
∑

σ=↑,↓
tσ c†

σ (0)ψσ (0) + t∗
σψ†

σ (0)cσ (0), (B1)

where tσ = 〈N | H |S〉, with H the total Hamiltonian of the
uncoupled system. Here, we use cσ (x) = ∫

dkck,σ eikx and
ψσ (x) to denote the annihilation operators on the normal and
superconducting segments of the wire, respectively. Since the
superconductor is in the topological phase, there is a Majorana
mode localized near the domain wall at x = 0, whose operator
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is γ = ∫
dx[ f ψ↑(x) + gψ↓(x) + f ∗ψ†

↑(x) + g∗ψ†
↓(x)] [57].

The spinor ϕ† = ( f g g∗ − f ∗) defining such an oper-
ator is obtained by solving the equation Hϕ(x) = 0, where
H is the Bogoliubov-de Gennes Hamiltonian of the supercon-
ducting nanowire in the basis {ψ↑(x), ψ↓(x), ψ†

↓(x),−ψ
†
↑(x)}.

Additionally, we expand the operators ψσ (x) in the basis of
the excitations of the superconductor ψ↑(↓)(x) = f (g) γ + ...

[58]. We then make the assumption ψ↑(↓) ∼ f (g) γ , with
| f |2 + |g|2 = 1 [16], which is a good approximation in the
low-bias limit, where the main contribution to the conduc-
tance comes from the MZM. Using these operators in Eq. (B1)
we obtain

HT = tγ [ f c↑(0) + gc↓(0) − f ∗c†
↑(0) − g∗c†

↓(0)], (B2)

with t↑ = t↓ = t (unpolarized metal) real.
It is possible to further simplify the Hamiltonian above if

one performs a unitary transformation such that �1 = f c↑ +
gc↓ and �2 = −g∗c↑ + f ∗c↓, which yields

HT = tγ [�1(0) − �
†
1 (0)], (B3)

i.e., the Majorana only couples to one type of electron in the
metal [16].

1. Local Andreev reflection coefficients

Here we explicitly show that the spin-dependent local
Andreev reflection coefficients shown in Fig. 2(a) of the main
text can be traced back to the Majorana wavefunction. We
use the scattering matrix formalism [29,34] and calculate the
S-matrix for an NS junction,

S(E ) = 1 − 2π iρW †(E −H + iπρWW †)−1W, (B4)

where H is the BdG Hamiltonian of the nanowire, which
is zero for a semi-infinite wire in the low-energy regime,
ρ is the density of states of the normal lead, and W =
t ( f g − f ∗ −g∗) in the basis {�e,↑,�e,↓,�h,↑,�h,↓} of
propagating electrons and holes in the lead. By substituting W
into Eq. (B4) we obtain

S(E ) =
(

Ree Aeh

Ahe Rhh

)

= 1 − i�

E + i�

⎛
⎜⎜⎜⎝

| f |2 f ∗g −( f ∗)2 − f ∗g∗

g∗ f |g|2 −g∗ f ∗ −(g∗)2

− f 2 − f g | f |2 g∗ f

− f g −g2 f ∗g |g|2

⎞
⎟⎟⎟⎠,

(B5)

with � = 2πρt2, Ree(hh) and Ahe(eh) the normal and Andreev
reflection matrices, respectively. In particular, Ahe at E = 0 is
given by

Ahe =
(

a↑↑ a↑↓
a↓↑ a↓↓

)
=

(
f 2 f g

f g g2

)
. (B6)

Therefore, the Andreev components AL
σσ ′ = |aσσ ′ |2 give us

approximately the polarization of the Majorana bound state.
As we increase the Zeeman field [Fig. 2(a) of the main text],
the Majorana wavefunction starts to polarize in the spin-down
direction. Hence as |g|2 increases and | f |2 decreases, AL

↓↓

becomes the dominant process, which is already visible at
Vz/Vc ≈ 1.40. The transition between the spinful (small Vz)
and the Kitaev chain (large Vz) regimes can be observed by
measuring the individual Andreev reflection components.

One of the signatures of a MZM at T = 0 is a quan-
tized conductance of 2e2/h, even in the presence of two spin
channels in the leads. This is distinct from the conductance
for the BTK model [35], which can reach 4e2/h. As shown
in Eq. (B3), this is because the Majorana only couples to
electrons with a certain spin polarization; from Eq. (B5) we
obtain that RL = ∑

σσ ′ |rσσ ′ |2 = AL = ∑
σσ ′ |aσσ ′ |2 = 1, with

rσσ ′ the coefficients of matrix Ree. This result can be under-
stood by rewriting the S-matrix equation, relating incoming
and outgoing electrons/holes, using the transformed basis
{ψ1, ψ2, ψ

