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We explore the possibility to control the superconducting transition temperature at optimal hole doping T opt
c

in cuprates by tuning the chemical formula (CF). T opt
c can be theoretically predicted from the parameters of the

ab initio low-energy effective Hamiltonian with one antibonding (AB) Cu3dx2−y2/O2pσ orbital per Cu atom in
the CuO2 plane, notably the nearest-neighbor hopping amplitude |t1| and the ratio u = U/|t1|, where U is the
onsite effective Coulomb repulsion. However, the CF dependence of |t1| and u is a highly nontrivial question.
In this paper, we propose the universal dependence of |t1| and u on the CF and structural features in hole doped
cuprates with a single CuO2 layer sandwiched between block layers. To do so, we perform extensive ab initio
calculations of |t1| and u and analyze the results by employing a machine-learning method called hierarchical
dependence extraction (HDE). The main results are (a) |t1| has a main-order dependence on the radii RX and
RA of the apical anion X and cation A in the block layer. (|t1| increases when RX or RA decreases.) (b) u has a
main-order dependence on the ionic charge ZX of X and the hole doping δ of the AB orbital. (u decreases when
|ZX| increases or δ increases.) We elucidate and discuss the microscopic mechanism of items (a) and (b). We
demonstrate the predictive power of the HDE by showing the consistency between items (a) and (b) and results
from previous works. The present results provide a basis for optimizing superconducting properties in cuprates
and possibly akin materials. Also, the HDE method offers a general platform to identify dependencies between
physical quantities.
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I. INTRODUCTION

One of the grand challenges in condensed-matter physics
is the design of superconducting materials with high tran-
sition temperature Tc. The diverse distribution of T opt

c (the
experimental Tc at optimal hole doping) in carrier-doped
superconducting cuprates provides useful insights into such
design. In carrier doped superconducting cuprates, we have
T opt

c � 10–138 K at ambient pressure [1–13] and up to T opt
c �

166 K under pressure in HgBa2Ca2Cu3O8 (Hg1223) [2,3].
This diverse distribution is already present in single-layer
cuprates, in which T opt

c � 10–94 K at ambient pressure and
up to T opt

c � 110 K in HgBa2CuO4 under pressure [2]. Thus,
single-layer carrier doped cuprates are a platform of choice
to investigate the microscopic mechanism and origin of the
materials dependence of T opt

c .
The diverse distribution of T opt

c can be described by the
materials dependent AB Hamiltonian parameters, especially
|t1| and u = U/|t1| [14]. Indeed, the scaling

T opt
c � 0.16|t1|FSC (1)

was proposed [14], in which the dimensionless supercon-
ducting order parameter FSC mainly depends on u (see
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Appendix A). The u dependence of FSC is summarized below.
FSC is zero for u � 6.5 and increases sharply with increasing
u � 6.5–8.0 (weak-coupling regime), reaching a maximum
at uopt � 8.0–8.5 (optimal regime); then, FSC decreases with
increasing u � 9.0 (strong-coupling regime). For a given ma-
terial, |t1| and u can be calculated by using the multiscale
ab initio scheme for correlated electrons (MACE) [15–18],
which allowed to establish Eq. (1).

Thus, a key point for materials design of higher-T opt
c

cuprates is to elucidate the universal chemical formula (CF)
dependence of |t1| and u. In previous works on cuprates
such as HgBa2CuO4, Bi2Sr2CuO6 (Bi2201), Bi2Sr2CaCu2O8

(Bi2212), and CaCuO2 [19] as well as Hg1223 [20], the non-
trivial dependence of |t1| and u on the interatomic distances
and the CF has been partly clarified. However, the more
general CF dependence of |t1| and u is required to obtain a
thorough understanding of the CF dependence of T opt

c .
The goal of this paper is twofold. First, we propose a

machine-learning procedure that is tailor-made to extract
the nonlinear dependencies of a given quantity y on other
quantities xi from the main-order to the higher-order. This
procedure is denoted as hierarchical dependence extraction
(HDE). Second, we propose the universal CF dependence
of |t1| and u in single-layer cuprates, by performing explicit
ab initio calculations of the AB Hamiltonian for a training
set that is representative of single-layer cuprates (including
copper oxides, oxychlorides, and oxyfluorides), and applying
the HDE to analyze the results and construct expressions of
|t1| and u. We generalize the existing MACE procedure to
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obtain the crystal parameters as a function of the chemical
variables (the radii and charges of the cations and anions in
the block layer), and in fine the AB Hamiltonian as a function
of the chemical variables. The combination of the generalized
MACE (gMACE) procedure with the analysis of the results
by the HDE is denoted as gMACE + HDE. We demonstrate
the predictive power of the HDE by showing the consistency
between the universal CF dependencies of |t1| and u obtained
by employing the gMACE + HDE and previous results on
HgBa2CuO4, Bi2201, Bi2212, CaCuO2, and Hg1223 [19,20].

This paper is organized as follows: Section II gives an
overview of the main-order dependence (MOD) of |t1| and u
on the chemical variables. Section III describes the HDE and
the gMACE methodologies employed in this paper, and how
the HDE is applied to analyze the results of the gMACE cal-
culation in the gMACE + HDE. Section IV details the results
on the MOD of |t1| and u on the chemical variables and pro-
poses the microscopic mechanism underlying to this MOD.
Section V discusses the results from the perspective of Eq. (1)
and proposes guidelines to optimize the value of T opt

c in future
design of single-layer cuprates for which the gMACE calcu-
lation is performed. Section VI is the conclusion. Appendix A
reminds the u dependence of FSC from Ref. [14] and justifies
the focus on |t1| and u to predict the materials dependence
of T opt

c . Appendix B details the choice of the training set of
single-layer cuprates. Appendix C gives details on the HDE.
Appendix D gives details on the gMACE and the values of the
intermediary quantities obtained in the gMACE calculation.
Appendix E gives the analysis of the competition between
variables in the MOD. Appendix F details the robustness
of the physical dependencies and mathematical expressions
presented in Sec. II when the number of compounds in the
training set is reduced. Appendix G gives details on the hole
doping dependence of the screening for each compound in
the training set, and possible implications on superconducting
properties. Appendix H gives complements on the density of
states near the Fermi level in hole-doped oxychlorides.

II. OVERVIEW: MAIN-ORDER DEPENDENCE
OF AB HAMILTONIAN PARAMETERS

ON CHEMICAL FORMULA

Here, we give an overview of the CF dependence of AB
Hamiltonian parameters that is obtained by applying our the-
oretical scheme. (Details on the results are given later in
Sec. IV, and prescriptions to optimize T opt

c based on these
results are proposed in Sec. V.) The MODs of |t1| and u are
summarized below in (I) and (II) and illustrated in Fig. 1.

(I) |t1| mainly depends on the crystal ionic radii RX and
RA of the apical anion X and cation A in the block layer that
separates two CuO2 layers. (See Fig. 1 for an illustration of X
and A.) The MOD up to the second order is1

|t1|MOD2 = 0.534 − 0.000327
[
R9.99

X + 7.99R7.76
A

]
. (2)

1In Eqs. (2), (3), (4), and (5), the unit of |t1| and v is eV,
whereas u and R are dimensionless. The ranges of values obtained
in our ab initio calculations are |t1| = 0.40–0.57 eV, u = 7.2–10.6,
v = 13.3–16.4 eV, and R = 0.23–0.34. These ranges of values are
reproduced by Eqs. (2), (3), (4), and (5), as seen in Fig. 1.

FIG. 1. (upper panel) Simplified representation of the CuO2

plane and the surrounding crystalline environment. We show the
square lattice formed by the Cu atoms in the CuO2 plane (the in-plane
O atoms are not shown), and the isosurface of the AB orbital centered
on one of the Cu atoms (yellow is positive, blue is negative). We
also show the A cations and apical X anions near the CuO2 plane.
(lower panel) Representation of the MODs of the AB Hamiltonian
parameters on the CF obtained from gMACE + HDE. We show the
MOD of |t1| [Eq. (2)] and u = U/|t1| [Eq. (3)] together with the
onsite bare Coulomb interaction v [Eq. (4)] and the screening ratio
R = U/v [Eq. (5)]. RA and ZA (RX and ZX) are the crystal ionic radius
and ionic charge of the A cation (apical X anion). nAB is the average
number of electrons per AB orbital.

Qualitatively, |t1| increases when RX or RA decreases (see
Fig. 1). The microscopic mechanism is summarized as fol-
lows: Reducing RX and/or RA reduces the chemical pressure
that pushes atoms apart from each other inside the crys-
tal. This reduces the cell parameter a and thus the distance
between Cu atoms in the CuO2 plane, which increases the
overlap between AB orbitals located on neighboring Cu sites,
and thus |t1|. This result is consistent with that in Ref. [20], in
which |t1| increases when applying physical uniaxial pressure
Pa along a direction. (The application of Pa reduces a.)

(II) u mainly depends on the negative ionic charge ZX of
the apical anion and the average number of electrons nAB in
the AB orbital. (We have nAB = 1 − δ, where δ is the hole
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doping.) The MOD up to the second order is

uMOD2 = 200.725 − 190.294
[|ZX|0.01 + 0.00155n−7.99

AB

]
.

(3)

Qualitatively, u increases when |ZX| decreases or nAB in-
creases (see Fig. 1). To understand the origin of the MOD of
u in Eq. (3), we decompose u = vR/|t1|, where v is the onsite
bare Coulomb interaction and R = U/v is the screening ratio,
and we examine the MODs of v and R in (III) and (IV) below.
(The MOD of u is mainly determined by the MOD of R.)

(III) v mainly depends on RA and the positive ionic charge
ZA of the cation. The MOD up to the second order is

vMOD2 = 18.874 − 2.787R0.92
A

[
1 + 87.90Z−9.12

A

]
. (4)

Qualitatively, v increases when RA decreases or ZA increases
(see Fig. 1). The microscopic mechanism is summarized as
follows: Reducing RA or increasing ZA modifies the crystal
electric field [namely, the Madelung potential (MP) created
by cations and anions in the crystal] felt by the Cu3dx2−y2

and O2pσ electrons. This stabilizes the in-plane O2pσ orbitals
with respect to the Cu3dx2−y2 orbitals, which increases the
Cu3dx2−y2/O2pσ charge-transfer energy �Exp. (Details are
given later in Sec. IV.) This reduces the Cu3dx2−y2/O2pσ

hybridization, which increases the Cu3dx2−y2 atomic character
of the AB orbital. This increases the localization of the AB
orbital and thus v. This result is consistent with Ref. [20].

(IV) The CF dependence of R is more complex than that
of |t1| and v, but we identify a rough MOD of R on ZX and
nAB, which is

RMOD2 = 4.224 − 3.906
[|ZX|0.01 + 0.00078n−9.99

AB

]
. (5)

Qualitatively, R increases when (i) |ZX| decreases or (ii) nAB

increases (see Fig. 1). The microscopic mechanism of (i) and
(ii) is summarized below. (Details are given later in Sec. IV.)

(i) Decreasing |ZX| reduces the negative charge of the
apical anion. This reduces the negative MP created by the
apical anion and felt by the electrons in the nearby CuO2

plane. This reduces the energy of the electrons in the CuO2

plane, and also reduces the Fermi energy. As a consequence,
the empty states become higher in energy relative to the Fermi
level. This reduces the screening from empty states, and thus,
increases R.

(ii) The decrease in R with decreasing nAB (increasing δ)
is consistent with Ref. [19], in which the increase in δ causes
the rapid decrease in R and thus u. (In Ref. [19], calculations
were made at fixed |ZX| = 2 and varying nAB = 1.0, 0.9,
and 0.8, which corresponds to δ = 0.0, 0.1, and 0.2.) The
rapid decrease in u eventually suppresses FSC [14] so that
the system ends up in the metallic state, in agreement with
the experimental ground state in the overdoped region.

For completeness, the dependence of R on |ZX| and nAB

beyond Eq. (5) is analyzed in Appendix G. Although R in-
creases with decreasing |ZX| in Eq. (5), note that a lower |ZX|
accelerates the decrease in R with decreasing nAB. Due to this,
R may decrease with decreasing |ZX| in the overdoped region
(nAB � 0.85 − 0.80), which is not captured by Eq. (5).

Remarkably, the MOD of R [Eq. (5)] is very simi-
lar to the MOD of u [Eq. (3)]. Thus, the MOD of u =
vR/|t1| is dominated by the MOD of R. Consistently, in the

ab initio result, the diverse distribution of u � 7–10.5 orig-
inates mainly (albeit not exclusively) from the diverse
distribution of R. Indeed, the relative variation between the
minimum and maximum ab initio values is 27% for v �
13.5–16.5 eV, 30% for |t1| � 0.40–0.55 eV, 48% for R �
0.22–0.34, and 50% for u � 7–10.5. (The variation in u is
reproduced by that in R.) Still, the relative variation in |t1| and
v is non-negligible compared with that in R, so that the CF de-
pendencies of |t1| and v also contribute to the CF dependence
of u beyond the MOD in Eq. (3). In Sec. IV, we decompose
u = vR/|t1|, and we discuss in detail the CF dependence of
|t1|, v, and R.

III. METHODOLOGY

A. Framework of hierarchical dependence extraction

Here, given a physical quantity y and other quantities xi in
the variable space V = {xi, i = 1, . . . , NV} (i is the variable
index), we summarize the essence of the HDE procedure
(denoted as HDE[y,V]) to construct a descriptor for y as a
function of xi. (We make complete abstraction of the physical
meaning of these variables.) Details on the motivation of the
HDE and the HDE quantities and calculations are given in
Appendix C.

The HDE expression of y is

yN = k0 + k1xopt
(N ), (6)

where the HDE descriptor xopt
(N ) at generation g = N is

constructed iteratively by adding factors that contain depen-
dencies of y on xi from the lowest order to the highest order.
At g = 1 and g � 2, we consider the candidate descriptors

x(1) = xα1
i1

, (7)

x(g) = xopt
(g−1) �(ζg,βg,αg) xig, (8)

where the parametric operator �(ζ ,β,α) (dubbed hereafter as the
wildcard operator) is defined as

x �(ζ ,β,α) x′ = x

[
1 + ζ

x′α

xβ

]
, (9)

and xopt
(g) is the best candidate descriptor x(g) at generation g. To

determine xopt
(g) , we calculate the values (iopt

g , α
opt
g , ζ

opt
g , β

opt
g )

of the variational parameters (ig, αg, ζg, βg) that maximize the
fitness function

f [y, x(g)] = |ρ[y, x(g)]|, (10)

where ρ is the Pearson correlation coefficient. (The definition
of ρ and further discussions on the choice of f are given in
Appendix C 2, and computational details of the optimization
are given in Appendix C 4.) At g = 1, we have only two
variational parameters (i1, α1).

To obtain yN in Eq. (6), we calculate xopt
(g) starting from g =

1 and incrementing g up to N . We obtain

xopt
(N ) = (

xiopt
1

)α
opt
1

N∏
g=2

⎡
⎢⎣1 + ζ opt

g

(
xiopt

g

)α
opt
g

[
xopt

(g−1)

]β
opt
g

⎤
⎥⎦, (11)
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and the coefficients k0 and k1 in Eq. (6) are calculated by an
affine regression of y on xopt

(N ).
The wildcard operator in Eq. (9) is versatile and can

represent any algebraic operation depending on the values
of (ζ , β, α), as discussed in detail in Appendix C 3. In the
practical procedure, (ζg, βg, αg) are optimized together with ig
to maximize f [y, x(g)], so that the character of the wildcard
operator is automatically adjusted to describe y as accurately
as possible.

The HDE [y,V] allows us to probe the completeness of the
dependence of y on xi. When it is performed, we assume the
following conjecture: D[y,V] The dependence of y is entirely
contained in V = {xi}. (This implies that there exists g and
x(g) such that f [y, x(g)] = 1.) The validity of D[y,V] can be
checked by examining the value of

f∞[y,V] = limg→∞ f(g)[y,V], (12)

in which

f(g)[y,V] = f
[
y, xopt

(g)

]
. (13)

If f∞[y,V] is close to one, it is the proof that D[y,V] is
correct; in this case, the affine interpolation in Eq. (6) is
accurate, and yN is a good approximation of y at least for
high values of N . If f∞[y,V] is not close to one, then either
D[y,V] is incorrect, or D[y,V] is correct but the HDE [y,V]
is insufficient to capture the whole dependence of y on the xi.
In the scope of this paper, we assume D[y,V] is incorrect.

The expression of xopt
(N ) [Eq. (11)] reveals the hierarchy in

the dependencies of y on xi. Incrementing the generation index
from g − 1 to g introduces the variable xiopt

g
, which contains

the gth-order dependence of y. Note that other variables may
be in competition with xiopt

g
; such competition is examined by

performing a score analysis in Appendix E.
In this paper, we mainly discuss the MODs that are con-

tained in low values of g � 2–3. In this case, we write yg in
Eq. (6) as yMODg, which is the MOD of y on xi up to the gth
order (MODg). The full list of variational parameters up to
g = 15 is given in Sec. S1 of the Supplemental Material [21].

The accuracy of the MODg of y on xi is quantified in
f(g)[y,V]. In the general case, the MODg is but a rough de-
scription of y: Typically, f(g)[y,V] � 0.65–0.95 for g � 3 (but
sometimes f(g)[y,V] � 1 as seen later). Accurate description
requires to take into account the higher-order dependencies
beyond g � 3 as well. Nonetheless, the MODg contains the
principal mechanism of the dependence of y, as seen later.

In practice, the HDE[y,V] is employed as follows: We
obtain f(g)[y,V] and (iopt

g , α
opt
g , ζ

opt
g , β

opt
g ) for g from 1 to N .

Then, we check the validity of D[y,V] by examining the
value of f∞[y,V]. If D[y,V] is incorrect, we may attempt
to replace V by a superset of V and relaunch the proce-
dure. If D[y,V] is correct, we perform the below restricted
procedure, denoted as rHDE[y,V]. We attempt to simplify
the dependence of y by eliminating the higher-order depen-
dencies in decreasing order. Namely, we take the optimized
variable indices iopt

1 , iopt
2 , . . . , iopt

N obtained at g = 1, 2, . . . , N
in the HDE[y,V]. By using these notations, HDE[y,V]
is equivalent to HDE[y, {xiopt

1
, . . . , xiopt

N
}]. Then, we perform

HDE[y, {xiopt
1

, . . . , xiopt
N− j

}] by starting from j = 1 and incre-

menting j. (Each time we increment j, we remove the variable

that corresponds to the highest-order dependence.) We check
whether D j = D[y, {xiopt

1
, . . . , xiopt

N− j
}] is correct. If D j is

correct but D j+1 is incorrect, we conclude that {xiopt
1

, . . . , xiopt
N− j

}
is the minimal subset of V that describes y entirely.

B. Framework of gMACE

Next, we summarize the ab initio MACE scheme and its
generalization to the gMACE in the present paper. [See Fig. 2
for an illustration.] Details are given in Appendix D.

Chemical formula dependence of crystal parameters. Ob-
taining the CF dependence of the AB Hamiltonian requires to
extend the MACE scheme [15–20,22–24]. The latter allows
us to calculate the AB Hamiltonian starting from a given CF
together with the crystal symmetry and crystal parameter (CP)
values. The CP values are usually taken from experiment, so
that the missing step is to calculate ab initio the CP as a
function of the CF. We add this step by introducing the CF
variables (the radii and charges of cations and anions in the
crystal) and calculating the CP as a function of the CF by per-
forming the structural optimization, instead of relying on the
experimental CP values. [Even though the experimental CP
may be more accurate than the optimized CP, the experimental
CP is not always available, and the structural optimization
allows us to obtain the systematic CF dependence of the CP.]
We only assume the symmetry of the primitive cell during the
structural optimization (see Appendix D 1 for details and the
atomic positions).

Calculation of the AB Hamiltonian. After obtaining the
CP for a given CF as described above, the AB Hamilto-
nian is calculated by following the MACE procedure as in
Ref. [20], which is summarized below in the successive steps
(i)–(v). This procedure combines the generalized gradient ap-
proximation (GGA) [25] and the constrained random-phase
approximation (cRPA) [26,27], and is denoted as GGA +
cRPA.

(i) Starting from the CF and the CP values, we first per-
form a density functional theory (DFT) calculation. We obtain
the DFT electronic structure at the GGA level.

(ii) From the GGA electronic structure, we compute the
maximally localized Wannier orbitals [28,29] that span the
medium-energy (M) space. The M space consists in the 17
bands with Cu3d-like, in-plane O2p-like, and apical X2p-
like character near the Fermi level (see Fig. 2). The band
with the highest energy in the M space contains most of
the AB character, and the bands outside the M space form
the high-energy space. The orbital centered on the atom l
and with m-like orbital character is denoted as (l, m), where
the atom index l, l ′ takes the values Cu, O, O′, X (O and O′

denote the two in-plane O atoms in the unit cell.) The orbital
index m, m′ takes the values x2 − y2, 3z2 − r2, xy, and yz for
the Cu3dx2−y2 , Cu3d3z2−r2 , Cu3dxy, and Cu3dyz orbitals (the
Cu3dzx and Cu3dyz orbitals are equivalent), pσ , pπ , and pz for
the in-plane O2pσ , O2pπ , and O2pz orbitals, and px, pz for the
apical X2px and X2pz orbitals (the X2py and X2px orbitals
are equivalent). Note that O2pσ , O′2pσ , O2pπ , and O′2pπ

correspond respectively to O2px, O′2py, O2py, and O′2px.
(iii) From the M space, we compute the AB maximally

localized Wannier orbital by using a procedure that is detailed
in Appendix D. The AB orbital centered on the Cu atom
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FIG. 2. Summary and illustration of the gMACE scheme and
variables that are considered in the gMACE + HDE procedure. On
s = 2, the primitive cell vectors and atomic positions are given in Ap-
pendix D 1. On s = 3, we show the band structure for HgSr2CuO4.
[High-symmetry points are � = (0, 0, 0), D = (1/2, 0, 0), and
X = (1/2, 1/2, 0) in coordinates of the reciprocal lattice.] The
dashed (solid) black bands are those outside (inside) the M space.
The red band is the AB band, and the cyan bands are the 16 other
M bands after disentanglement from the AB band. We also show the
principal characteristic energies that are discussed in the main text:
Energy εe (εo) of the lowest empty band (highest occupied disentan-
gled M band) outside the AB band, and onsite energies εCu

x2−y2 , εO
pσ

,

εX
px

, and εX
pz

of the maximally localized Wannier orbitals whose char-
acter is Cu3dx2−y2 , O2pσ , X2px , and X2pz. (The Cu3dx2−y2/O2pσ

charge-transfer energy is �Exp = εCu
x2−y2 − εO

pσ
). We also show the

isosurfaces of these orbitals (yellow is positive, blue is negative). On
s = 4, we show the isosurface of the AB orbital centered on the Cu
atom, and a schematic illustration of the square lattice formed by the
Cu atoms in the CuO2 plane.

FIG. 3. List of the CFs in the training set of cuprates that is
considered in this paper. We consider Nt = 36 CFs in total. The
general CF is A′A2CuO2X2. The color points that correspond to each
CF are used in the subsequent figures.

located in the unit cell at R is denoted as wR, where R
indicates the position of the unit cell in coordinates of the
primitive vectors a, b, c of the Bravais lattice. We also obtain
the AB band that corresponds to the dispersion of the AB or-
bital. Then, the other 16 bands in the M space are disentangled
[30] from the AB band. (See Fig. 2 for an illustration of the
AB band and disentangled M band dispersions.)

(iv) From the AB orbital, we compute |t1| as

t1 =
∫



drw∗
0 (r)hGGA(r)wR1 (r), (14)

in which  is the unit cell, R1 = [100], and hGGA is the one-
particle part at the GGA level. We also compute v as

v =
∫



dr
∫



dr′w∗
0 (r)w∗

0 (r′)v(r, r′)w0(r)w0(r′), (15)

in which v(r, r′) is the bare Coulomb interaction.
(v) From the AB band, the disentangled M bands and

the high-energy bands outside the M space, we compute the
cRPA screening ratio R and also u as follows. We compute
the cRPA effective interaction WH(r, r′) at zero frequency, by
using Eqs. (D1) and (D4) in Appendix D 1. We deduce U
by replacing v(r, r′) with WH(r, r′) in Eq. (15). We deduce
R = U /v and u = U/|t1|.

C. Training set of cuprates and gMACE + HDE procedure

Below, we define the training set considered in this paper.
(For each CF in the training set, we apply the gMACE proce-
dure described in Sec. III B.) Then, we describe how the HDE
is applied to analyze the gMACE results and extract the CF
dependence of the AB Hamiltonian parameters.

Training set. The training set is defined below and il-
lustrated in Fig. 3. (Detailed discussions on the choice of
the training set are given in Appendix B.) The training
set includes Ntr = 36 CFs, including both experimentally
confirmed and hypothetical superconducting cuprates. The
general CF is A′A2CuO2X2 and the block layer consists in
A′A2X2. For the undoped compound, we have A′ = Hg, ∅,
A = Ba, Sr, Ca, La, Y, Sc, and X = O, F, Cl. For the doped
compound, we use the same procedure as in Ref. [19,20]: We
use the virtual crystal approximation [31] to substitute part
of A or A′ by the chemical element whose atomic number is
that of A or A′ minus one. We consider hole doping δ = 0.0,
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0.1, and 0.2 (that is, up to 20%). This range includes the
experimental range in which the superconducting state is ob-
served. We have ZA′ = 2 − δ if A′ = Hg1−δAuδ and ZA′ = 0
if A′ = ∅, ZA = 2 − δ/2 if A = Ba, Sr, Ca and ZA = 3 − δ/2
if A = La, Y, Sc, ZX = −2 if X = O and ZX = −1 if X = F,
Cl. The ionic charges are related to δ and nAB as follows:

ZA′ + 2ZA + 2ZX = 2 − δ = 1 + nAB. (16)

Note that all CFs in the training set do not need to correspond
to experimentally confirmed superconducting cuprates. For
a given CF, the gMACE result can be used as part of the
data that are analyzed by the HDE procedure to infer the
systematic CF dependence of |t1| and u by making complete
abstraction of whether the corresponding crystal structure can
be stabilized in experiment.

gMACE + HDE procedure. We apply the HDE to express
the AB Hamiltonian parameters as a function of the CF vari-
ables. In addition, to gain further insights on the underlying
microscopic mechanism, we apply the HDE to express the
intermediate quantities within the gMACE as functions of
each other. Namely, we consider Ns = 4 levels of variables
whose definition is guided by the hierarchical structure of
gMACE as illustrated in Fig. 2. At each step s, we define the
variable space Vs = {xs

i , i = 1 . . . , NVs}, and we use the HDE
to express xs

i as a function of the variables in Vs′ (with s′ < s).
For each s, the variables in Vs are chosen as follows. (These
variables are illustrated in Fig. 2.)

Chemical formula (s = 1). We consider V1 = {RA, RX, ZA,
|ZX|, RA′ , nAB}. RA′ is the crystal ionic radius of the second
cation A′ = Hg1−xAux in the block layer (RA′ is set to 0 if
A′ = ∅). Values of the variables in V1 considered in this paper
are given in Appendix D 3. RA, RX, and RA′ are expressed in
Å in this paper.

Crystal parameters (s = 2). We consider V2 = {a, c, dz
A,

dz
X , c⊥}, where a, c, and c⊥ are the cell parameters, and dz

A
(dz

X ) is the distance between the CuO2 plane and the A cation
(apical X anion). The coordinates of primitive vectors and
atoms in the unit cell are given and discussed in Appendix D 1.
All variables in V2 are expressed in Å in this paper.

DFT band structure (s = 3). We consider V3 = {|εl
m|,

|t l,l′
m,m′ |, �Exp, WM, |εo|, εe}. These variables are characteristic

energies within the M space and are defined below. [Their
choice is further discussed in Appendix D 2.] First, we include
the absolute values of the onsite energies εl

m of all maximally
localized Wannier orbitals (l, m) in the M space. (Note that
εl

m < 0 because the onsite energy is below the Fermi level.)
Second, we include the nonzero hopping amplitudes |t l,l′

m,m′ |
between the orbitals (l, m) and (l ′, m′) in the unit cell, where
(l, m) = (Cu, x2 − y2), (O, pσ ). We exclude hoppings in the
unit cell that do not involve (Cu, x2 − y2) or (O, pσ ) orbitals,
and hoppings beyond the unit cell. We use the abbreviation
|txp| = |tCu,O

x2−y2,pσ
|. Third, we include the charge-transfer energy

�Exp = εCu
x2−y2 − εO

pσ
between the (Cu, x2 − y2) and (O, pσ )

orbitals, WM is the bandwidth of the M space, and εo (εe)
is the energy of the highest occupied band in the M space
(lowest empty band among the high-energy bands outside the
M space) outside the AB band. (Note that εo < 0 and εe > 0.)
All variables in V3 are expressed in eV in this paper.

FIG. 4. Ab initio values of |t1|, u = U/|t1|, v, and R = U/v ob-
tained by employing the gMACE for all CFs in the training set. For
each color point, the corresponding CF is shown in Fig. 3.

AB Hamiltonian parameters (s = 4). We consider V4 =
{|t1|, u, v, R} as discussed in Sec. II. |t1| and v are expressed
in eV in this paper.

IV. RESULTS

The ab initio values of |t1| and u together with those of v

and R are summarized in Fig. 4. In this section, we detail the
dependencies of |t1|, v, and R on V1. These dependencies cor-
respond to the items (I), (III), and (IV) discussed in Sec. II and
shown in Fig. 5. We also detail the microscopic mechanism
of (I), (III), and (IV) by detailing the dependencies between
intermediate quantities within the gMACE [the items (1)–(10)
in Fig. 5].

A. Chemical formula dependence of |t1|
Here, we first detail (I). Then, we detail the items (1)–(5)

in Fig. 5.

FIG. 5. Summary of the MODs between quantities obtained
within gMACE + HDE. (upper panel) MOD2s of |t1|, v, and R
on the CF variables in V1. [The items (I), (III), and (IV) have been
summarized in Sec. II, and are discussed in detail in Sec. IV.] (lower
panel) MODs between intermediate quantities within the gMACE.
[The items (1)–(10) are discussed in detail in Sec. IV.]
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FIG. 6. Details on the dependence of |t1| on V1 and V3. (a) Val-
ues of f(g)[|t1|,V1] in the HDE[|t1|,V1], the rHDE[|t1|,V1], the
HDE[|t1|,V3], and the rHDE[|t1|,V3]. (b), (c) Dependence of |t1|
on xopt

(2) [corresponding to Eq. (2)] and xopt
(15) in the HDE[|t1|,V1].

(d) Dependence of |t1| on xopt
(2) in Eq. (17). (e) Representation of the

MOD2 of |t1| on {|txp|, �Exp} in Eq. (17). In the panels (b)–(d),
the CF that corresponds to each color point is shown in Fig. 3,
and the solid black line shows the linear interpolation.

(I) Dependence of |t1| on V1. First, |t1| depends entirely on
the variables in V1. The HDE[|t1|,V1] yields f∞[|t1|,V1] =
0.981 [see Fig. 6(a)], so that D[|t1|,V1] is correct. Consis-
tently, at g = 15, the dependence of |t1| on xopt

(15) is almost
linear [see Fig. 6(c)].

Second, the dependence of |t1| on V1 can be
restricted to the subset {RA, RX, nAB, RA′ } of V1. In
the HDE[|t1|,V1], the variables RX, RA, RA′ , and nAB

correspond to xiopt
1

, xiopt
2

, xiopt
3

, and xiopt
4

, respectively. The
rHDE[|t1|,V1] yields f∞[|t1|, {RA, RX, RA′ , nAB}] = 0.979
and f∞[|t1|, {RA, RX, RA′ }] = 0.963 [see Fig. 6(a)].

Thus, D[|t1|, {RA, RX, RA′ , nAB}] is correct, but
D[|t1|, {RA, RX, RA′ }] is not. Thus, {RA, RX, RA′ , nAB} is
the minimal subset of V1 that describes |t1|.

Third, we discuss details of the MOD2 of |t1| on V1,
which was given in Eq. (2). The MOD2 is not sufficient to
describe |t1| entirely, but the main-order dependence of |t1| is
captured. We have f(2)[|t1|,V1] = 0.884 [see Fig. 6(a)], and
the dependence of |t1| on xopt

(2) is shown in Fig. 6(b). Note that
the dependence of |t1| on RA is equally important to that on
RX in Eq. (2), even though RX corresponds to xiopt

1
(see the

score analysis in Appendix E). In Appendix F, the robustness
of Eq. (2) and the case in which we assume (xiopt

1
, xiopt

2
) =

(RA, RX) instead of (RX, RA) are further analyzed.
(1) Dependence of |t1| on V3. First, |t1| is entirely

determined by |txp| and �Exp irrespective of other vari-
ables in V3. The HDE[|t1|,V3] yields f∞[|t1|,V3] = 1.000
[see Fig. 6(a)]. The variables |txp| and �Exp correspond
to xiopt

1
and xiopt

2
, respectively. The rHDE[|t1|,V3] yields

f∞[|t1|, {|txp|,�Exp}] = 0.999 and f∞[|t1|, {|txp|}] = 0.956,
so that D[|t1|, {|txp|,�Exp}] is correct but D[|t1|, {|txp|}] is not.
Thus, {|txp|,�Exp} is the subset of V3 that describes |t1|.