†
1 , ψ

†
2 }, i.e.,

U †�(out)(E ) = U †S(E )UU †�(in)(E ), (B7)

with �(in/out)(E ) = (�e,↑ �e,↓ �h,↑ �h,↓)T and

U † =
(
U 0
0 U∗

)
, U =

(
f g

−g∗ f ∗

)
. (B8)

The S-matrix equation then becomes⎛
⎜⎜⎜⎜⎝

ψ1(E )

ψ2(E )

ψ
†
1 (E )

ψ
†
2 (E )

⎞
⎟⎟⎟⎟⎠

(out)

=

⎛
⎜⎜⎜⎜⎝

E
E+i� 0 i�

E+i� 0

0 1 0 0
i�

E+i� 0 E
E+i� 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ψ1(E )

ψ2(E )

ψ
†
1 (E )

ψ
†
2 (E )

⎞
⎟⎟⎟⎟⎠

(in)

.

(B9)

As previously mentioned, there is no coupling between
the subspaces of electrons 1 and 2, which ensures that all
reflections are “spin-conserving”. Moreover, incident type-2
electrons (holes) are always reflected as electrons (holes) with
the same spin polarization, which means that this mode is ef-
fectively decoupled from the problem. Hence, the low-energy
Hamiltonian of a Majorana wire coupled to external leads
is spinless even outside of the strong Zeeman field regime.
Finally, at E = 0 we have perfect Andreev reflection of type-1
electrons and holes. The Andreev reflection matrix in the new
basis at E = 0 is

Ãhe =
(

a11 a12

a21 a22

)
=

(
1 0
0 0

)
. (B10)

2. Conductance of a Majorana wire in a three-terminal device

We now show the derivation of the Majorana wire con-
ductance for an NSN junction using the low-energy effective
Hamiltonian HM = iεmγ1γ2, where εm is the hybridization
energy. As discussed in the previous section, the Majorana
bound state couples to only one spin channel. This allows us
to consider a spinless model for the leads without any loss of
generality.

Here we follow the derivation of the S-matrix presented
in Ref. [29]. In the basis (�L,e �R,e �L,h �R,h)T of
propagating electrons and holes in leads left L and right R,
we have

S(E ) =
(

1 + A A
A 1 + A

)
, (B11)
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where

A = Z−1

(
i�L(E + i�R) −εm

√
�L�R

εm
√

�L�R i�R(E + i�L )

)
,

Z = ε2
m − (E + i�L )(E + i�R),

(B12)

with �α = 2π |tα|2. The matrix A contains the crossed (off-
diagonal terms) and local (diagonal) Andreev reflections.

The zero-bias conductance in lead α is obtained via the
current expression [34,35]

Iα = e

h

∫
dE

(
2Aα + Tβα + Aβα

)
f̃ (μα )+

− e

h

∫
dE

(
Tαβ − Aβα

)
f̃ (μβ ), (B13)

where Aα , Tβα , and Aβα are the probabilities of an incom-
ing electron to be reflected as a hole in the same lead
α and transmitted as an electron or as a hole to lead β,
respectively, obtained from the S-matrix, f̃ (μα ) = f (E −
μα ) − f (E ), f (E ) = [1 + e(βE )]−1 is the Fermi function, and
μα is the chemical potential of lead α with respect to the
chemical potential of the superconducting lead. In all con-
ductance calculations, we consider T = 0 and small bias
voltages.

The local conductance in the left lead is given by

GLL = e2

h
(2AL + TRL + ARL )|E→0 = 2e2

h

�L�R

ε2
m + �L�R

= 2e2

h

�2 − γ 2
0

ε2
m + �2 − γ 2

0

, (B14)

where

AL = |A11|2 = �2
L�2

R(
ε2

m + �L�R
)2 , (B15)

TRL = ARL = |A12|2 = ε2
m�L�R(

ε2
m + �L�R

)2 , (B16)

with Ai j elements of the matrix (B12), � = (�L + �R)/2 and
γ0 = (�L − �R)/2. As the asymmetry grows (�, γ0 → 1), the
conductance is suppressed, in agreement with Fig. 3. In the
limit where one of the leads is decoupled (� = γ0), GLL van-
ishes [43]. Note that the processes TRL and ARL qualitatively
describe the behavior shown in Fig. 6(b) for the full model.
Whenever E/� crosses zero (εm → 0) in Fig. 6(a), AL is
enhanced [Fig. 6(b)]; TRL and ARL, on the other hand, peak
when E/� has a maximum (εm increases), in agreement with
Eq. (B16).

APPENDIX C: VALIDITY OF THE PROPOSED PROTOCOL

In order to assess the credibility and robustness of our pro-
tocol and possibly emulate experimental setups, we introduce
additional nonuniformities to our superconducting nanowire
segment and vary the disorder strength. We consider four dif-
ferent scenarios: (i) nontopological superconducting nanowire
segment of length �, Figs. 7 and 8, (ii) nonsuperconducting

FIG. 7. Chemical potential profile for a trivial region (μ̃ =
2 meV) of length (a) � = 0.375 nm and (d) � = 1.5 nm. GLL and GRR

as functions of UR/UL for (b), (c) the profile in (a), and (e), (f) the
profile in (d).

nanowire segment of length �N , Figs. 9, (iii) asymmetric po-
tential barriers, Fig. 10, and (iv) stronger disorder, i.e., σ/μ̄ >

1 [38], where σ is the variance and μ̄ is the mean value,
Fig. 11. We find that, for the regime of parameters considered
here (t = 102, μ = 1, μN = 0.2, � = 0.5, α = αR/2a = 3.5,
UL = 5, LS = 2.5, LN = 0.1, and LB = 0.02, unless otherwise
specified; energies and lengths are in units of meV and µm,
respectively), the protocol is valid as long as �, �N � 0.6LS .
For larger values of � and �N , it is still possible to observe a
suppression of GLL as UR increases, but after an initial dip, the
conductance attains a plateau, similarly to the quasi-Majorana
case. For (iv), we find that, on average, the same behavior
mentioned above for cases (i) and (ii) starts to occur within the
range 2.5 � σ/μ̄ � 3. For case (iii), we consider the right side
barrier with lengths LB,R = 0.04 and 0.08 µm (for the left bar-
rier LB,L = 0.02 µm). We find that the correlation GLL = GRR

holds, and the conductance suppression due to the increase of
UR is more pronounced for larger LB,R.
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FIG. 8. Chemical potential profile for a trivial region (μ̃ =
2 meV) of length (a) � = 0.5 nm and (d) � = 1.5 nm. GLL and GRR

as functions of UR/UL for (b), (c) the profile in (a), and (e), (f) the
profile in (d).

1. Nontopological superconducting nanowire segment

Here we consider another nonuniform profile for μS ,
the chemical potential of the SC section of the nanowire.
We choose a segment of length l , either located at one
of the ends [Figs. 7(a) and 7(d)] or in the middle of the
SC nanowire [Figs. 8(a) and 8(d)], whose chemical poten-
tial μ̃ = 2 meV is such that this segment is in the trivial
regime.

In Figs. 7(a) and 7(d), we show μS (x) as a function of x
for � = 0.375 and 1.5 µm (0.6LS ), respectively. We note that
GLL ≈ GRR when Vz > Vc, signaling the topological phase.
For larger values of �, our protocol breaks down since GLL

and GRR are suppressed differently, see some examples below.
In this case, we can no longer distinguish between the trivial
and nontrivial regimes.

Similarly, in Figs. 8(a) and 8(d), we show μS (x) for a seg-
ment � = 0.5 and 1.5 nm, respectively, located in the middle
of the SC nanowire. The curves for GLL and GRR, especially

FIG. 9. Superconducting pairing potential profile for a trivial
region (� = 0) of length (a) � = 0.5 nm and (d) � = 1.0 nm. GLL

and GRR as functions of UR/UL for (b), (c) the profile in (a), and (e),
(f) the profile in (d).

FIG. 10. (a) Potential barrier profile. LB,L = 0.02 nm (left) and
LB,R = 0.08 nm. (b) GLL and (c) GRR as functions of UR/UL .
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FIG. 11. GLL and GRR as functions of UR/UL for (a), (b) σ/μ̄ =
1.5 and (c), (d) σ/μ̄ = 3.0.

in (e) and (f), start to differ from each other and our protocol
can no longer identify the topological phase.

2. Nonsuperconducting nanowire segment

Here we modify the profile of the superconducting pairing
potential � and introduce a segment, �N , in the middle of the
SC nanowire for which � = 0, Fig. 9.

3. Asymmetric potential barriers

In Fig. 10(a), we show the potential barrier profile for
LB,R = 4LB,L . The conductances GLL and GRR, Figs. 10(b)
and 10(c), respectively, still behave similarly. We observe
that they are suppressed more rapidly when LB,R increases
(not shown).

4. Strong disorder

Here we show GLL and GRR as functions of UR/UL for
two different strengths of disorder (averaged over 100 realiza-
tions): Figs. 11(a) and 11(b) σ/μ̄ = 1.5 (W = 5.2�) and (c)
and (d) σ/μ̄ = 3.0 (W = 10.45�). As previously mentioned,
for σ/μ̄ = 3.0 our protocol is no longer valid, since GLL and
GRR are suppressed differently.