Second, the MOD2 of |t1| on {|txp|,�Exp} is
sufficient to describe accurately |t1|. Indeed, we have
f(2)[|t1|, {|txp|,�Exp}] = 0.994, and the dependence of
|t1| on xopt

(2) is almost linear [see Fig. 6 (d)]. The MOD2 is

|t1|MOD2 = 1.269 − 0.777
{|txp|−0.58

[
1 + 0.0739�E0.98

xp

]}
(17)

and is represented in Figs. 6(d) and 6(e). Note that |txp| dom-
inates over �Exp in the MOD2 (see the score analysis in
Appendix E), which is also visible in Fig. 6(e): The color map
has a horizontal-like pattern.

Qualitatively, |t1|MOD2 increases with increasing |txp| and
decreasing �Exp in Eq. (17), and this is consistent with previ-
ous works. In the case of Hg1223, we have |t1| ∝ |txp|2/�Exp

in Fig. 12 of Ref. [20]. (The latter result was obtained by mod-
ifying a artificially without modifying other CPs.) The result
in Eq. (17) is more general, because Eq. (17) is established for
Ntr = 36 CFs rather than one CF, and it accounts for the CF
dependence of all CPs.

The MOD2 in Eq. (17) can be interpreted as follows. |t1|
represents the hopping amplitude between neighboring AB
orbitals, and thus, |t1| mainly depends on the overlap between
neighboring AB orbitals. Since the AB orbital is formed by the
Cu3dx2−y2 and in-plane O2pσ orbitals, the overlap between the
neighboring AB orbitals is determined by the overlap between
the neighboring Cu3dx2−y2 and in-plane O2pσ orbitals, which
is mainly encoded in |txp|. Thus, it is natural that |t1| mainly
depends on |txp|. In addition, decreasing �Exp reduces the
localization of the AB orbital (as discussed later in Sec. IV B):
The delocalization of the AB orbital within the CuO2 plane
contributes to increase the overlap between neighboring AB
orbitals and thus |t1|.

(2) Dependence of |txp| on V2. |txp| is entirely deter-
mined by the cell parameter a irrespective of other variables
in V2, and the MOD1 describes |txp| perfectly. Indeed, the
HDE[|txp|,V2] yields f(1)[|txp|, V2] = 1.000 [see Fig. 7(a)],
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FIG. 7. Details on the dependence of |txp| on V2, �Exp on V2, a on V1, dz
X on V1, and also |t1| on V1 and �Exp on V1 for com-

pleteness. (a) Values of f(g)[y,V] in the HDE[|txp|,V2], the HDE[�Exp,V2], the HDE[a,V1], the HDE[dz
X,V1], the HDE[|t1|, {a}], and the

HDE[�Exp,V1]. (b)–(f) Representation of the MOD1 of |txp| on V2 [Eq. (18)], the MOD2 of �Exp on V2 [Eq. (21)], the MOD2 of dz
X on V1

[Eq. (22)], the MOD2 of a on V1 [Eq. (20)], and the MOD1 of |t1| on {a} [Eq. (19)]. (g)–(k) Dependence of |txp| and |t1| on their respective
xopt

(1) , and �Exp, dz
X, and a on their respective xopt

(2) . [Panels (g) to (k) correspond to panels (b) to (f), respectively.] The CF that corresponds to
each color point is shown in Fig. 3, and the solid black line shows the linear interpolation.

and xiopt
1

corresponds to a. The MOD1 is

|txp|MOD1 = −0.0632 + 212.234a−3.75 (18)

and is represented in Figs. 7(b) and 7(g). The score analysis
shows that the dominance of a in the dependence of |txp| is
unambiguous (see Appendix E).

The a dependence of |txp| is consistent with results on
Hg1223 [20]. In particular, the exponent −3.75 in Eq. (18)
is very close to that obtained for Hg1223, in which |txp| ∝
a−3.86 (see Ref. [20], Fig. 12). This suggests |txp| scales as
a−3.75 universally and irrespective of the crystalline environ-
ment outside the CuO2 plane. This is intuitive because the
Cu3dx2−y2 and O2pσ orbitals extend mainly in the CuO2 plane
as illustrated in Fig. 2.

In addition, |t1| increases when a decreases according to
Eqs. (18) and (17). This is consistent with Ref. [20], in
which the pressure-induced decrease in a is the main cause
of the pressure-induced increase in |t1|. For completeness,
we perform the HDE[|t1|, {a}]: We obtain f∞[|t1|, {a}] =
f(1)[|t1|, {a}] = 0.957, so that a describes |t1| reasonably, but
not perfectly. This is because |t1| has not only a dominant
dependence on |txp| but also a small dependence on �Exp, and
�Exp is not described entirely by a as seen later in (4). The
MOD1 of |t1| on a is

|t1|MOD1 = 0.956 − 0.0176a2.42, (19)

and is represented in Figs. 7(f) and 7(k). Qualitatively,
|t1|MOD1 increases when a decreases, which is consistent with
Ref. [20] and also with Eqs. (18) and (17). For completeness,
note that there is a quantitative difference between Eq. (19)
and [20]: In the latter, we have |t1| ∝ a−2.88 (see Ref. [20],
Fig. 12). The difference may be explained as follows. |t1| de-
pends on both |txp| and �Exp [Eq. (17)], and �Exp depends on
the crystalline environment outside the CuO2 plane contrary
to |txp|. [For instance, as seen later in (5), the MOD2 of �Exp

depends not only on a but also on dz
X.] The result in Ref. [20]

captures the a dependence of |t1| by fixing the other CP values;
the present result is more general because it accounts for the

materials dependence of other CP values via the structural
optimization.

(3) Dependence of a on V1. a is determined entirely by
RA and RX in V1. The HDE[a,V1] yields f∞[a,V1] = 0.994,
and the rHDE[a,V1] yields f∞[a, {RA, RX}] = 0.985. On the
MOD2, we have f(2)[a, {RA, RX}] = 0.973, and

aMOD2 = 3.613 + 0.100
{
R2.71

A

[
1 + 0.00711R9.14

X

]}
, (20)

which is represented in Fig. 7(e) and 7(j). The score analysis
confirms that RA and RX correspond respectively to xiopt

1
and

xiopt
2

(see Appendix E).
The MOD2 in Eq. (20) is interpreted as follows: Quali-

tatively, aMOD2 increases when RA or RX increases, which is
consistent with the hard-sphere picture illustrated in Fig. 8:
The interatomic distances and thus the cell parameter a in-
crease when the ionic radii are larger. Thus, the hard-sphere
picture reproduces the qualitative dependence of a on the
ionic radii. Furthermore, the MOD2 in Eq. (20) is qualita-
tively consistent with experiment, in which a increases with
increasing RA. For instance, for X = Cl, we have a = 3.87
Å for A = Ca [32,33], a = 3.97–3.98 Å for A = Sr [34,35],
and a = 4.10 Å for A = Ba [10]. (These values are in correct
agreement with the values a = 3.88 Å for A = Ca, a = 4.00
Å for A = Sr and a = 4.15 Å for A = Ba obtained in this

FIG. 8. Illustration of the hard-sphere picture for the crystal of
the single-layer cuprate. In this picture, cations, and apical anions
are assumed to be rigid spheres that touch each other, and we have
RA + RX = [(a/

√
2)2 + (dz

X − dz
A)2]1/2.
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FIG. 9. Schematic illustration of the positive Madelung potential
(MP) and negative MP created by the cations and anions within the
crystal. (a) Positive MP created by the cation A and felt by the
nearest-neighbor apical X (green arrows), in-plane O (red arrows),
and Cu (blue arrows). (b) negative MP created by the apical X anion
and felt by the nearest-neighbor Cu (blue arrow), in-plane O (red
arrows), and cations (green arrows). (c) negative MP created by the
in-plane O anion and felt by the nearest-neighbor Cu (blue arrows)
and other in-plane O (red arrows). In panel (a), the positive MP cre-
ated by A and felt at a distance d of A scales as VA(d ) = ZA/d . The
distance dA,X = [a2/2 + (dz

X − dz
A)2]1/2 between A and X is smaller

than the distance dA,O = [a2/4 + (dz
A)2]1/2] between A and in-plane

O, which is smaller than the distance dA,Cu = [a2/2 + (dz
A)2]1/2 be-

tween A and Cu. Thus, we have VA(dA,X) > VA(dA,O) > VA(dA,Cu).
In the panel (b), we have |VX(dX,A )| > |VX(dX,Cu)| > |VX(dX,O)|. In
the panel (c), we have |VO(dO,Cu)| > |VO(dO,O′ )|.

paper by employing the structural optimization.) And we have
RCa = 1.14 Å, RSr = 1.32 Å and RBa = 1.49 Å [36]. (The
values of RA are given in Appendix D 3, and the RA depen-
dence of experimental a is also emphasized in Ref. [10].)
Also, for X = O, we have a � 3.78 Å in La2CuO4 [37] and
a � 3.88 Å in HgBa2CuO4 [4]. (These values are in correct
agreement with the values a � 3.82 in La2CuO4 and a � 3.92
Å in HgBa2CuO4 obtained in this paper by employing the
structural optimization.) And, we have RLa = 1.17 Å and
RBa = 1.49 Å [36].

(4) Dependence of �Exp onV2. �Exp is not determined en-
tirely by V2, but the MOD2 reveals the main-order mechanism
that controls the value of �Exp. The HDE[�Exp,V2] yields
f∞[�Exp,V2] = 0.952 [see Fig. 7(a)], so that D[�Exp,V2]
is not completely correct. As for the MOD2, we have
f(2)[�Exp,V2] = 0.940; the MOD2 is

�ExpMOD2 = 88.343 − 85.265
[(

dz
X

)0.04 − 0.479a−2.12
]
(21)

and is represented in Figs. 7(c) and 7(h). Even though dz
X

corresponds to xiopt
1

, the dependence of �Exp on dz
X is equally

important to that on a (see the score analysis in Appendix E).
Consistently, in Fig. 7(c), the color map has a diagonal-like
pattern.

Qualitatively, �Exp increases when dz
X decreases or a de-

creases in Eq. (21). The increase in �Exp with decreasing
dz

X can be understood as follows. When dz
X decreases, the

distance between the apical X and the CuO2 plane decreases,
so that the negative MP created by the apical X anion and
felt by the Cu and in-plane O is stronger. This increases the
energy of both Cu3dx2−y2 and O2pσ electrons. The negative
MP felt by Cu is the strongest, because the Cu is closer to the
apical X compared with the in-plane O. [See Fig. 9(b) for an

illustration.] Thus, the energy of Cu3dx2−y2 electrons increases
more than that of in-plane O2pσ electrons. As a consequence,
�Exp increases.

The increase in �Exp with decreasing a is consistent with
Ref. [20], and the mechanism is reminded here. When a
decreases, the distance between the in-plane O and Cu is
reduced, so that the negative MP created by the in-plane O
anions and felt by the Cu is stronger. [See Fig. 9(c) for an illus-
tration.] This increases the energy of Cu3dx2−y2 electrons with
respect to that of in-plane O2pσ electrons, which increases
�Exp.

(5) Dependence of dz
X on V1. dz

X is determined entirely by
V1. The HDE[dz

X ,V1] yields f∞[dz
X ,V1] = 0.995. As for the

MOD2 of dz
X on V1, we have f(2)[dz

X ,V1] = 0.979, and

dz
XMOD2 = 14.353 − 12.254

{
R−0.10

A

[
1 − 0.00897R2.80

X

]}
(22)

is represented in Figs. 7(d) and 7(i). The score analysis con-
firms that RA and RX correspond respectively to xiopt

1
and xiopt

2

(see Appendix E).
Qualitatively, dz

XMOD2 increases when RA or RX increases
in Eq. (22). This can also be understood by considering the
hard-sphere picture (see the right panel in Fig. 8). In the ab
initio result, we always have dz

A < dz
X (the values of dz

A and
dz

X are given in Appendix D 3), so that the apical X is farther
from the CuO2 plane compared with the A cation. In the hard-
sphere picture, increasing the ionic radius RA of the A cation
pushes the apical X even farther from the CuO2 plane, which
increases dz

X. The same mechanism occurs when RX increases.
Dependence of �Exp on V1. For (4) and (5), for com-

pleteness, we discuss the dependence of �Exp on V1. �Exp

is determined entirely by the subset {RA, RX, nAB} of V1.
The HDE[�Exp,V1] yields f∞[�Exp,V1] = 0.995, and the
rHDE[�Exp,V1] yields f∞[�Exp, {RA, RX, nAB}] = 0.988
and f∞[�Exp, {RA, RX}] = 0.967 [see Fig. 7(a)]. Thus,
D[�Exp, {RA, RX, nAB}] is correct, but D[�Exp, {RA, RX}] is
not. We have f(2)[�Exp,V1] = 0.961 and f(3)[�Exp,V1] =
0.982, and the MOD3 is

�ExpMOD3 = 9.710 − 7.565

× {
R0.33

A

[
1 + 0.000411R9.33

X

] − 0.0999n1.77
AB

}
.

(23)

The score analysis confirms that RA and RX correspond re-
spectively to xiopt

1
and xiopt

2
, and nAB corresponds to xiopt

3
but is

slightly in competition with ZA (see Appendix E).
Qualitatively, �ExpMOD3 increases when RA decreases, RX

decreases or nAB increases in Eq. (23). This is consistent with
Eqs. (21), (22), and (20). Also, �Exp decreases when nAB

decreases (the hole doping δ increases). This is consistent with
Ref. [19] and explained as follows. When δ increases, the hole
doping of O sites increases. (The holes localize on O sites
to form the Zhang-Rice singlet.) This reduces the negative
charge of in-plane O anions. This reduces the negative MP
created by the in-plane O and felt by the nearby Cu. [See
Fig. 9(c) for an illustration.] This reduces the energy of Cu3d
electrons, and also reduces the Fermi energy. (Indeed, the AB
band at the Fermi level has Cu3dx2−y2 character.) On the other
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hand, the O2p electrons are less affected. Thus, the energy
difference �Exp = εCu

x2−y2 − εO
pσ

increases.

B. Chemical formula dependence of v

Here, we first detail (III). Then, we detail the item (6)
in Fig. 5. [Items (2)–(5) have already been discussed in the
previous section].

(III) Dependence of v on V1. First, v depends entirely
on the variables in V1. The HDE[v,V1] yields f∞[v,V1]
= 0.992 [see Fig. 10(a)], so that D[v,V1] is correct.
Second, the dependence of v can be restricted to the
subset {RA, ZA, RX} of V1. The variables RA, ZA, RX,
nAB correspond to xiopt

g
at g = 1, 2, 3, 4, respectively, and

the rHDE[v,V1] yields f∞[v, {RA, ZA, RX, nAB}] = 0.991,
f∞[v, {RA, ZA, RX}] = 0.980, and f∞[v, {RA, ZA}] = 0.950,
so that D[v, {RA, ZA, RX}] is correct but D[v, {RA, ZA}] is not.
The MOD2 of v on V1 is given in Eq. (4). The score analysis
shows that RA and ZA correspond to xiopt

1
and xiopt

2
unambigu-

ously (see Appendix E). In Appendix F, the robustness of
Eq. (4) is confirmed.

(6) Dependence of v on V3. v is entirely determined by
|txp| and �Exp in V3, but the clarification of this dependence
is a bit more subtle and we discuss it in detail here. The
HDE[v,V3] yields f∞[v,V3] = 0.999 [see Fig. 10(a)]. The
variable |εCu

pz
| corresponds to xiopt

1
, and we have f(1)[v,V3] =

0.976. However, the physical MOD1 of v is not on |εCu
pz

| but
rather on �Exp, as discussed below. The score analysis in
Appendix E shows that the three variables |εO

pσ
|, |εO

pπ
|, and

�Exp = εCu
x2−y2 − εO

pσ
are in very close competition with |εCu

pz
|

at g = 1. These four variables have a common point: They
are all related to the onsite energies of in-plane O2p orbitals.
The information that can be extracted from the above result
is the following: v is primarily controlled by the energy of the
in-plane O2p orbitals. We pinpoint the physical dependence as
that on �Exp by considering the result in Ref. [20]: v mainly
depends on Rxp = |txp|/�Exp, and v increases when Rxp de-
creases (that is, when |txp| decreases or �Exp increases). The
interpretation is reminded here: Decreasing Rxp reduces the
Cu3dx2−y2/O2pσ hybridization, which increases the localiza-
tion of the AB orbital and thus v.2 To confirm the consistency
with [20], we perform the HDE[v, {�Exp, |txp|}]. We obtain
f(2)[v, {�Exp, |txp|}] = 0.985, so that D[v, {�Exp, |txp|}] is
correct and the MOD2 of v on {�Exp, |txp|} is accurate. The
MOD2 is

vMOD2 = 10.119 + 4.710
{
�E0.93

xp

[
1 − 0.399

∣∣t0.69
xp

∣∣]} (24)

and is illustrated in Fig. 10(d). We choose to keep Eq. (24)
as the final result for the dependence of v on V3. For com-
pleteness, we also perform the HDE[v, {Rxp}]. We obtain
f∞[v, {Rxp}] = 0.972 and f(1)[v, {Rxp}] = 0.971, and the
MOD1 is

vMOD1 = 6.824 + 5.941R−0.67
xp . (25)

2If |txp| → 0, the Cu3dx2−y2 and O2pσ orbitals do not overlap and
thus do not hybridize. If �Exp → +∞, the difference between the
Cu3dx2−y2 and O2pσ energy levels becomes very large, so that the
hybridization becomes negligible.