5. Emergence of trivial extended ABSs

Fluctuations in the chemical potential generate a chain
of Majorana modes for large enough magnetic fields (Vz <

Vc), as many smaller trivial/topological junctions are formed
within the wire [43]. The hybridization between these modes
may give rise to extended Andreev bound states. These ABSs
might induce a considerable dependence of GLL on UR since
they couple to both leads. In general, short disordered wires
are problematic for experiments involving Majoranas be-
cause extended trivial states can mimic features commonly

FIG. 12. Disordered nanowire (averaged over 1000 realizations)
conductances GLL and GRR in the trivial phase (Vz = 0.95Vc) as
functions of UR/UL for different (a), (b) lengths of the superconduct-
ing section Ls = 1, 2.5, 4 µm with W = 3.5�, and (c), (d) disorder
strengths W = 2�, 4�, 8� for Ls = 2.5 µm.

associated with the emergence of the topological phase, such
as the closing and reopening of the gap [12]. In our simula-
tions, we have verified that nanowires of 1.5 µm or shorter
with W = 3.5 � are undesirable, as the emergence of such
states is quite common. On the other hand, by increasing the
length of the wire to 2 µm, for the same disorder strength, we
obtain significantly better results.

To systematically study the emergence of trivial extended
ABSs in disordered wires, we perform averages on the lo-
cal conductances as functions of UR/UL for 1000 disorder
realizations at T = 0 and Vz = 0.95Vc. In Fig. 12(a), we fix
W = 3.5� and vary the length of the wire Ls. We observe that
as Ls increases, the dependence of GLL on UR/UL on average
decreases (cp., for example, the green and purple curves).
Therefore, in longer wires, the probability of an extended
ABS emerging is lower. As discussed in Ref. [43], weak links
in such chains of Majorana modes effectively decouple the
two sides. Hence, the probability of the chain being randomly
broken due to a weak link grows with the length of the wire,
thus reducing, on average, the emergence of extended ABSs.
Using the suppression of GLL for UR � UL as an indication
of the presence of extended ABS, we have verified that by
increasing the disorder strength W (Ls = 2.5 µm fixed) there
is a corresponding increase in the probability of such states
emerging. As we diminish W , and in particular for W � 2�,
the conductances approach the results for the pristine case,
shown in Figs. 2(c) and 2(d) of the main text.
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FIG. 13. (a) Probability density of the lowest-energy modes of
a disordered (single realization) wire with W = 3.5�, Ls = 400,
and UL = UR = 5 meV, in the trivial (green) and topological (pur-
ple) phases. (b) GLL and GRR as functions of UR/UL and UL/UR,
respectively.

6. Symmetric responses to variations of the tunnel gate voltages

Here we provide yet an additional way of distinguishing
topological from extended trivial Andreev bound states. We
analyze how the local conductances, GLL and GRR, respond to
variations on the gate that controls the coupling to the lead on
the opposite side of the wire, UR and UL, respectively. If the
response is symmetric, i.e., if GLL vs UR has the same behavior
as GRR vs UL, the system is in the topological regime, other-
wise, we have a trivial phase. We first note that the nonlocality
of the local conductances comes from a single state coupling
to both leads. In singular disorder realizations, an extended
trivial ABS might be able to present a large dependence of
GLL with respect to UR, for instance. In general, however,
the wavefunction of trivial states will not be symmetrically
distributed along the wire, resulting in different couplings to
the leads even when UR = UL, see for instance, the green
curve for Vz = 0.95Vc in Fig. 13(a). Although the trivial ABS
extends throughout the entire wire, thus connecting to both
leads, the coupling to the right lead is much smaller than the
one to the left lead, i.e., �R << �L, for UR = UL. Hence, GLL

is not significantly suppressed by the increase of UR, as the
initial coupling �R is already small. On the other hand, �L is
large, since the wavefunction is more localized on the left end
of the wire. In this case, GRR is significantly more suppressed
by the increase of UL. This behavior is corroborated by our
simulations of the conductances GLL and GRR as functions of
UR and UL, respectively, see green curves in Fig. 13(b). In
contrast, topological ABSs that arise from the hybridization
between MZMs are, in general, located at both ends of the
wire, even in the presence of (up to moderate) disorder. This
approximately symmetric distribution of the wavefunction,
purple curve in Fig. 13(a), leads to �L ∼ �R, when UR = UL,

FIG. 14. GLL and GRR as functions of UR/UL for (a), (b) the
quasi-Majorana profile and (c), (d) a disordered nanowire with
W = 3.5�. We set Ls = 400 for all cases.

resulting in symmetric responses GLL(UR) ∼ GRR(UL ), see
corresponding purple curve in Fig. 13(b).

7. Temperature effects in the trivial phase

In the main text, we have shown that the minimum value
of GLL [plateaus in Fig. 5(a) of the main text] as UR increases
is limited by the ratio εm/kBT . Here we extend our analysis to
the trivial phase. We observe that both quasi-Majoranas and
disordered driven states respond differently to finite tempera-
tures. For quasi-Majoranas, see Figs. 14(a) and 14(b), we find
that the initially small suppression of GLL at T = 0 (light blue
line) is entirely lost even at T = 10 mK (dashed-blue line).
This is in contrast to the results shown in Fig. 5(a) of the main
text, in which the topological state presents approximately the
same results for T = 0 and 10 mK. Again, temperature effects
are beneficial to distinguishing quasi-Majoranas from MZMs.
The conductance GLL(UR) for disorder-driven states tends to
show a much smaller dependence on temperature, as shown in
Figs. 14(c) and 14(d).

APPENDIX D: NON-HERMITIAN TOPOLOGY
AND EXCEPTIONAL POINTS

In this section, we explore the physics of exceptional
points (EPs) [59] to complement our analysis of the LDOS
via Green’s functions. First, we project the Hamiltonian of
the Majorana wire in the low-energy subspace HM using the
BdG formalism, and add the self-energy �α = −i�α to it,
similarly to what was done in Ref. [44]. The non-Hermitian
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Hamiltonian reads

Heff = 1

2
(γ1 γ2)

(−i�L iεm

−iεm −i�R

)(
γ1

γ2

)
. (D1)

It is convenient to rewrite the coupling to the leads in terms
of symmetric � and antisymmetric γ0 parts. Note also that
the lead asymmetry defined in the main text is ν = γ0/�. The
BdG Hamiltonian then becomes

Heff =
(−i� − iγ0 iεm

−iεm −i� + iγ0

)
, (D2)

whose eigenenergies and eigenvectors are

ε± = −i� ±
√

ε2
m − γ 2

0 (D3)

and

|φ±〉 =
(

1
a±

)
, a± =

γ0 ±
√

γ 2
0 − ε2

m

εm
. (D4)

The EPs arise when the eigenvectors of the non-Hermitian
Hamiltonian coalesce into one, in this case, |φ+〉 = |φ−〉, i.e.,
a+ = a−. It is easy to see that this occurs when γ0 = ±εm,
and therefore there are two EPs. For γ 2

0 > ε2
m, the real part

of the eigenenergy goes to zero, while the imaginary part

bifurcates into �± = −(� ±
√

γ 2
0 − ε2

m). This result can be
understood as one of the Majorana modes leaking into one
of the leads (�+) while the other has an increased lifetime
(�−). Interestingly, the leakage does not depend only on the
coupling of the Majorana to its respective lead. For example,
if we fix �L and decrease �R, the left Majorana starts to leak
more to the left lead as γ0 increases. This is a consequence
of the nonlocality of the MZMs’ wavefunctions. In the main
text, the same conclusions are obtained by solving the Green’s
functions; for large ν, a gap emerges in the LDOS on the side
that is more strongly coupled to the lead, as shown in Fig. 3.

To illustrate the behavior above, we numerically obtain
the spectrum of the open system using the full Kitaev chain,
described by the Hamiltonian

HK = −μ

N∑
j=1

c†
j c j +

N−1∑
j=1

(�c†
j c

†
j+1 − tc†

j c j+1 + H.c.),

(D5)

for N = 15, μ/� = 2, �L = 5εm, γ0 = 190εm, and ν = 0.95.
The hybridization energy εm (energy of the lowest mode),
used as a reference here, was obtained at t/� = 2.5 for the
closed system. In Fig. 15(a) we show E/� as a function of
the hopping parameter t/�. We note that whenever the energy,
which oscillates as t/� increases, is smaller than γ0, there is a
bifurcation in the imaginary part of the eigenenergy while its
real part goes to zero. In Fig. 15(b), we show the probability
densities for the two lowest modes for t/� = 2, indicated
in Fig. 15(a) by the green and orange points. We note that
the imaginary part of the energy of the Majorana on the left
(orange) is larger than the one located on the right (green).
This means that it leaks faster to the lead, in agreement with
the result (gap in the LDOS) in Fig. 3. We point out that
if we fix �R and vary �L instead, the behavior of left and
right Majoranas invert in terms of the imaginary part of the

FIG. 15. (a) Spectra of a non-Hermitian Hamiltonian of a
Kitaev chain coupled to external leads Heff = HK + �, using N =
15, μ/� = 2, �L = 5εm, and ν = 0.95. Note that whenever the
energy is smaller than a certain threshold, there is a bifurcation of
the imaginary part of the lowest mode and its particle-hole partner
(E1 and E2) (b) Probability densities for the two lowest modes for
t/� = 2 indicated by the green and orange dots in (a). The left
Majorana (orange) leaks to the lead due to a larger value of its
imaginary part, while the right Majorana (green) has a significantly
larger lifetime.

energy, i.e., the system is symmetric with respect to varying
�R (�L) and keeping �L (�R) fixed. In conclusion, if we
keep the parameters constant, and therefore εm, the emergence
of the exceptional points can be controlled by the asymmetry
in the coupling to the left and right leads ν.