FIG. 10. Dependence of v on V1 and V3. (a) Values of
f(g)[v,V] in the HDE[v,V1], the rHDE[v,V1], the HDE[v,V3],
the HDE[v, {�Exp, |txp|}] and the HDE[v, {Rxp = �Exp/|txp|}]. (b),
(c) Dependence of |t1| on xopt

(2) [corresponding to Eq. (4)] and

xopt
(15) in the HDE[v,V1]. (d) Dependence of |t1| on xopt

(2) in the
HDE[v, {�Exp, |txp|}]. Panel (d) corresponds to the MOD2 in
Eq. (24). (e) Representation of the MOD2 of v on �Exp and |txp|. In
panels (b)–(d), the CF that corresponds to each color point is shown
in Fig. 3, and the solid black line shows the linear interpolation.

According to both Eq. (24) and Eq. (25), v increases when
|txp| decreases or �Exp increases, which is consistent with
Ref. [20].

C. Chemical formula dependence of R

Here, we first detail (IV). Then, we discuss the items (7)–
(10) in Fig. 5.

(IV) Dependence of R on V1. The dependence of R is more
complex than that of |t1| and v: R is not entirely determined
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by V1 or even V1 ∪ V2. The HDE[R,V1] yields f∞[R,V1] =
0.849, so that D[R,V1] is incorrect. The HDE[R,V1 ∪ V2]
yields f∞[R,V1 ∪ V2] = 0.860, so that D[R,V1 ∪ V2] is still
incorrect.

Even though D[R,V1] is incorrect, the MOD2 of R on V1

[Eq. (5)] reveals the main-order mechanism of the dependence
of R. Namely, R has a very rough MOD2 on |ZX| and nAB,
which is consistent with the below discussion. The score anal-
ysis shows that ZX and nAB correspond respectively to xiopt

1

and xiopt
2

unambiguously (see Appendix E). In Appendix F, the
robustness of Eq. (5) is confirmed.

Qualitatively, R increases when (i) |ZX| decreases or (ii)
nAB increases in Eq. (5) (see also Fig. 1). The microscopic
mechanism of (i) and (ii) is detailed below.

(i) Decreasing |ZX| reduces the negative charge of the
apical anion. This reduces the negative MP created by the
apical anion and felt by the electrons in the nearby CuO2

plane. [See Fig. 9(b) for an illustration.] This reduces the
energy of the electrons in the CuO2 plane, and also reduces
the Fermi energy. (Indeed, the electrons in the CuO2 plane are
near the Fermi level, so that the Fermi level is determined by
the energy of the electrons in the CuO2 plane.) On the other
hand, the empty states are less affected, and their energy does
not change substantially. However, because the Fermi level is
reduced as discussed above, the empty states become higher
in energy relative to the Fermi level (so that εe increases).
This reduces the screening from empty states, and thus,
increases R.

(ii) The decrease in R with decreasing nAB (increasing δ)
is discussed in Ref. [19], and the microscopic mechanism
is reminded here. When δ increases, the hole doping of O
sites increases. This reduces the negative charge of in-plane O
anions. This reduces the negative MP created by the in-plane
O and felt by the nearby Cu. [See Fig. 9(c) for an illustration.]
This reduces the energy of Cu3d electrons, and also reduces
the Fermi energy. (Indeed, the AB band at the Fermi level has
Cu3dx2−y2 character.) On the other hand, the O2p electrons are
less affected. However, because the Fermi level is reduced, the
occupied O2p states become closer to the Fermi level (so that
|εo| decreases). This increases the screening from occupied
states, and thus, reduces R.

For completeness, the hole doping dependence of R is
discussed in detail in Appendix G, which is summarized here.
Even though R increases when |ZX| decreases as discussed
above, the decrease in |ZX| also accelerates the decrease in R
with decreasing nAB, which is not captured by Eq. (5). This
is why the three color points with the lowest R in Fig. 11(b)
deviate from the linear interpolation, which is a major cause
of the relatively low value of f(2)[R,V1] = 0.642. The MOD2
in Eq. (5) may be combined with the results in Appendix G to
obtain a more accurate picture of the dependence of R on |ZX|
and nAB.

(7) Dependence of R on V3. R may be entirely deter-
mined by the subset {εX

px
, εo, εe} of V3. The HDE[R,V3] yields

f∞[R,V3] = 0.976, so that D[R,V3] is reasonably correct;
also, the dependence of R on xopt

(15) is almost linear [see
Fig. 11(e)]. The rHDE[R,V3] yields f∞[R, {|εX

px
|, |εo|, εe}] =

0.974, so that D[R, {|εX
px

|, |εo|, εe}] is reasonably correct as
well. Note that even though R has complex dependencies

FIG. 11. Dependence of R on V1 and V3. (a) Values of f(g)[R,V]
in the HDE[R,V1], the HDE[R,V1 ∪ V2], the HDE[R,V3] and the
rHDE[R,V3]. (b), (c) Dependence of R on xopt

(2) [corresponding to

Eq. (5)] and xopt
(15) in the HDE[R,V1]. (d), (e) Dependence of R

on xopt
(3) [corresponding to Eq. (26)] and xopt

(15) in the HDE[R,V3].
In panels (b)–(e), the CF that corresponds to each color point
is shown in Fig. 3, and the solid black line shows the linear
interpolation.

on the whole band structure via the polarization formula in
Appendix D, Eq. (D1), the above result shows that R can be
described reasonably by only three characteristic energies in
the band structure.

In the following, we discuss the MOD3 of R on V3 instead
of the MOD2 as usually done before. This is justified as
follows: In the case of |t1| and v, we have f(2)[|t1|,V3] =
0.994 and f(2)[v,V3] = 0.984, so that the MOD2 is accurate.
However, for R, we have f(2)[y,V3] = 0.846 but f(3)[y,V3] =
0.923, so that the MOD3 is more accurate than the MOD2.
To obtain a compromise between accuracy and simplicity, we
choose to discuss the MOD3. Although the MOD3 does not
describe R perfectly, the dependence of R on xopt

(3) is almost
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FIG. 12. Dependence of y = |εX
px

|, |εo|, and εe on V1. (a) Values of f(g)[y,V] in the HDE[y,V1]. (b)–(d) Representation of the MOD2 of y

on V1 in Eqs. (27), (28), (29). (e)–(g) Dependence of y on xopt
(2) which corresponds to the panels (b)–(d), respectively. The CF that corresponds

to each color point is shown in Fig. 3, and the solid black line shows the linear interpolation.

linear as seen in Fig. 11(d). The MOD3 of R on V3 is

RMOD3 = 0.309 + 0.000105

× [∣∣εX
px

∣∣3.94 − 93.1|εo|−1.01 − 184ε−0.93
e

]
. (26)

The score analysis confirms that |εX
px

|, |εo|, and εe correspond
respectively to xiopt

1
, xiopt

2
, and xiopt

3
(see Appendix E).

Qualitatively, R increases (i.e., the screening decreases)
when |εX

px
| increases (i.e., the occupied apical X2px orbital

becomes farther from the Fermi level), |εo| increases (the
highest occupied energy band becomes farther from the Fermi
level), or εe increases (the lowest empty energy band becomes
farther from the Fermi level). These three dependencies are
intuitive, because the screening from a given band decreases
when the band energy is farther from the Fermi level. [See the
polarization formula in Appendix D, Eq. (D1).]

The three variables {|εX
px

|, |εo|, εe} are entirely determined
by V1 but not by V2. For y in {|εX

px
|, |εo|, εe}, the HDE[y,V2]

yields f∞[|εX
px

|,V2] = 0.892, f∞[|εo|,V2] = 0.728, and
f∞[εe,V2] = 0.948, so that V2 does not describe accu-
rately |εX

px
|, |εo|, and εe. However, the HDE[y,V1] yields

f∞[|εX
px

|,V1] = 0.991, f∞[|εo|,V1] = 0.962, and f∞[εe,V1]
= 0.995 [see Fig. 12(a)]. Here, we choose to express |εX

px
|,

|εo|, and εe directly as a function of V1 instead of V2 in order
to obtain a more accurate expression. Thus, in the following,
we discuss the dependence of |εX

px
|, |εo|, and εe on V1. The

MOD2s of |εX
px

|, |εo|, and εe on V1 are
∣∣εX

px

∣∣
MOD2 = 2.902 − 0.287

[
R8.49

A′ − 26.5R−9.99
X

]
, (27)

|εo|MOD2 = 0.934 − 0.0443
[
n−9.99

AB + 0.151R8.99
A

]
, (28)

εeMOD2 = 298.062 − 295.636
[|ZX|0.01 − 0.000899n−5.58

AB

]
,

(29)

and are represented in Fig. 12. [These correspond to items
(8), (9), and (10) in Fig. 5, respectively.] The score analysis
confirms that xiopt

1
and xiopt

2
correspond to RA′ and RX in the

dependence of |εX
px

|, nAB, and RA in the dependence of |εo|,
and ZX and nAB in the dependence of εe (see Appendix E).

On (III) and (7), let us discuss the common dependencies
of R, |εX

px
|, |εo|, and εe on |ZX| and nAB. First, as for |ZX|,

the MODs of R and |εX
px

| on |ZX| are consistent. Indeed, both
RMOD2 [Eq. (5)] and |εX

px
|MOD2 [Eq. (27)] increase when |ZX|

decreases; consistently, RMOD3 [Eq. (26)] increases when |εX
px

|
increases.

Second, as for nAB, RMOD2 decreases with decreasing nAB

in Eq. (5). This is the result of a competition between the
MODs of |εo| and εe on nAB [Eqs. (28) and (29)]. Indeed, when
nAB decreases, the two mechanisms (i) and (ii) occur. On the
one hand, (i) |εo|MOD2 [Eq. (28)] decreases, which contributes
to decrease RMOD3 according to Eq. (26). On the other hand,
(ii) εeMOD2 [Eq. (29)] increases, which contributes to increase
RMOD3 according to Eq. (26). The fact that RMOD2 decreases
with decreasing nAB in Eq. (5) suggests that (ii) dominates
over (i).

(8) Dependence of |εX
px

| on V1. The MOD of |εX
px

| on RA′

and RX in Eq. (27) is understood as follows: First, |εX
px

| de-
creases when RA′ increases. Zero RA′ corresponds to A′ = ∅,
whereas nonzero RA′ corresponds to A′ = Hg1−δAuδ . The
symmetry of the primitive cell changes from A′ = ∅ to
A′ = Hg1−δAuδ (see Fig. 2), and the crystalline environment
changes as well. And, if we represent |εX

px
| as a function of

|εX
pz
| (in Appendix D 3), we see that |εX

px
| � k0 + k1|εX

pz
| has an

affine dependence on |εX
pz
|, but the coefficients k0 are different

for A′ = ∅ and A′ = Hg1−δAuδ whereas the coefficients k1

are nearly identical. Namely, the affine regression yields∣∣εX
px

∣∣ = 0.181 + 0.940
∣∣εX

pz

∣∣ (A′ = ∅), (30)

∣∣εX
px

∣∣ = −1.436 + 0.965
∣∣εX

pz

∣∣ (A′ = Hg1−δAuδ ). (31)

Thus, from A′ = ∅ to A′ = Hg1−δAuδ , |εX
px

| is reduced by
1.62 eV for a given value of |εX

pz
|. On the other hand, for

A′ = ∅, the value of k0 is universal irrespective of A and
X. This suggests that the decrease in |εX

px
| from A′ = ∅ to

A′ = Hg1−δAuδ does not depend on A or X, but rather on the
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presence of the A′ atom and the subsequent change in crystal
structure and crystal electric field. A possible explanation is
the following: For A′ = Hg1−δAuδ , there is a A′ atom close to
the apical X (see Fig. 2), and the apical X2p orbital overlaps
with the A′5d orbitals. This may cause the apical X2px orbital
to catch antibonding X2p/A′5d character,3 which may desta-
bilize the apical X2px orbital (i.e., increase its onsite energy
and thus reduce |εX

px
|). This is consistent with the isosurface

of the apical X2px orbital in Fig. 2 for A′ = Hg1−δAuδ: We
see that the apical X2px orbital has a slight A′yz/zx character
near the A′ atom.

Second, |εX
px

| increases when RX decreases. This is consis-
tent with Ref. [20]: When a decreases, the occupied bands
in the M space (including apical X bands) become farther
from the Fermi level [see Ref. [20], Figs. 3(h)–3(k)]. This is
because the negative MP created by the in-plane O and felt
by the Cu increases [as illustrated in Fig. 9(c)], so that the
energy of the Cu3dx2−y2 increases (and this shifts the Fermi
level upward), whereas the apical X orbitals are less affected.
And, the decrease in RX contributes to decrease a, as discussed
previously.

(9) Dependence of |εo| on V1. The MOD of |εo| on nAB and
RA in Eq. (28) is understood as follows: First, |εo| decreases
when nAB decreases (i.e., the hole doping increases). This is
consistent with Ref. [19], and the cause is interpreted as a
rigid shift of the Fermi level upon hole doping. Because the
partially filled AB band is the only band at the Fermi level,
increasing the hole doping reduces the number of electrons
in the AB band, which shifts the Fermi level downward. As a
result, the energy of occupied bands relative to the Fermi level
increases. These include the highest occupied band outside the
AB band, whose energy is εo. Thus, εo < 0 increases, so |εo|
decreases.

Second, |εo| increases when RA decreases. The micro-
scopic mechanism is discussed in detail in Appendix H.

(10) Dependence of εe on V1. The MOD of εe on |ZX| and
nAB in Eq. (29) is understood as follows: First, εe increases
when |ZX| decreases. The mechanism was summarized in
Sec. II [see (IV), item (i)], and is detailed here. Apical X
anions with the negative charge ZX emit a negative MP that
increases the energy of surrounding electrons, in particular
those in the M bands, because the Cu and in-plane O atoms are
in the vicinity of apical X. Reducing |ZX| reduces the negative
MP from apical X felt by the Cu and in-plane O. [See Fig. 9(b)
for an illustration.] This reduces the energy of M bands. The
Fermi energy is also reduced, because it is determined by
the partially filled AB band which is in the M space. Thus,
the empty bands become farther from the Fermi level. This
is consistent with results on Hg1223 in Ref. [20] (see, e.g.,
Appendix E1).

Second, εe increases when nAB decreases. This is because
(i) the Fermi level is shifted downward when nAB decreases
because of the hole doping of the AB band [as discussed
in (9)]. As a consequence, the empty bands become farther
from the Fermi level, and thus εe increases. In addition, (ii)

3Note that the X2px orbital that is considered here is a maximally
localized Wannier orbital, whose character may be slightly different
from the purely atomic px character.

when nAB decreases, the M bands are stabilized, which further
shifts the M bands and thus the Fermi level downward. This is
because the hole doping of in-plane O increases when nAB de-
creases as mentioned before: This reduces the negative charge
of the in-plane O ions, and thus the negative MP created
by the in-plane O ions. [See Fig. 9(c) for an illustration.]
This stabilizes the M bands, which increases the energy gap
between M bands and empty bands.

V. DISCUSSION

Here, we discuss the universality and accuracy of the
obtained expressions of |t1|, v, and R. Also, we propose pre-
scriptions to optimize T opt

c in future design of superconducting
cuprates and akin materials.

A. Universality and accuracy of the expressions
of AB Hamiltonian parameters

The CF dependencies of |t1|, v, and R obtained in this paper
offer reliable guidelines for design of SC cuprates and akin
compounds, if we assume that (A) the training set considered
in this paper is representative of the diversity in single-layer
cuprates, and (B) the CF dependence of the AB Hamiltonian
parameters |t1| and u is correctly captured (at least qualita-
tively) by the GGA + cRPA version of MACE employed in
this paper.

(A) is supported in Appendix B; below, we support (B).
The detailed discussion on (B) is necessary, because the GGA
+ cRPA is the simplest level of the MACE scheme; more
sophisticated versions of MACE have been employed in previ-
ous works, such as the constrained GW (cGW ) supplemented
with self-interaction correction (SIC) at the cGW -SIC level
[17] and level renormalization feedback (LRFB) at the cGW -
SIC + LRFB level [18]. Equation (1) was determined by
solving AB Hamiltonians at the cGW -SIC + LRFB level [19].

The GGA + cRPA is expected to capture correctly the
qualitative materials dependence of |t1| and u [19,20] while
avoiding the complexity of the cGW -SIC + LRFB calcu-
lation. For instance, u is smaller in Bi2201 compared with
Bi2212 at the cGW -SIC + LRFB level, and this result is re-
produced qualitatively by the GGA + cRPA [19]. In addition,
in Hg1223, the qualitative pressure dependence of |t1| and u is
captured by the GGA + cRPA [20].

Still, it should be noted that the accurate prediction of the
materials dependence of T opt

c cannot be done by considering
the materials dependent |t1| and u at the GGA + cRPA level
(the values in Fig. 4). Indeed, the GGA + cRPA has a lim-
itation at the quantitative level. For instance, in Bi2201 and
Bi2212, u is underestimated at the GGA + cRPA level, and
the difference between the values of u (|t1|) at the GGA +
cRPA and cGW -SIC + LRFB levels is around 10% (5%)
[19]. The uncertainty on u may cause a significant uncer-
tainty on FSC and thus T opt

c , because T opt
c strongly depends

on u via FSC in Eq. (1), especially when u is located in the
weak-coupling region u � 6.5–8.0 [14]. Thus, the quantitative
improvement from the GGA + cRPA level to the cGW -SIC
+ LRFB level is required to tackle the accurate prediction of
T opt

c � 0.16|t1|FSC [14] from the values of |t1| and u.
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Nonetheless, we restrict to the simplest GGA + cRPA
level in the present paper, because (i) the cGW -SIC + LRFB
calculation is complex and computationally expensive, and
(ii) the GGA + cRPA is expected to capture correctly the
materials dependence of the AB Hamiltonian at least quali-
tatively [19,20], as discussed above. Quantitative prediction
of the CF dependence of T opt

c by using Eq. (1) requires the CF
dependence of the cGW -SIC + LRFB result, which is left for
future studies.

Also, note that some of the results obtained in this paper
are independent of the restriction to the GGA + cRPA level
and are expected to remain valid for the AB Hamiltonian at
the cGW -SIC + LRFB level. This is the case of the items (3),
(5), (6), and (7) in Fig. 5. For instance, the dependencies of R
and v on V3 in Eqs. (26) and (24) make complete abstraction
of the level of the electronic structure from which the AB
Hamiltonian is calculated (GGA in the case of GGA + cRPA,
or GW + LRFB [18] in the case of cGW -SIC + LRFB). Thus,
the dependencies of R and v on V3 in Eqs. (26) and (24) are
expected to be rather universal. (The detailed dependencies
of |txp|, �Exp, |εX

px
|, |εo|, and εe at the GW + LRFB level

on the CF are left for future studies.) However, on |t1|, the
dependence on V3 in Eq. (17) does not take into account the
removal of exchange-correlation double counting [16] that is
done at the cGW -SIC + LRFB level. This corrects |t1| by
a term which is materials dependent [19,20]. (The detailed
materials dependence of this term is left for future studies.)

B. Prescriptions to optimize T opt
c

The experimentally known values of T opt
c at ambient pres-

sure reach up to 94 K [4] in single-layer cuprates, and the
highest known value is 138 K [2] in the triple-layer cuprate
Hg1223 [2,3]. Under pressure, T opt

c increases from 94 to
118 K in the single-layer cuprate HgBa2CuO4 and from 138 K
to 164–166 K in the trilayer cuprate Hg1223 [2,3].

To optimize T opt
c beyond the above values in future de-

sign of superconducting cuprates, we propose prescriptions
by considering the MODs given in Sec. II. Because our cal-
culations are restricted to single-layer cuprates at ambient
pressure, quantitative predictions from the MODs are re-
stricted to these compounds as well. However, the qualitative
CF dependence of |t1| and u may remain valid in single-layer
cuprates under pressure and trilayer cuprates, as discussed
below.

The overall strategy is to maximize |t1| while keeping u =
vR/|t1| as close as possible to its optimal value uopt � 8.0–8.5.
Indeed, T opt

c increases with both |t1| and FSC in Eq. (1), and
the universal u dependence of FSC has a maximum at uopt (see
Appendix A). Thus, we should satisfy the criterion

vR/|t1| � 8.5. (32)

To do so, the values of |t1|, v, and R may be tuned rather
independently if we consider their distinct dependencies on
the CF. For instance, ZA appears in the MOD of v [Eq. (4)] but
not in that of |t1| [Eq. (2)], so that tuning ZA allows us to tune v

without affecting |t1| substantially. Note that, in the particular
case of X = F, Cl, the decrease in R with decreasing nAB is
sharper compared with X = O (see Appendix G), which is an

effect beyond the MOD2 in Eq. (5). Possible implications on
superconducting properties are discussed in Appendix G.

For single-layer cuprates at ambient pressure, our result
predicts an upper bound T opt

c,max � 140 K for T opt
c , which

is above the maximal known value T opt
c = 94 K [4]. In-

deed, according to Eq. (2), the maximal value of |t1| is
|t1|max � 0.53 eV (0.58 eV if we consider g = 15 instead of
g = 2), and the maximal value of FSC is FSC,max � 0.13 at
u = uopt in the universal u dependence of FSC [14]. Thus,
for |t1|max � 0.58 eV, the maximal value of T opt

c is T opt
c,max =

0.16|t1|maxFSC,max � 0.012 eV (140 K) according to Eq. (1).
The upper bound T opt

c,max � 140 K at ambient pressure is op-
timistic, because |t1|max corresponds to RX = RA = 0, which
cannot be reached in experiment. Nonetheless, reducing RX

or RA may allow us to make |t1| as close as possible to |t1|max.
This can be done by replacing A or X by an isovalent atom
with a smaller ionic radius: This contributes to reduce the
distances between atoms in the crystal and thus a according
to Eq. (20) (by mimicking the effects of physical Pa at the
chemical level).

Also, the upper bound T opt
c,max may increase if we apply

physical pressure. Indeed, |t1| may exceed the upper bound
|t1|max at ambient pressure. For instance, in Hg1223, |t1| �
0.57–0.60 eV at P = 30 GPa, and |t1| � 0.62–0.67 eV at
P = 60 GPa [20], which is above |t1|max � 0.58 eV. Note that
the increase in |t1| eventually causes a rapid decrease in u and
thus FSC when u falls into the weak-coupling region [20]; this
may be countered by tuning ZA and ZX to increase v and R, so
that Eq. (32) is still satisfied at high pressure.

Finally, the physical dependencies of |t1| and u on the ionic
radii and charges may remain valid at least qualitatively in
trilayer cuprates, in which the highest T opt

c has been observed.
On |t1|, the mechanism is the following: Reducing the ionic
radii reduces chemical pressure and thus interatomic dis-
tances, increasing the overlap between neighboring orbitals.
On the dependence of v and R and thus u on ionic charges,
the mechanism proposed in this paper involves the Madelung
potential created by ions that surround Cu and O. In trilayer
cuprates and even other materials, the mechanisms are ex-
pected to be similar, even though Eqs. (2) and (3) may not
be valid quantitatively.

VI. CONCLUSION

We have proposed the universal CF dependence of the AB
Hamiltonian parameters |t1| and u in single-layer cuprates,
by proposing the HDE procedure and applying it to analyze
the results of ab initio calculations of the AB Hamiltonian
for various single-layer cuprates. The results and especially
the MODs given in Sec. II provide insights to optimize T opt

c

in future design of superconducting cuprates as proposed in
Sec. V.

The qualitative insights obtained in this paper may also
be useful for design of other superconducting materials
whose crystal structure is similar to that of cuprates, namely,
other strongly correlated electron materials whose low-energy
physics may be described by the AB Hamiltonian on the two-
dimensional square lattice. These include nickelates [38] and
the recently proposed Ag- and Pd-based compounds [24,39].
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FIG. 13. Dependence of the superconducting order parameter
FSC on u = U/|t1|, from Ref. [14]. The values shown by the red
squares and error bars are taken from Figs. 10 and 21 in Ref. [14] (at
hole doping δ = 0.167). The blue area shows the rough shape of the
u dependence of FSC for u � 10.5. The golden vertical bar shows the
optimal regime (u � uopt � 8.5) in which FSC reaches its maximum.
The dashed blue curve shows the scaling FSC � 0.56u−0.58 in the
limit of large u.

More generally, the gMACE + HDE procedure employed
in this paper may be used for design of strongly corre-
lated electron materials including those which do not have
superconducting properties. Even more generally, the HDE
procedure offers a general platform to extract dependencies
between any physical quantities y and xi, regardless their
physical meaning. These quantities may be either calculated
within a theoretical framework or measured in an experiment.
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APPENDIX A: DEPENDENCE OF SUPERCONDUCTING
ORDER PARAMETER ON u = U/|t1|

In Sec. I, we mention the u dependence of FSC from
Ref. [14]. Here, as a complement, we show this dependence
in Fig. 13. In addition, we discuss the focus on |t1| and u in
the scope of this paper.

The correlation between AB Hamiltonian parameters and
Tc have been studied in previous experimental and theoretical
works [14,41–50]. However, if we solve the full AB Hamil-
tonian with the nth-nearest-neighbor hopping tn and off-site
Coulomb interaction Vn up to n = 9 and deduce FSC, then FSC

has little dependence on effective parameters other than u as
discussed in detail in Ref. [14]. That is why T opt

c in Eq. (1) is
mainly determined by |t1| and u, and we focus on these two
parameters in this paper.

For completeness, the dependence of FSC on other effective
parameters has also been examined in Ref. [14]. For instance,
the dependence of FSC on |t2/t1| is small at least for |t2/t1| �
0.25 (the variation in FSC does not exceed �10%, as seen
in Fig. 17 in Ref. [14]). The range of values |t2/t1| � 0.25
includes the range of ab initio values of |t2/t1| = 0.145–0.220
obtained in this paper. The nonzero ab initio off-site

TABLE I. List of experimentally confirmed superconducting ma-
terials whose chemical formula is included in the training set. T expt

c

is the experimental value of Tc from the reference given in the third
column.

Chemical formula T expt
c (K) Reference

HgBa2CuO4 � 94 [4]
HgSr2CuO4 � 78 (with Mo substitution) [5]
La2CuO4 � 40 [6]
Sr2CuO2F2 � 46 [8]
Ca2−xKxCuO2Cl2 � 24 [12]

interaction Vn reduces the value of FSC with respect to the case
in which only U is considered (see, e.g., Ref. [51], Fig. 4);
however, this reduction in FSC has no significant materials
dependence (the variation in FSC in the realistic range of Vn

does not exceed �10% either, as seen in Fig. 9 in Ref. [14]).

APPENDIX B: CHOICE OF THE TRAINING SET
OF CUPRATES FOR THE gMACE + HDE PROCEDURE

In Sec. V, we assume that (A) the training set considered
in this paper and represented in Fig. 3 is representative of the
diversity in single-layer cuprates. Here, we support (A).

First, the training set includes CFs that correspond to
experimentally confirmed superconducting cuprates with a di-
verse distribution of T opt

c � 24–94 K, including HgBa2CuO4

which has the highest known value of T opt
c � 94 K among

single-layer cuprates at ambient pressure. These cuprates are
listed in Table I together with the experimental values of Tc.

Second, the ab initio values of |t1| and u obtained within
the training set reproduce the diverse distribution of |t1| and
u observed in realistic cuprates. We have |t1| � 0.40–0.55 eV
and u � 7–10.5 in Fig. 4(a). The range of u corresponds to
that observed not only in single-layer cuprates but also in
multilayer cuprates [14,19,20]. In particular, the values of u
correspond to the range u � 6.5–10.5 in which FSC is nonzero
(see Ref. [14], Fig. 10), and thus T opt

c is nonzero according
to Eq. (1). This suggests the training set is a good platform
to study the microscopic mechanism of the materials depen-
dence of |t1| and u and thus T opt

c .
Note that for the CFs in the training set, the M space has

a similar structure, which facilitates the comparison between
the variables in V3. Namely, the number of bands in the M
space is NM = 17 for all compounds in the training set. (See
the band structures in Sec. S2 of the Supplemental Material
[21].) In other single-layer compounds such as Bi2201 with
T opt

c � 10–40 K [1,52], we have NM = 23 due to the presence
of six additional bands from the BiO block layer. However, we
do not consider cuprates with a Bi2201-like CF and crystal
structure in order to simplify the comparison between com-
pounds. This is not expected to weaken the generality of the
result, because the diverse distribution in experimental T opt

c �
24–94 K is already reproduced by the CFs in the training set,
as mentioned above. Possible extensions of the training set to
other cuprates including multilayer cuprates and Bi2201-like
single-layer cuprates are left for future studies.
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APPENDIX C: DETAILS ON THE HIERARCHICAL
DEPENDENCE EXTRACTION PROCEDURE

The essence of the HDE was presented in Sec. III A. Here,
we give more details on the HDE, including the motivation
(Appendix C 1), generalities and the choice of fitness function
(Appendix C 2), the wildcard operator (Appendix C 3), com-
putational details (Appendix C 4), and numerical aspects and
pitfalls (Appendix C 5).

1. Motivation of the hierarchical dependence extraction

The complete elucidation of the dependence of y on V =
{xi} requires several conditions: (a) probe the completeness
of the dependence of y on V; (b) extract the hierarchy in the
dependencies of y on xi; (c) capture the nonlinear dependence
of y on xi; (d) obtain an explicit expression of y as a function
of xi. In addition, it is desirable to (e) keep the procedure as
simple as possible, and (f) preserve the sparsity in the ap-
proached expression of y (namely, the approached expression
of y should depend on as few xi as possible).

For (a), probing the completeness of the dependence of y
on V allows us to clarify whether it is possible to construct a
perfect descriptor for y as a function of xi. This provides useful
information prior to (b) and (c).

For (b), clarifying the hierarchy in the dependencies of y on
xi is necessary to pinpoint the MOD of y, namely, the variables
xi on which y depends the most. This allows us to construct
an approximation of y as a function of these xi by combining
(b) and (d), which consists in yMODg which is defined and
discussed in the main text. The MODg of y contains the
principal microscopic mechanism of the dependence of y, and
thus, provides useful clues in the context of materials design.

For (c), y has a nonlinear dependence on xi in the general
case. For instance, in previous works on cuprates [19,20], it
has been shown that the AB Hamiltonian parameters have a
nonlinear dependence on band structure variables and crystal
structure variables.

For (d), the explicit expression of y as a function of xi is
necessary to understand whether y increases or decreases with
increasing xi. [Such information is not captured by (b) alone.]
As mentioned above, the combination of (b) and (d) allows us
to obtain yMODg.

For (f), the sparsity allows us to facilitate the physical
interpretation of the approached expression of y. Indeed, if
an accurate approximation of y can be constructed from only
a few xi, the distinct contributions of the xi to the dependence
of y may be analyzed and discussed more easily.

Already existing procedures such as linear regression,
polynomial regression, and also symbolic regression and
sparse regression fulfill part of the above conditions (a)–(e),
but not all of them. This is discussed below.

Linear regression fulfills (d) and (e), but not other points.
Although it is the simplest approach (e) to obtain an explicit
expression of y as a function of the xi (d), the dependence of
y on xi is nonlinear in the general case as discussed before, so
that (c) is not fulfilled.

Polynomial regression and symbolic regression fulfill (c)
in addition to (d) and (e), but not other points. Polynomial
regression has good approximation properties provided that

y is a continuous function of the xi: In that case, y can be
approached uniformly by a polynomial of the xi according to
the Stone-Weierstrass theorem. Symbolic regression allows us
to go beyond the polynomial regression without introducing
assumptions on the expression of y as a function of the xi.
However, these techniques do not allow us to fulfill (a), (b),
and (f) in the general case.

Sparse regression allows us to perform polynomial and
symbolic regression by fulfilling (f). Regularization tech-
niques allow us to penalize expressions of y that depend on
many xi, allowing to construct an expression of y as a function
of a reduced number of xi (f). However, they do not offer a
clear framework to fulfill (a) or (b).

The HDE is designed to fulfill all conditions (a)–(f). First,
the HDE allows us to probe the completeness of the depen-
dence (a) by examining the value of f∞[y,V] in Eq. (12).
Second, the HDE allows us to extract the hierarchy in de-
pendencies of y on xi (b) thanks to the recurrent expression
of the candidate descriptor x(g) in Eq. (8). In the HDE[y,V],
when we increment g, we successively add terms to xopt in
Eq. (11) that correspond to the higher-order dependencies of y
on {xi} (the order increases with g). The competition between
dependencies can also be analyzed by calculating the score of
each variable (see Appendix E). Third, the wildcard operator
in Eq. (9) encompasses polynomials of variables, so that the
nonlinear dependence of y may be captured at an acceptable
level of accuracy (c). (Still, note that its approximation prop-
erties are not perfect, as discussed below.) Fourth, the HDE
allows us to obtain an explicit expression of y as a function of
xi (d). Fifth, the HDE procedure is simple and deterministic
(e), and can be applied even if the size of the training set
is relatively small (we should have Nt � 3). Sixth, the HDE
procedure allows us to preserve the sparsity by introducing no
more than one variable xi in Eq. (11) when g is incremented.