APPENDIX E: GREEN’S FUNCTION AND CONDUCTANCE
OF THE MAJORANA-BASED TRANSISTOR

The complete Hamiltonian is H = H0 + HT , where H0 is
the system’s Hamiltonian

H0 = iεmγ1γ2 + εd c†
d cd + t0(c†

d − cd )γ1 (E1)

and HT represents the coupling to the normal leads

HT =
∑

k,i=1,2

tk,i(c
†
d dk,i + H.c.) +

∑
k

tk,R(d†
k,R − dk,R)γ2.

(E2)
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First, we write H0 in the BdG formalism.

H0 = 1
2�†H0�, � = (cd c†

d γ1 γ2)T , (E3)

where

H0 =

⎛
⎜⎜⎝

εd 0 t0 0
0 −εd −t0 0
t0 −t0 0 iεm

0 0 −iεm 0

⎞
⎟⎟⎠. (E4)

To obtain the self-energies, we use the expression �i =∑
kH

†
TigiHTi, where gi are the GFs of the isolated leads, and

HTi the matrices coupling the system to the leads, which are
given by

HT R =
(

0 0 0 tR
0 0 0 −tR

)
,

HT 1(2) =
(

t1(2) 0 0 0
0 −t1(2) 0 0

)
. (E5)

By making the assumption that the self-energies do not de-
pend on the energy (wide-band limit), and �1 = �2 = �L, we
obtain � = �1 + �2 + �R,

� =

⎛
⎜⎜⎝

−i�L 0 0 0
0 −i�L 0 0
0 0 0 0
0 0 0 −i�R

⎞
⎟⎟⎠. (E6)

Finally, the GF is

Gr (E ) = (E −H0 − �)−1, (E7)

Gr =

⎛
⎜⎜⎜⎝

E + i�L − εd 0 −t0 0
0 E + i�L + εd t0 0

−t0 t0 E −iεm

0 0 iεm E + i�R

⎞
⎟⎟⎟⎠

−1

=
(
Gr

dot F̃

F̃ Gr
MW

)
,

(E8)

where we identify the first 2 × 2 block as the GF of the dot,

GR
dot =

(
Ge F
F Gh

)
, (E9)

where, considering low energies (E2 ∼ 0),

F = −t2
0 (E + i�R)Z̃−1, (E10a)

Ge(h) = Z̃−1
[−ε2

m(±εd + i�L + E ) + E (±iεd�R − �L�R)
]

+ F, (E10b)

Z̃ = ε2
m

(
ε2

d + �2
L − 2i�LE

) + 2�L�Rt2
0

− iE
[
�R

(
ε2

d + �2
L

) + 2t2
0 (�L + �R)

]
. (E10c)

The DOS in the dot is ρdot = − 1
2π

Im[Ge + Gh].
To obtain the conductance, we first calculate the S-matrix

using Eq. (B4) whereH0 is given by Eq. (E4), and W is

W =

⎛
⎜⎜⎝

t1 t2 0 0 0 0
0 0 0 −t1 −t2 0
0 0 0 0 0 0
0 0 tR 0 0 −tR

⎞
⎟⎟⎠, (E11)

written in the basis {�e,1,�e,2,�e,R,�h,1,�h,2,�h,R}. Also,
we must consider in Eq. (B13) additional terms to account for
the transmission coefficients to the third lead. However, in the
limiting cases of interest, and, more generally, in the regime
where εm << �1,R which we consider, the contributions of
TR1 and AR1 are negligible and the conductance takes the same
form of Eq. (B14).

Noting that � = −iπρWW †, the matrix (E −H0 +
iπρWW †)−1 is exactly the GF we calculated previously. To
obtain the conductance, we use the probability of an incom-
ing electron to be reflected as a hole in the same lead, a1,
and transmitted as an electron to leads 2 and R, t21 and tR1,
respectively, which we show below,

t21 = −i�LGe, t31 = −i
√

�L�RF̃21, a1 = −i�LF, (E12)

where F̃21, in the low energy limit, is

F̃21 ≈ −iεmt0(εd + i�L + E )Z̃−1. (E13)

The parameter regime for the analytical expressions in the
main text consider εd � �L ∼ t0 � εm, and E → 0. Besides,
for �R = 0, t31 = 0, F → 0, suppressing Andreev reflec-

tion, and T12 ≈ �2
L

ε2
d +�2

L
≈ 0. Therefore, G(�R = 0) ≈ 0. On the

other hand, for �R � ε2
mε2

d/t2
0 ,

T31 = |t31|2 ≈ ε2
mε2

d

2�L�Rt2
0

≈ 0, (E14)

which is, as anticipated, again vanishingly small. Also,
Ge(�R � ε2

mε2
d/t2

0 ) ≈ F (�R � ε2
mε2

d/t2
0 ) ≈ −i/2�L. Then,

T21 = A1 = 1/4. Finally,

G
(
�R � ε2

mε2
d/t2

0

) = e2

h
(A1 + T21) = e2

2h
, (E15)

which is precisely the result obtained for the infinite wire
(εm = 0).