Note that, in the HDE[y,V], the ratio

� f(g) = f(g+1)[y,V] − f(g)[y,V]

f(g)[y,V]
(C1)

usually decreases with increasing g, but the amplitude of the
ratio

�xopt
(g) = xopt

(g+1) − xopt
(g)

xopt
(g)

= ζ
opt
g+1

[
xiopt

g+1

]α
opt
g+1

[
xopt

(g)

]β
opt
g+1

(C2)

does not necessarily decrease with increasing g. Namely,
when incrementing g, the effect on the dependence of y on xi

may be corrective (i.e., f(g)[y,V] increases by a small amount
so that � f(g) is small), but the effect on the amplitude of
xopt may be significant: The amplitude of the additional term
(which is encoded in |�xopt

(g) |) is not necessarily small.
Note that the approximation properties of the HDE are

not perfect due to the compromise between approximation
and simplicity in the present framework. Namely, we enforce
sparsity by allowing only one variable xi in V to be introduced
in xopt

(g) when g is incremented, and the expression of �xopt
(g)

is kept as simple as possible to facilitate its interpretation.
On one hand, this choice does not allow us to represent all
polynomials of xi, which requires to introduce several vari-
ables at once in xopt

(g) when g is incremented. On the other
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hand, this allows us to obtain the hierarchy between the de-
pendencies of y on xi in a simple manner. In the scope of this
paper, the consistency between results provided by the HDE
and previous works suggests the HDE in its present form is
reliable. Possible extensions of the HDE that involve more
sophisticated expressions of �xopt

(g) are left for future studies.
Next, we discuss the physical justification of the depen-

dence of y on xi as defined in Eqs. (6) and (11). The HDE
expression in Eq. (11) has been chosen for universality and
mathematical simplicity rather than with a particular physical
consideration. Indeed, the goal of the HDE is to propose an
expression of y that is independent of any prior assumptions
on the expression of y. The physical meaning of the expression
of y is established a posteriori by interpreting Eq. (6). In the
present paper, we demonstrate that the simple expressions in
Eqs. (6) and (11) are sufficient to obtain a physically consis-
tent picture for the dependence of |t1| and u, at least within the
scope of the paper.

For (f), it should be noted that sparsity is distinct from di-
mensionality reduction. Dimensionality reduction techniques
such as principal component analysis [53] have been used in
e.g., recent studies on iron-based superconducting materials
[54]. The principal component analysis allows us to reduce the
size of the variable space V = {xi, i = 1 . . . , NV}, by extract-
ing principal components that are linear combinations of the
xi. (Details can be found in e.g., Ref. [55].) The mth principal
component is denoted as

z(m)[ j] =
NV∑
i=1

v
(m)
i xi[ j]. (C3)

The principal components are sufficient to reproduce the di-
verse distribution of values of xi in the training set, so that an
approached expression of y may be constructed as a function
of a few z(m). However, in Eq. (C3), the weights v

(m)
i may

be nonzero for many variables xi in the general case. Thus,
if we try to express y as a function of {z(m), m} instead of
{xi, i = 1, . . . , NV}, the expression of y will depend on a few
z(m) but may depend on many xi, so that the sparsity is not
preserved. To interpret the expression of y, we discuss the
dependence of y on the xi rather than on the z(m) because the
variables xi have a physical meaning (see Sec. III C).

2. General problem and comments
on the choice of fitness function

The general scope of the HDE is the following. Starting
from y and the variable space V = {xi, i = 1, . . . , NV}, we
define the candidate descriptor space

CV = {x (p), p}. (C4)

The elements x(p) of CV are called “candidate descriptors,”
and are functions of the xi. The analytic expression of x(p)
depends on variational parameters which are encoded in the
vector p. [In this paper, the expression of x(p) is given in
Eqs. (7) and (8) and we have pg = (ig, αg, βg, ζg) at generation
g and p1 = (i1, α1).] The general problem consists in finding
popt such that xopt = x(popt ) is the best candidate descriptor
for y among the elements of CV , i.e.,

f [y, x (popt )] = maxp f [y, x(p)], (C5)

where the fitness function f describes how well y is described
by x (popt ). [In this paper, we consider the fitness function in
Eq. (10), and f[y, x(g)] is optimized at each generation g.]

The definition of the fitness function in Eq. (10) uses the
Pearson correlation coefficient ρ(y, x) between two variables
y and x, whose definition is reminded below. The variables
y and x are represented by two data samples {y[ j], j =
1, . . . , Nt } and {x[ j], j = 1, . . . , Nt }, where Nt is the size of
the training set. The sample mean of x, sample covariance of
y and x and sample variance of x are defined as, respectively:

m(x) = 1

Nt

Nt∑
j=1

x[ j], (C6)

c(y, x) = 1

Nt − 1

Nt∑
j=1

[y[ j] − m(y)][x[ j] − m(x)], (C7)

v(x) = c(x, x), (C8)

and we calculate ρ(y, x) as

ρ(y, x) = c(y, x)√
v(y)

√
v(x)

. (C9)

The value of ρ(y, x) is a real number between −1 and +1.
If ρ(y, x) = 1 [ρ(y, x) = −1], then x and y are perfectly cor-
related (anticorrelated), and there exist k0 and k1 such that
the equation y = k0 + k1x is rigorously satisfied, with k1 > 0
(k1 < 0) if ρ(y, x) = 1 [ρ(y, x) = −1]. Also, ρ(y, x) has the
property

ρ[y, k0 + k1x] = sgn(k1)ρ[y, x]. (C10)

[In Eq. (C10), we have k1 �= 0, sgn(k1) = 1 if k1 > 0 and
sgn(k1) = −1 if k1 < 0.]

The fitness function in Eq. (10) has the invariance property

f [y, k0 + k1x(p)] = f [y, x(p)] (C11)

(for k1 �= 0), which comes from Eq. (C10). Thus, f [y, x(p)]
encodes the affine dependence of y on x(p), which is the
relevant information and does not depend on the scale or
order of magnitude of y and x(p). The values of f [y, x(p)] are
between zero and one; if f [y, x(p)] = 1, there exist k0, k1 such
that we have rigorously y = k0 + k1x (p), and x(p) is deemed
perfect. The closer f [y, x(p)] is to 1, the more accurate the
affine dependence is.

Note that even though y has an affine dependence on x(p)
when f [y, x(p)] = 1, x(p) has a nonlinear dependence on xi

in the general case. Thus, nonlinearity in the dependence of y
on xi may be described by the above formalism.

The invariance property [Eq. (C11)] simplifies the search
of the best candidate descriptor. From the viewpoint of
Eq. (C11), x(p) is equivalent to any other candidate descriptor
in the equivalence class

E[x(p)] = {k0 + k1x(p), (k1 �= 0, k0)}, (C12)

and we do not need to distinguish between elements of
E[x(p)] during the optimization in Eq. (C5). The values of
k0 and k1 are determined after xopt has been determined, by
performing the affine regression in Eq. (6).

Due to the invariance property [Eq. (C11)], the value of
f [y, x(p)] has a rather universal meaning (at least at a fixed
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FIG. 14. Character of the wildcard operator �(ζ ,β,α) depending
on the values of (ζ , β, α), when assuming the fitness function in
Eq. (10). In the general case, we have x �(ζ ,β,α) x′ = x[1 + ζx′α/xβ ].
The red, green, and blue planes correspond to α = 1, α = 0, and
α = −1, respectively. In Appendix C 3, we comment the character
that is acquired by the wildcard operator for the values of (ζ , β, α)
that correspond to the blue dashed lines. (For these values, the
character is shown explicitly in the figure.) At |ζ | → ∞, we have
x �(ζ ,β,α) x′ � ζx′αx1−β , and the factor ζ can be traced out by using
the invariance property of the fitness function [Eq. (C11)].

value of Nt ), which facilitates the judgment of the quality of
x(p). At Nt = 36, we observe empirically in Sec. IV that the
description is almost perfect for f [y, x(p)] � 0.98. [In this
paper, we assume that x(p) describes y entirely if f∞[y,V] �
0.98.] If 0.95 � f [y, x(p)] � 0.97, the description is good,
but corrective higher-order dependencies of y on xi may be
missing. If f [y, x(p)] � 0.6–0.9, the description is rough or
very rough, but x(p) captures correctly the MOD. Typically,
for the MOD2s discussed in Secs. II and IV, the values of
f(2)[y, xopt

(2) ] are above 0.6, and most of the time above 0.8–0.9.

There are also particular cases in which f(2)[y, xopt
(2) ] � 0.98,

so that the MOD2 is sufficient to describe y entirely.

3. Comments on the wildcard operator

Here, we detail the properties of the wildcard operator
�(ζ ,β,α) [Eq. (9)]. These properties are illustrated in Fig. 14.

(i) The wildcard operator can represent basic algebraic
operations. First, multiplication and division are accounted for

by

x �(ζ→+∞,β=0,α=±1) x′ ∝ xx′±1. (C13)

Indeed, for ζ → +∞, we have

x �(ζ ,β=0,α) x′ = x[1 + ζx′α] ∼ζ→+∞ ζxx′α ∝ xx′α, (C14)

in which the arbitrarily large yet finite factor ζ is traced out
by using the invariance property of the fitness function. Fur-
thermore, Eq. (C14) encompasses products and ratios between
x and exponents of x′. Second, addition and subtraction are
accounted for by

x �(ζ ,β=1,α=1) x′ = x + ζx′ (C15)

for ζ = ±1. Furthermore, Eq. (C15) encompasses any linear
combination of x and x′ if |ζ | �= 1. Third, exponents and
polynomials of any variable x are accounted for by

x �(ζ ,β=1,α) x = x + ζxα, (C16)

x �(ζ→+∞,β=1,α) x = xα+1. (C17)

(ii) The wildcard operator can represent the reset and iden-
tity operators. The reset operator is defined as

x �(ζ→+∞,β=1,α=1) x′ ∝ x′ (C18)

and allows us to replace x by x′. If x′ = x, Eq. (C18) becomes
the identity operator. [The possible values of (ζ opt, βopt, αopt )
which represent the identity operator are (ζ → +∞,

β = 1, α = 1) and also (ζ > 0, β, α = 0).] The fact that the
wildcard operator is able to mimic the identity operator guar-
antees that xopt

(g) is included in the candidate descriptor space
for the generation g + 1, and thus,

f
[
y, xopt

(g+1)

]
� f

[
y, xopt

(g)

]
. (C19)

This is a desired property of the fitness function: Given the
best candidate descriptor at g, the iteration from g to g + 1
adds the g + 1th order dependence, and taking into account the
g + 1th order dependence necessarily improves the descriptor.

(iii) The wildcard operator can represent a perturbation of
x by x′. For small |ζ | and α = 1, we have∣∣∣∣ζ x′

xβ

∣∣∣∣  1 (C20)

in Eq. (9), so that x �(ζ ,β,α=1) x′ yields x corrected by a small
term that depends on x′.

4. Computational details of the hierarchical dependence
extraction procedure

Here, we give computational details of the procedure that
is employed to obtain xopt

(N ) in Eq. (11). First, we use a finite
number N of generations. In this paper, we use N = 15 in
Sec. IV C, and we check that the fitness function varies slowly
with increasing N at N � 15, so that it is reasonable to stop at
N = 15.

At fixed g, the variational parameters are pg =
(αg, βg, ζg, ig). We determine popt

g = (αopt
g , β

opt
g , ζ

opt
g , iopt

g ),
which maximizes f [y, x(g)] as follows. We scan CV by
computing f [y, x(g)] for each pg. This allows us to avoid
falling into local extrema of f [y, x(p)], but is computationally
expensive as discussed below. A possibility to reduce the
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computational cost would be to prepare an initial guess for
p and then optimize p by using, e.g., a gradient descent
algorithm. Such extensions and the detailed study of the
dependence of the result on the initial guess for p are left for
future studies.

The discretization of pg = (αg, βg, ζg, ig) is done as fol-
lows: The number of indices ig is given by the total number
of variables NV in V = {xi}. As for β, we consider only
Nβ = 2 values, which are β = 0, 1, this choice preserves the
polyvalence of the wildcard operator as illustrated in Fig. 14.
As for α and ζ , we use a finite grid of values for the opti-
mization of the fitness function. The numbers of values of α

and ζ in the grid are denoted as Nα and Nζ , respectively. The
computational cost increases rapidly with Nα and Nζ : At fixed
g, the number of candidate descriptors to be evaluated is NVNα

if g = 1 and NVNαNβNζ if g � 2. In practice, we reduce the
computational cost by employing a multistep optimization, as
detailed in (i) and (ii) below.

(i) First, we optimize (αg, ζg) on a coarse grid together with
(βg, ig). The coarse grid is the following:

α(1)
g = n, n = −9, . . . , 9, (C21)

ζ (1)
g = m10m′

, m, m′ = −9, . . . , 9 (m �= 0). (C22)

The optimized values are denoted as (αopt(1)
g , β

opt
g , ζ

opt(1)
g , iopt

g ).
(ii) Then, we keep the values of β

opt
g and iopt

g that were
determined in (i), and we refine the optimization of (αg, ζg)
on a finer grid, which is constructed iteratively as follows: We
introduce the iteration index j, starting from j = 2. The fine
grid is built around α

opt( j−1)
g , ζ

opt( j−1)
g :

α( j)
g = αopt( j−1)

g [1 + 0.1n], n = −9, . . . , 9, (C23)

ζ ( j)
g = ζ opt( j−1)

g [1 + 0.1m], m = −9, . . . , 9. (C24)

We optimize the fitness function to obtain α
opt( j)
g , ζ

opt( j)
g . We

iterate up to j = 3.
Note that the grid includes values of |α| from |α|min = 0.01

to |α|max = 9.99 and values of |ζ | from |ζ |min = 0.01 × 10−9

to |ζ |max = 9.99 × 109 if we iterate up to j = 3. Also, note
that the score in Appendix E is calculated on the coarse grid,
because ig is optimized on the coarse grid.

5. Numerical aspects and pitfalls

Here, we discuss a few limitations and numerical pitfalls
in the HDE procedure. First, note that if β > 0, the values
of x [or xopt

(g−1) in Eq. (8)] must be nonzero when calculating
x �(ζ ,β,α) x′ = x[1 + ζx′α/xβ]. Namely, if the variable x is rep-
resented by the sample {x[ j], j = 1, . . . , Nt } introduced in
Appendix C 2, we should have x[ j] �= 0 for all j. This implies
xi[ j] �= 0 for all xi in V , because we have xopt

(1) = xα1
i1

: If xi1

has zero values, then xopt
(1) will have zero values if α1 > 0, or

xopt
(1) will diverge if α1 < 0. In our calculations, some of the

variables xi in V have zero values: For instance, in V1, the
variable RA′ has zero values if A′ = ∅. Thus, we introduce
an infinitesimal offset δoff > 0 in variables that have zero
values. (Namely, we replace xi[ j] by xi[ j] + δoff .) We choose
the value δoff = 10−4, which is small enough to be negligible
with respect to the difference between values of xi[ j] but

large enough so that |ζ |maxδoff � 1 and |ζ |min/δoff  1. (The
condition |ζ |maxδoff � 1 is necessary to have 1 + ζxα ∼ ζxα

when |ζ | → |ζ |max, so that the character of the wildcard oper-
ator at |ζ | → +∞ shown in Fig. 14 is valid.)

Second, in some particular cases, there may be no global
maximum in the α dependence of f[y, x(g)], e.g., f[y, xα

iopt
1

] at

g = 1. Namely, the value of |α| becomes arbitrary large when
attempting to maximize f [y, xα]. This is discussed in Sec. S3
of the Supplemental Material [21]. To avoid the divergence of
|α|, we consider a maximal value |α|max for |α| in practice, and
if f [y, xα] is maximal for αopt such that |αopt| = |α|max, then
we assume |αopt| = |α|max. In this paper, we have |α|max =
9.99 by employing the grids in Eqs. (C21) and (C23) up to j =
3. Note that |α| = |α|max is sometimes reached in the MODs
discussed in this paper [see, e.g., the dependence of |t1| on RX

in Eq. (2)].
Third, the maximal value of f[y, x(g)] may be obtained for

several candidate descriptors with the same ig but different αg.
These are in the same equivalence class [Eq. (C12)], but this
is nontrivial. This is discussed in Sec. S4 of the Supplemental
Material [21]. In this case, we choose to apply the following
convention: We choose α such that |α| is minimal and α > 0.
(Then, if g = 2 and if there are several values of ζ for which
the fitness function has the same value, we choose ζ such
that |ζ | is minimal and ζ > 0.) In practice, if we use this
convention, the optimization of α on the coarse grid then on
the fine grid yields α = |α|min = 0.01.

A concrete example is |ZX|, whose value is either 1 and
2. In this case, f [R, |ZX|α] = 0.503 for all values of α �= 0.
This is why we have, e.g., α1 = 0.01 in Eq. (5). Note that
this choice should not affect the physical interpretation of the
MOD of R on |ZX| in Eq. (5). The MOD1 of R on V1 is

R = 4.22 − 3.91|ZX|0.01, (C25)

and if we choose another convention, e.g., we choose α such
that |α| is minimal and α < 0, then we obtain

R = −3.63 + 3.94|ZX|−0.01, (C26)

so that the physical interpretation of the MOD1 (R increases
when |ZX| decreases) remains the same irrespective of the
selected convention. The relatively large values of |k0| and |k1|
in the above MOD1 and in the MOD2 [Eq. (5)] with respect
to the ab initio values of R � 0.22–0.34 are a consequence of
the small value of |α|. Still, the range of ab initio values of R
is correctly reproduced by the MOD2, as seen in Fig. 1.

APPENDIX D: DETAILS OF THE gMACE PROCEDURE

1. Computational details of the gMACE procedure

Here, we give computational details of the ab initio calcu-
lations in the gMACE procedure. We also detail the procedure
that is employed to construct the AB maximally localized
Wannier orbital.

Structural optimization and DFT calculation. We use
QUANTUM ESPRESSO [56,57] and optimized norm-conserving
Vanderbilt pseudopotentials [58,59] with the GGA-PBE func-
tional [25]. To model hole doping, we use the virtual crystal
approximation [31] as done in Refs. [19,20] and as mentioned
in the main text: The pseudopotential of A or A′ cation is
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TABLE II. Primitive vectors a, b, c of the Bravais lattice and
atomic positions in Cartesian coordinates. We consider c⊥ = 0 if
A′ = Hg1−δAuδ and c⊥ = a/2 if A′ = ∅. The atomic positions are
entirely determined by a, c, c⊥, dz

A, and dz
X . Note that there are two

O atoms, two A atoms and two X atoms in the unit cell. The first and
second O atoms in the unit cell are denoted as O and O′, respectively.

x y z

a a 0 0
b 0 a 0
c c⊥ c⊥ c
Cu 0 0 0
O a/2 0 0
O′ 0 a/2 0
A a/2 a/2 ±dz

A

X 0 0 ±dz
X

A′ 0 0 c/2

interpolated with that of the chemical element whose atomic
number is that of A or A′ minus one. We use a plane-wave cut-
off of 100 Ry for the wave functions. The full Brillouin zone is
sampled by using a k-point grid of size 8 × 8 × 8 in the struc-
tural optimization, 12 × 12 × 12 in the self-consistent DFT
calculation, and 6 × 6 × 6 in the non-self-consistent DFT cal-
culation (8 × 8 × 4 if A′ = Hg1−δAuδ). We use a Fermi-Dirac
smearing of 0.002 Ry.

Crystal parameters and symmetry. The primitive vectors
of the Bravais lattice and the positions of atoms are given
in Table II. During the structural optimization, we optimize
the values of a, c, dz

A, and dz
X altogether. Then, we use the

optimized values in the self-consistent and non-self-consistent
DFT calculations.

For completeness, note that the high-symmetry structure
that is considered in Table II may be lowered in experiment.
Namely, atoms may undergo displacements around their ideal
positions listed in Table II, which creates incommensurate
modulations in the crystal structure. The origin of these dis-
placements is the nonideal Goldschmidt tolerance factor of the
perovskite-like structure of the cuprate (i.e., the ratio between
the radii of atoms in the crystal is not ideal), which causes a
geometric mismatch between the block layer and the CuO2

plane. This happens, e.g., in the case of Bi2201 [60,61]. Also,
in the case of Sr2CuO2F2, the F atoms are distorted, and the
doping may introduce excess F at different positions [8].

It is possible to account for the structural distortion in a
simplified manner, by considering a distortion that is restricted
to the unit cell and ignores the incommensurate character of
the distortion, as done in Ref. [19] in the case of Bi2201. (See
Appendix C of Ref. [19].) However, in Bi2201, the effect
of the distortion |t1| and u is small [19]: If we compare the
AB Hamiltonian obtained from the crystal structure with and
without distortion, |t1| does not vary and U varies by no
more than 3%. In the present paper, for simplicity, we do not
consider the distortion and always assume the ideal atomic
positions in Table II.

AB orbital. Here, we detail the procedure to construct the
AB maximally localized Wannier orbital. We use the RESPACK

code [19,62]. The initial guess consists in an atomic Cu3dx2−y2

orbital centered on the Cu atom in the unit cell. In the outer

window, the spillage functional [29] is minimized to obtain the
AB subspace and band dispersion, then the spread functional
[28] is minimized to obtain the AB orbital. In previous works
[17–20], the outer window that is used to construct the AB
orbital consists in the M space, from which the NB lowest
bands are excluded to avoid catching the Cu3dx2−y2/O2pσ

bonding character. However, the characteristics of the AB
orbital and values of AB Hamiltonian parameters depend
slightly on NB: For instance, the AB Hamiltonian parameters
may vary by a few percent if NB varies by two or three [17,19].
Although this small dependence of the AB orbital on NB does
not change the physics of the AB Hamiltonian, it may prevent
the very accurate comparison between AB Hamiltonians that
are derived from different CFs.

To estimate accurately the materials dependence of the AB
Hamiltonian, we employ a modified procedure to construct the
AB orbital, in which we remove the bonding character without
excluding the bonding bands from the outer window. This
procedure is based on the antibonding-bonding transformation
[24], and is described below. We use the whole M space as the
outer window, and we consider three initial guesses for the
maximally localized Wannier orbitals: The Cu3dx2−y2 atomic
orbital centered on Cu, and the O2pσ (O′2pσ ) orbital centered
on O (O′). Then, we minimize the spillage functional [29]
to obtain the band dispersion that corresponds to the three
orbitals with Cu3dx2−y2 and O/O′2pσ character. This band
dispersion consists in the partly filled AB band plus the two
fully occupied bonding bands; see, e.g., Fig. 8 in Ref. [19]
for an illustration. Then, we discard the bonding band dis-
persion and we keep only the AB band, which contains the
AB subspace and has been determined without introducing
the dependence on NB. Finally, we obtain the AB orbital from
the AB band by considering the AB band as the outer window,
reinitializing the Cu3dx2−y2 initial guess and minimizing the
spread functional [28]. (Note that the antibonding-bonding
transformation allows us to derive a three-orbital Hamiltonian
that includes the AB orbital and two bonding orbitals; here,
contrary to the antibonding-bonding transformation, we dis-
card the bonding subspace.)

Polarization. We use the RESPACK code [19,62]. The cRPA
polarization at zero frequency is expressed as [62]

[χH]GG′ (q) = − 4

Nk

∑
k

empty∑
nu

occupied∑
no

(
1 − TnokTnuk+q

)

× MG
no,nu

(k + q, k)
[
MG′

no,nu
(k + q, k)

]∗

�no,nu (k, q) − iη
, (D1)

with

�no,nu (k, q) = εnuk+q − εnok, (D2)

and

MG
no,nu

(k + q, k) =
∫



drψ∗
nuk+q(r)ei(q+G)rψnok (r) (D3)

in the above equations, η is an infinitesimal positive number
(we take η = 0.0272 eV), q is a wave vector in the Brillouin
zone, G, G′ are reciprocal-lattice vectors, nk is the Kohn-Sham
one-particle state with energy εnk and wave function ψnk ,
Tnk = 1 if nk belongs to the AB band and Tnk = 0 else. The
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FIG. 15. Values of ionic radii and charges that are considered
in this paper. The values of ionic charges are ZX = −2 or −1
and ZA = +1, +2 or +3. The values of RA, RX, and RA′ are rep-
resented in red, green, and blue, respectively. In the case of the
hole-doped compounds, the values of ionic radii and charges are
interpolated according to Eqs. (D5) and (D6).

cRPA effective interaction is deduced as

WH = (1 − vχH)−1v, (D4)

in which v is the bare Coulomb interaction. We use a plane
wave cutoff of 8 Ry and we consider 200 bands for the calcu-
lation of the cRPA polarization and dielectric function.

2. Choice of the variables in V3

As a complement to Sec. III C, the choice of the variables
in V3 is discussed below. The DFT band structure is entirely
described by the Kohn-Sham energies εnk and orbitals ψnk .
However, it is too complex to consider the whole set {εnk, ψnk}
as the variable space V3. Instead, we consider variables that
capture the essential characteristic energies in the band struc-
ture. To choose the variables, we use as a guide the M space.
Prioritizing the M space for the choice of variables is natural,
for two reasons. First, the M space determines the charac-
teristics of the AB orbital including |t1| and v [20], because
the M space contains the Cu3dx2−y2 -like and O2pσ -like bands
and the AB band. Second, the M space plays a prominent
role on the cRPA screening and thus on R = U/v. Indeed,
the screening increases when the charge-transfer energies be-
tween occupied and empty bands decrease [see Eqs. (D1) and
(D2)], and the charge-transfer energies are the smallest for the
occupied M bands.

3. Values of intermediate quantities
within the gMACE procedure

Here, we give the values of intermediate quantities in the
variables spaces Vs with s = 1 . . . 4. On V1, the values of RA,
RX, RA′ , |ZX|, and ZA that are considered in this paper are
represented in Fig. 15. (The numerical values are given in
Sec. S1 of the Supplemental Material [21].) The values of RA,
RX, and RA′ are the crystal ionic radii values from Ref. [36].
(For completeness, we mention that ions are assumed to be
6-coordinate in the calculation of these values.) For hole-
doped compounds, the partial ion substitution is accounted

for as follows: If A′ = ∅, the ion A becomes A2−δÃδ where
the atomic number of Ã is that of A minus one; otherwise,
the ion A′ is Hg1−δAuδ . In this case, we interpolate linearly
the values of ionic radii; namely, we consider

RA2−δÃδ
= (1 − 0.5δ)RA + 0.5δRÃ, (D5)

RHg1−δAuδ
= (1 − δ)RHg + δRAu. (D6)

The values of ZA are interpolated similarly. On V2, the val-
ues of crystal parameters a, c, dz

A, and dz
X obtained by the

structural optimization are represented in Fig. 16. (These
parameters are defined in Table II). We consider c⊥ = 0 if
A′ = Hg1−δAuδ and c⊥ = a/2 if A′ = ∅.

On V3, the values of variables that are discussed in the main
text are represented in Fig. 16. The numerical values of all
variables in V3 and the band structures are given in Secs. S1
and S2 of the Supplemental Material [21], respectively.

APPENDIX E: SCORE ANALYSIS OF THE RESULTS
OF THE HIERARCHICAL DEPENDENCE

EXTRACTION PROCEDURE

Here, we define the score, and we discuss how the score
analysis allows us to construct the physical interpretation
of the dependence of y on V based on the results of the
HDE[y,V]. Then, as a complement to Sec. IV, we detail the
analysis of the score in the items (I), (III), (IV) and (1)–(10)
in Sec. IV.

First, we detail the definition of the score. We define the
maximal fitness of the variable xi at the generation g = 1 and
g � 2 as, respectively,

f̃(1)[y, xi] = maxα1 f(1)
[
y, xα1

i

]
, (E1)

f̃(g)[y, xi] = max(αg,βg,ζg) f(g)
[
y, xopt

(g−1) �(ζg,βg,αg) xi
]
, (E2)

which is the maximal value of the fitness function that is
obtained at g by enforcing xiopt

g
= xi. Then, we define the score

of the variable xi at the generation g as

s(g)[y, xi] = f̃(g)[y, xi] − mini′ f̃(g)[y, xi′ ]

maxi′ f̃(g)[y, xi′ ] − mini′ f̃(g)[y, xi′ ]
. (E3)

We have s(g)[y, xi] = 1 if xi corresponds to xopt
ig

that is found
in the optimization, and s(g)[y, xi] = 0 if xi has the lowest
f̃(g)[y, xi] among the variables in V .

Second, we discuss the physical interpretation of the de-
pendence of y on V and how the score helps to construct
such interpretation. The fitness function f[y, xopt

(g) ] as defined

in Eq. (10) measures the linear correlation between y and xopt
(g) .

However, the correlation does not always imply a causation,
i.e., a physical dependence of y on xopt

(g) . Namely, when y

and xopt
(g) are correlated, there are two possible scenarios: (i)

Causative: There is a physical dependence of y on x
iopt
g

. (ii)

Noncausative: The correlation between y and x
iopt
g

is coinci-

dental, and there is no physical dependence of y on xiopt
g

.
In practice, we need to judge whether the correlation is

causative, especially in the MODg. Below, we discuss how
to do so at g = 1. Two things should be examined. First,
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FIG. 16. Values of crystal parameters a, c, dz
A, and dz

X obtained by the structural optimization, and values of �Exp and |txp|, |εX
pz

|, and
|εX

px
|, and |εo| and εe obtained in the MACE calculation. On |εX

pz
| and |εX

px
|, the red and green solid lines correspond to the affine interpolations

in Eq. (30) and Eq. (31), respectively. Values of other variables in V3 are given in Sec. S1 of the Supplemental Material [21]. The CF that
corresponds to each color point is shown in Fig. 3.

whether there is a competition between xiopt
1

and other vari-
ables, namely, whether some variables other than xiopt

1
have a

score that is close to one. Second, whether the value of the
maximal fitness f̃ [y, xiopt

g
] [Eq. (E1)] is close to one. There are

three possible scenarios (S1), (S2), and (S3):
(S1) If xiopt

1
is not in competition with other variables: The

dominance of xiopt
1

in the dependence is unambiguous, and we
may identify a physical dependence of y on xiopt

1
.

(S2) If competition exists and f̃ [y, xiopt
1

] is not close to 1:
then y has a physical dependence on several variables. If y
depends mainly on two variables xi and xi′ , then each of these
variables corresponds to either xiopt

1
and xiopt

2
, and f[y, xopt

(2) ] has
a rather high value, typically �0.9.

(S3) If competition exists and f̃ [y, xiopt
1

] is close to 1:
The physical dependence is hidden in one of the variables
that is highly correlated with y, and for other variables, the
correlation with y is coincidental and not physical. Indeed, if
f̃ [y, xiopt

1
] is close to 1, then y cannot have a strong dependence

on more than one variable. If y has a strong dependence on two
or more variables, then each of these variables is necessary but
not sufficient to describe y accurately. In this case, f̃ [y, xiopt

1
]

cannot be close to 1, which contradicts (S3). (Typically, we
obtain f̃ [y, xiopt

1
] � 0.7.)

(I) Dependence of |t1| on V1. See Fig. 17(a): At
g = 1, s(1)[|t1|, RX] = 1, but s(1)[|t1|, RA] is very close to one,
and f̃(1)[|t1|, RX] = 0.68 is not close to one. Then, at g = 2
[Eq. (2)], s(2)[|t1|, RA] = 1, f̃(2)[|t1|, RA] = 0.88, and RA is
not in competition with other variables. This corresponds to
the scenario (S2), and RX and RA have equal importance in
the MOD2 of |t1|. If we reduce the number of compounds in
the training set, (xiopt

1
, xiopt

2
) may fluctuate between (RX, RA)

and (RA, RX) as discussed in Appendix F; however, this does
not change the physical dependence of |t1|.

(III) Dependence of v on V1. See Fig. 17(b). At g = 1,
s(1)[v, RA] = 1, and RA is not in close competition with other
variables. At g = 2 [Eq. (4)], s(2)[v, ZA] = 1 and ZA is not in
close competition with other variables. This corresponds to
the scenario (S1). Thus, RA and ZA correspond respectively
to xiopt

1
and xiopt

2
unambiguously. If we reduce the number of

compounds in the training set, xiopt
2

may occasionally be nAB

instead of ZA (see Appendix F); however, this does not change
the physical dependence of v.

(IV) Dependence of R on V1. See Fig. 17(c). At g = 1,
s(1)[R, |ZX|] = 1, and |ZX| is not in competition with other
variables. At g = 2 [Eq. (5)], s(2)[R, nAB] = 1 and nAB is not
in competition with other variables. This corresponds to the
scenario (S1). Thus, |ZX| and nAB correspond respectively
to xiopt

1
and xiopt

2
unambiguously. If we reduce the number of

compounds in the training set, (xiopt
1

, xiopt
2

) may occasionally
fluctuate (see Appendix F); however, this does not change the
physical dependence of R.

(1) Dependence of |t1| on V3. See Fig. 17(d). At g = 1,
s(1)[|t1|, |txp|] = 1, but s(1)[|t1|, |tO,O′

pσ ,pσ
|], s(1)[|t1|, |tO,O′

pσ ,pπ
|], and

s(1)[|t1|,WM] are close to one, so that |txp| is in competition
with |tO,O′

pσ ,pσ
|, |tO,O′

pσ ,pπ
|, and WM. f̃(1)[|t1|, |txp|] = 0.95 is rather

close to one. This corresponds to the scenario (S3). We iden-
tify the physical dependence of |t1| as that on |txp|. (The
intuitive dependence of |t1| on |txp| is discussed in Sec. IV.)
At g = 2 [Eq. (17)], s(2)[|t1|,�Exp] = 1, but s(1)[|t1|,WM],
s(1)[|t1|, |εO

pσ
|], s(1)[|t1|, |εO

pπ
|], and s(1)[|t1|, |εO

pz
|] are also close

to one, because �Exp is physically correlated with these vari-
ables. We identify the physical dependence as that on �Exp.
(The intuitive dependence of |t1| on �Exp is discussed in
Sec. IV.)