APPENDIX F: EFFECTIVE
MODEL–TEMPERATURE EFFECTS

In this Appendix, we elaborate on the analytical re-
sults obtained for the effective model, HM = iεmγ1γ2, in
Appendix B 2. We first calculate the LDOS, ρ j (E ) =
− 1

π
Im[Gr

j j (E )], which in this simple model has only two
sites: left L and right R. The retarded Green’s function Gr (E )
is given by

Gr (E ) = (E − HM − �)−1, (F1)

where � = −iπρWW † is the self-energy and W describes
the coupling between the Majorana modes and the left/right
metallic leads [29],

W =
(

tL 0 t∗
L 0

0 tR 0 t∗
R

)
. (F2)

Using

� =
(−i�L 0

0 −i�R

)
, (F3)
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FIG. 16. Local density of states ρL and ρR as functions of E for
(a) εm/� = 0.02 and (b) εm/� = 0.08 in the symmetric (�L = �R,
ν = 0) and asymmetric (�R = 0.02�L , ν = 0.96) configurations.

with �α = 2πρ|tα|2, we then obtain

Gr (E ) = 1

(E + i�L )(E + i�L ) − ε2
m

(
E + i�R iεm

−iεm E + i�L

)
.

(F4)

The LDOS extracted from (F4) reads

ρα (E ) = 1

π

(
E2 + �2

β

)
�α + ε2

m�β

ε2
m

[
ε2

m − 2(E2 − �α�β )
]+ (

E2 + �2
α

)(
E2 + �2

β

) .

(F5)

with α = L (R) and β = R (L).
In Fig. 16, we show ρL and ρR as functions of E for

two different values of the hybridization energy εm. In this
effective model, εm controls the wire length Ls, i.e., the larger
εm, the shorter the wire. In the full Hamiltonian, εm is not
only connected to Ls, but also to other physical parameters
like the Zeeman energy and the superconducting correlation
length [32]. We choose parameters consistent with the full
Hamiltonian presented in the main text. The goal here is to
emphasize the crucial role played by εm in our main result:
the nonlocality of the local conductances.

We start by analyzing εm = 0, which yields the usual
Lorentzian-shape LDOS,

ρα = 1

π

�α

E2 + �2
α

. (F6)

FIG. 17. Local density of states ρL , ρR, and derivative of
the Fermi function df /dE vs E , for different temperatures
T = 0, 10, 20, 40 mK and two magnitudes of εm, with ν = 0.96.

FIG. 18. Conductance GLL as a function of E for εm/� = 0.02,
(a) ν = 0, and (b) ν = 0.96, and εm/� = 0.08, (c) ν = 0, and (d)
ν = 0.96 for T = 0, 10, 20, 40 mK.

According to our proposal (see Fig. 3 of the main text),
we now vary, for example, the coupling �R and keep �L

fixed. It is clear from Eq. (F6) that ρL does not change,
i.e„ variations on the right side do not affect the left. Let
us then turn on the hybridization energy. In Figs. 16(a) and
16(b), we take εm = 0.01 and 0.04 meV, respectively, and
show ρL and ρR for the symmetric (�L = �R) and asymmet-
ric (�R = 0.02�L) cases. We observe that in the symmetric
configuration, ρL(E ) = ρR(E ), red and blue curves, for any
magnitude of the hybridization energy. When �R �= �L, on the
other hand, ρL (green curve) has a dip at E = 0 and is maxi-
mum at ±εm (vertical-dashed lines), while ρR (purple curve) is
enhanced around E = 0 (not visible in the figures because we
are plotting �RρR, with �R � 1 for ν = 0.96). These features
can be easily seen by taking E = 0 in Eq. (F5),

ρL(0) = 1

π

�R

ε2
m + �L�R

, (F7)

ρR(0) = 1

π

�L

ε2
m + �L�R

. (F8)

We note that, given �L and �R, the dip and its width are
controlled by εm. The results above are in agreement with
Figs. 3(a) and 3(b) of the main text. Next, we use the LDOS
to analyze temperature effects on the conductance.

FIG. 19. Conductances GLL (solid lines) and GRR (dashed lines)
as functions of UR/UL for (a) εm/� = 0.02 and (b) εm/� = 0.08 for
T = 0, 20, 40 mK.
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The local conductance Gαα at T �= 0 and small bias voltage
is given by

Gαα = e2

h

∫
dE [2Aα (E ) + Tβα (E ) + Aβα (E )]

df (E )

dE
,

(F9)

which can be rewritten as

Gαα = e2

h

∫
dE [2π�αρα (E )]

df (E )

dE
, (F10)

with df /dE the derivative of the Fermi function. In Fig. 17
we show ρL, ρR, and df /dE as functions of E for different
temperatures T = 0, 10, 20, 40 mK and εm/� = 0.02, 0.08 in
the asymmetric configuration (ν = 0.96).

When we increase T (see, for instance, the orange and cyan
curves), values of ρα away from E = 0 start to contribute
more, increasing the value of the conductance Gαα . As dis-
cussed above, in the asymmetric configuration, εm controls the
spectral weight at E = 0, especially on the left side of the wire
(red and green curves). Hence when εm is such that the width
of the dip in ρL is wider than the temperature broadening, i.e.,
εm � kBT , the effect of T on the conductance is negligible.
This can be seen in Fig. 18, where we show GLL as a function
of E for εm/� = 0.02, (a) and (b), and εm/� = 0.08, (c) and
(d). For comparison, in (a) and (c), we show the symmetric
configuration.

In Fig. 19, we show the dependence of GLL (solid lines)
and GRR (dashed lines) as we vary UR/UL for nonzero T . Here
we assume �α ∝ 1/U 2

α . At T = 0, GLL = GRR, as predicted
by the full model. As T increases, as long as εm � kBT [as in
(b)], GLL ≈ GRR, in agreement with the results in Fig. 5(a) of
the main text.

APPENDIX G: LOCAL CONDUCTANCE OSCILLATIONS
AS A FUNCTION OF THE ZEEMAN FIELD

In the main text, we have shown how the asymmet-
ric conductance deviation δGsym

LL = GUR=UL
LL − GUR�UL

LL allows
one to perfectly track Majorana oscillations in the regime
εm/kBT << 1. For completeness, here we show how the local
conductance oscillates in both cases, i.e., UL = UR and UL <<

UR, Fig. 20. In addition, we show the dependence of GRR as
a function of Vz/Vc, in the symmetric and asymmetric cases,
Figs. 21(a) and 21(b), respectively, and δGRR, Fig. 21(c).

FIG. 20. (a) GLL (UL = UR ) as a function of Vz. (b) GLL (UR =
40UL ) as a function of Vz. The combination of the two plots results
in the Majorana oscillations shown in Fig. 5(b) of the main text.

FIG. 21. (a) GRR(UL = UR ), (b) GRR(UR = 40UL ), and (c) δGRR

as functions of Vz.

APPENDIX H: FINITE BIAS VOLTAGES

In this Appendix, we study the effect of a nonzero bias volt-
age in our conductance simulations. At finite bias voltages, the
density of states, see Fig. 3(a) of the main text, is scanned via
the term df (E − eVL )/dE in Eq. (F9), which selects the range
of energies that contribute to the conductance.

We first analyze the pristine case considered in Fig. 1 of
the main text (Ls = 2 µm and Vz = 1.65Vc). In Fig. 22(a), we
show δGasym

LL as a function of eVL. We observe that δGasym
LL is

maximized at VL = 0 and is suppressed as VL increases. This
occurs because in the highly asymmetric situation (ν → 1)
the minimum value of the LDOS is at E = 0, which causes
the GLL suppression. Therefore, if we move away from zero
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FIG. 22. Conductance simulations considering finite bias volt-
ages. (a) δGasym

LL /Gsym
LL as a function of the bias voltage for the pristine

wire shown in Fig. 1(a) of the main text. The hybridization energy
for this case is εm = 10.83 µeV. (b) GLL vs UR/UL for VL = 0, and
1 µV, for T = 0, blue and purple curves, respectively, and also for
T = 30 mK, green and black curves, respectively. (c) (d) We repeat
the simulations for Fig. 5 of the main text with the same parameters
but considering VL = 1 µV.

bias, the visibility of the nonlocality we want to show via
GLL(UR � UL ) is reduced. Interestingly, at eVL = ±εm, there
are dips in δGasym

LL . This effect arises from an increase in the
LDOS at E = ±εm as �R decreases, see Fig. 3(a) of the main
text. Hence at eVL = ±εm, GLL has a maximum value for
UR � UL, which, in turn, causes the dips in δGasym

LL .
Although the suppression of GLL upon the increase of UR

is maximum for VL = 0, one must account for errors in setting
the zero-bias conductance measurements. In experiments, see
for instance Ref. [52], the linewidth of zero-bias conductance
peaks is, in general, <10 µeV. Considering the error to be of
the order of 1 µV, i.e., VL = 0 ± 1 µV, we simulate the results
in the main text for the maximum deviation, VL = 1 µV. In
Fig. 22(b), we show that for the pristine wire in Fig. 1(b)
of the main text, the error in the bias voltage does not alter
the results significantly. This is observed for T = 0, blue
and purple curves, and also for T = 30 mK, black and green
curves. Similarly, we perform simulations for the disordered
wire shown in Fig. 5 using VL = 1 µV. The results are shown
in Figs. 22(b) and 22(c). We note that the results presented in
the main text remain qualitatively the same, with a small shift
on the peak of δGasym

LL oscillations. We conclude, therefore,
that our results are robust against deviations in the bias voltage
on zero-bias conductance measurements.
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