(2) Dependence of |txp| on V2. See Fig. 17(e). At g = 1
[Eq. (18)], s(1)[|txp|, a] = 1, and a is not in very close com-
petition with other variables. (We have s(1)[|txp|, dz

X] = 0.93,
which is not so far from one but not very close either.) Also,
f̃(1)[|txp|, a] = 1.000. This corresponds to the scenario (S1),
and the dominance of a in the MOD1 of |txp| is unambiguous.

(3) Dependence of a on V1. See Fig. 17(f). At
g = 1, s(1)[a, RA] = 1, f̃(1)[a, RA] = 0.80, and RA is not in
close competition with other variables. At g = 2 [Eq. (20)],
s(2)[a, RX] = 1, f̃(2)[a, RX] = 0.97, and RX is not in compe-
tition with other variables. This corresponds to the scenario
(S1). Thus, RA and RX correspond respectively to xiopt

1
and xiopt

2

unambiguously.
(4) Dependence of �Exp on V2. See Fig. 17(g). At g = 1,

s(1)[�Exp, dz
X ] = 1, but s(1)[�Exp, a] = 0.97, so that a is in

close competition with dz
X . We have f̃(1)[�Exp, dz

X ] = 0.93. At
g = 2 [Eq. (21)], s(2)[�Exp, a] = 1 and f̃(2)[�Exp, a] = 0.94,
and a is not in close competition with other variables. This
corresponds to the scenario (S2): the equal importance of dz

X
and a in the dependence of |txp| is discussed in the main text.
Consistently, in Fig. 7(c), the amplitude of the variation in
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FIG. 17. Score of each variable xi [Eq. (E3)] in the dependence of y at g = 1 (red), g = 2 (blue) and g = 3 (green) in the HDE[y,V =
{xi}], for the items (I), (III), (IV), and (1)–(10) in Sec. IV. The inner and upper bounds of the histogram correspond to s(g)[y, xi] = 0 and
s(g)[y, xi] = 1, respectively. The numerical values of the score are given in Sec. S1 of the Supplemental Material [21]. Panel (e) is restricted
to g = 1.

�Exp with either dz
X or a looks similar: The color map has

a diagonal-like pattern.
(5) Dependence of dz

X on V1. See Fig. 17(h). At g = 1,
s(1)[dz

X , RA] = 1, and RA is not in close competition with other
variables. At g = 2 [Eq. (22)], s(2)[dz

X , RX] = 1 and RX is not

in competition with other variables. This corresponds to the
scenario (S1). Thus, RA and RX correspond respectively to xiopt

1

and xiopt
2

unambiguously.
(4, 5) Dependence of �Exp onV1. See Fig. 17(i). At g = 1,

s(1)[�Exp, RA] = 1, and RA is not in close competition with
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other variables. We have f̃(1)[�Exp, RA] = 0.90. At g = 2,
s(2)[�Exp, RX] = 1, and RX is not in close competition with
other variables. We have f̃(2)[�Exp, RX] = 0.96. This corre-
sponds to the scenario (S1). Thus, RA and RX correspond
respectively to xiopt

1
and xiopt

2
unambiguously in Eq. (23).

(6) Dependence of v on V3. See Fig. 17(j). At
g = 1, s(1)[v, |εO

pz
|] = 1, but s(1)[v, |εO

pσ
|], s(1)[v, |εO

pπ
|], and

s(1)[v,�Exp] are all close to one, so that |εO
pz
| is in close com-

petition with |εO
pσ

|, |εO
pπ

|, and �Exp. Also, f̃(1)[v, |εO
pz
|] = 0.97

is close to one. This corresponds to the scenario (S3). We iden-
tify the physical dependence of v as that on �Exp in Sec. IV.
At g = 2, s(2)[v, |εCu

z2 |] = 1, and |εCu
z2 | is not in very close com-

petition with other variables. However, the physical meaning
of this result is biased by the fact that |εO

pz
| corresponds to

xiopt
1

, which is not physical as discussed above. If we consider
the HDE[v, {�Exp, |txp|}], we obtain s(1)[v,�Exp] = 1 then
s(2)[v, |txp|] = 1 in Eq. (24), as discussed in Sec. IV.

(7) Dependence of R on V3. See Fig. 17(k). At g = 1,
s(1)[R, |εX

px
|] = 1, and |εX

px
| is not in close competition with

other variables. At g = 2, s(2)[R, |εo|] = 1, and |εo| is not
in competition with other variables. At g = 3 [Eq. (26)],
s(3)[R, εe] = 1 and εe is not in competition with other vari-
ables. This corresponds to the scenario (S1). Thus, |εX

px
|, |εo|,

and εe correspond respectively to xiopt
1

, xiopt
2

, and xiopt
3

unambigu-
ously.

(8) Dependence of |εX
px

| on V1. See Fig. 17(l). At g = 1,
s(1)[|εX

px
|, RA′ ] = 1, and RA′ is not in close competition with

other variables. At g = 2 [Eq. (27)], s(2)[|εX
px

|, RX] = 1 and RX

is not in competition with other variables. This corresponds to
the scenario (S1). Thus, RA′ and RX correspond respectively
to xiopt

1
and xiopt

2
unambiguously.

(9) Dependence of |εo| on V1. See Fig. 17(m). At g = 1,
s(1)[|εo|, nAB] = 1, and nAB is not in competition with other
variables. At g = 2 [Eq. (28)], s(2)[|εo|, RA] = 1 and RA is not
in competition with other variables. This corresponds to the
scenario (S1). Thus, nAB and RA correspond respectively to
xiopt

1
and xiopt

2
unambiguously.

(10) Dependence of εe on V1. See Fig. 17(n). At g = 1,
s(1)[εe, |ZX|] = 1, and |ZX| is not in competition with other
variables. At g = 2 [Eq. (29)], s(2)[εe, nAB] = 1 and nAB is not
in competition with other variables. This corresponds to the
scenario (S1). Thus, |ZX| and nAB correspond respectively to
xiopt

1
and xiopt

2
unambiguously.

APPENDIX F: ROBUSTNESS OF THE PHYSICAL
DEPENDENCIES AND MATHEMATICAL

EXPRESSIONS OF |t1| AND u

Here, we examine the robustness of the expressions of
y = |t1|, u, v, and R in Eqs. (2), (3), (4), and (5). Namely, we
examine how the expressions are modified if the number Nt of
compounds in the training set is changed. Also, we show that
the physical interpretations of the CF dependencies of |t1|, u,
v, and R are robust and independent of Nt .

We define the following procedure, denoted HDEex[y,V].
We define a number Nr = 100 of reduced training sets;
each one is a copy of the initial training set of Nt = 36
compounds, from which we exclude Nt,ex = 5 randomly

FIG. 18. Occurrence rate of the values of (i1, i2) obtained in the
Nr = 100 HDEex[y,V1] calculations, for y = |t1|, u, v, R. The blue
bar corresponds to (i1, i2) = (iopt

1 , iopt
2 ) obtained in the HDE[y,V1]

calculation, and the red bars show values of (i1, i2) other than
(iopt

1 , iopt
2 ).

selected compounds. Then, for each reduced training
set r, we perform the HDE[y,V] calculation; the op-
timized variational parameters are denoted as popt,ex,r

g =
(iopt,ex,r

g , α
opt,ex,r
g , ζ

opt,ex,r
g , β

opt,ex,r
g ). We obtain Nr different

values of popt,ex,r
g . Then, we examine how the values of popt,ex,r

g

change with respect to popt
g that was obtained for the training

set of Nt compounds. We restrict the discussion to g = 1, 2
and the MOD2 of y = |t1|, u, v, R on V1.

First, we examine the values of (iopt,ex,r
1 , iopt,ex,r

2 ) obtained
in the HDEex[y,V1]. In Fig. 18, we show the occurrence
rate of (i1, i2), that is, N (i1, i2)/Nr (in%), where N (i1, i2)
is the number of reduced training sets for which we obtain
(iopt,ex,r

1 , iopt,ex,r
2 ) = (i1, i2). The values (i1, i2) = (iopt

1 , iopt
2 )

have the highest occurrence rate; this supports the reli-
ability of the values of (iopt

1 , iopt
2 ) that were obtained in

the main text. However, other values of (i1, i2) �= (iopt
1 , iopt

2 )
have a nonzero occurrence rate. In the following, we dis-
cuss the case (i1, i2) = (iopt

1 , iopt
2 ), and also (i1, i2) �= (iopt

1 , iopt
2 )

whose occurrence rate is the highest besides (iopt
1 , iopt

2 ).
The complete list of values of popt,ex,r

1 and popt,ex,r
2 for the

Nr calculations is given in Sec. S1 of the Supplemental
Material [21].

At fixed (i1, i2), we examine the quantitative vari-
ation of the MOD2 due to the differences between
(αopt,ex,r

g , ζ
opt,ex,r
g , β

opt,ex,r
g ) and (αopt

g , ζ
opt
g , β

opt
g ) as follows.

For the N (i1, i2) calculations in which (iopt,ex,r
1 , iopt,ex,r

2 ) =
(i1, i2), we gather the expressions of the MOD2s.
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These are

yMOD2[r] = h
[
i1, α

opt,ex,r
1 , i2, α

opt,ex,r
2 , β

opt,ex,r
2 , ζ

opt,ex,r
2

]
,

(F1)

in which

h[i1, α1, i2, α2, β2, ζ2] = k0 + k1xα1
i1

[
1 + ζ2xα2

i2

/[
xα1

i1

]β2
]
,

(F2)

in which k0 and k1 are determined by the affine regression and
are also functions of α1, i2, α2, β2, ζ2. We discuss the average
value

yavg = 1

N (i1, i2)

Nr∑
r=1

δi1,i2 [r]yMOD2[r] (F3)

[where δi1,i2 [r] = 1 if (iopt,ex,r
1 , iopt,ex,r

2 ) = (i1, i2) and zero oth-
erwise], and the difference

�y = maxrδi1,i2 [r]|yMOD2[r] − yavg|. (F4)

By using these notations, we have

yavg − �y � yMOD2[r] � yavg + �y (F5)

for all r that verify (iopt,ex,r
1 , iopt,ex,r

2 ) = (i1, i2).
In the case (i1, i2) = (iopt

1 , iopt
2 ), the quantitative uncertainty

due to nonzero �y is overall small. The values of yavg and �y
are shown in Fig. 19. Quantitatively, the dependence of yavg

is very similar to that in Fig. 1. Also, the amplitude of �y
does not exceed �5%–10% of the amplitude of yavg. The only
exception is for �|t1| at RA � 1.80 Å: |t1| may vary up to
�0.10–0.15 eV. The quantitative uncertainty on the MOD2 of
|t1| is more significant at high values of ionic radii, at which
Eq. (2) may predict negative values of |t1| that are unphysical.
Still, the prescription proposed in Sec. V consists in reducing
the ionic radii to maximize |t1|: At lower values of ionic radii,
the uncertainty on the MOD2 of |t1| is very low as seen in
Fig. 19.

In the case (i1, i2) �= (iopt
1 , iopt

2 ), we discuss the value of
(i1, i2) that has the highest occurrence rate besides (iopt

1 , iopt
2 ).

We restrict the discussion to yavg, which is shown in Fig. 20.
First, we discuss the case of |t1|. The value (i1, i2) =

(RA, RX) occurs with a non-negligible rate of �36% (see
Fig. 18). This is because RA is in close competition with
RX at g = 1 in the HDE[|t1|,V1] (see Appendix E). How-
ever, the dependence of yavg for (i1, i2) = (RA, RX) and
(i1, i2) = (iopt

1 , iopt
2 ) = (RX, RA) is very similar quantitatively

(see Figs. 20 and 19). Thus, the physical dependence of |t1|
on RX and RA is robust.

Second, we discuss the case of u. The value (i1, i2) =
(nAB, |ZX|) occurs with a non-negligible rate of �24%. In
this case, uavg has the same quantitative dependence as that
for (i1, i2) = (iopt

1 , iopt
2 ) = (|ZX|, nAB): The color map of the

dependence of uavg on (nAB, |ZX|) in Fig. 20 looks symmetric
to that on (|ZX|, nAB) in Fig. 19.

Third, we discuss the case of v. The value (i1, i2) =
(RA, nAB) is the only one besides (i1, i2) = (iopt

1 , iopt
2 ) =

(RA, |ZA|) and has a low occurrence rate of �14%. At fixed
RA, v decreases when nAB decreases. This is consistent with

FIG. 19. HDEex[y,V1] results for y = |t1|, u, v, and R, and for
(i1, i2) = (iopt

1 , iopt
2 ). For each y, the left panel shows the MOD2

obtained from the full training set in Fig. 1, the middle panel shows
yavg [Eq. (F3)], and the right panel shows �y [Eq. (F4)].

the decrease in v with decreasing ZA in Eq. (4), because nAB

decreases with decreasing ZA [see Eq. (16)].
Fourth, we discuss the case of R. The value (i1, i2) =

(nAB, |ZX|) has an occurrence rate of �13%. The color map
of the dependence of R on (nAB, |ZX|) in Fig. 20 looks sym-
metric to that on (|ZX|, nAB) in Fig. 19. The value (i1, i2) =
(|ZX|, RX) also has an occurrence rate of �13%. At fixed |ZX|,
R increases with decreasing RX. This is explained as follows:
Decreasing RX decreases the cell parameter a [Eq. (20)],
which increases the bandwidth of the M space [20]; this
increases the charge-transfer energies between occupied M
bands and empty bands, which reduces the screening. [This
dependence of R on RX is a higher-order dependence beyond
Eq. (5).]

APPENDIX G: HOLE DOPING DEPENDENCE
OF SCREENING

Here, as a complement to Sec. IV C and the MOD2 of u
and R in Eqs. (3) and (5), we discuss the nAB dependence of
u and R when the CF at δ = 0 is fixed. The values of u and R
for all compounds in the training set are shown in Fig. 21(a).
For X = F, Cl and especially (X, A) = (F, Ba), (Cl, Ba), and
(Cl, Sr), we observe a sharp decrease in u between 10% and
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FIG. 20. HDEex[y,V1] results for y = |t1|, u, v, and R, and for selected values of (i1, i2) �= (iopt
1 , iopt

2 ) with the highest occurrence rate. For
each y, we show yavg [Eq. (F3)].

20% hole doping (i.e., between nAB = 0.9 and nAB = 0.8).
This decrease in u is caused by the sharp decrease in R as
seen in Figs. 21(a) and 21(b). Although the decrease in R with
increasing δ (or decreasing nAB) is consistent with the MOD2
in Eq. (5), the sharper decrease in R for X = F, Cl compared
with X = O is not captured by Eq. (5). For completeness, we
discuss the origin of the sharper decrease in R for X = F, Cl
in detail here.

The decrease in the δ dependence of R may be quantified
by considering the quadratic interpolation

R(δ) = R0 + R1δ + R2δ
2, (G1)

where R0, R1, and R2 are determined entirely by the ab initio
values of R at δ = 0.0, 0.1 and 0.2: R0 is R at δ = 0 in
Fig. 21(b), and the values of R1 and R2 are given in Fig. 21(c).
The decrease in R is encoded in R2 < 0 for all compounds,

FIG. 21. (a) Values of u and R taken from Fig. 4. (b) Values
of R as a function of hole doping δ = 1 − nAB. The dashed curves
show the quadratic interpolation of the δ dependence of R by using
Eq. (G1). (c) Values of the coefficients R1 and R2 in Eq. (G1).
(d) Values of WM as a function of R2. For each color point, the
corresponding CF is shown in Fig. 3. In panel (c), the colors of the
crosses correspond to the values of A, X, and A′ in Fig. 3.

and the sharp decrease in R for (X, A) = (F, Ba), (Cl, Ba), and
(Cl, Sr) is reflected in the high value of |R2| compared with
the other compounds. Other compounds with X = F, Cl also
have higher values of |R2| compared with X = O. Namely, we
have |R2| � 0.55 for X = O, |R2| � 1.14 for X = F, Cl, and
|R2| � 3.55 for (X, A) = (F, Ba), (Cl, Ba), and (Cl, Sr).

Possible causes of the higher value of |R2| are (i) the
sharp decrease in |εo| from δ = 0.1 to δ = 0.2 for X = F, Cl
(see Fig. 16), and also (ii) the lower value of the M space
bandwidth WM for X = F, Cl. On (ii), we see in Fig. 21(d)
that the three compounds with (X, A) = (F, Ba), (Cl, Ba), and
(Cl, Sr) have the lowest WM at δ = 0.2. The above discussed
dependence of |R2| on WM (ii) is interpreted as follows. If
WM is lower, then the charge-transfer energies between the
occupied states in the M space and the empty states in the
M space (namely, the empty part of the AB band) are smaller.
Thus, the intra-M space cRPA screening will be stronger. A
rough scaling of the intra-M space screening is 1/WM [see
Eq. (D1)], so that the smaller WM, the more R will decrease
when WM further decreases [and, for X = F, Cl, WM decreases
with increasing δ as seen in Fig. 21(d)]. On the other hand, in
X = F, Cl, the screening channel between the occupied states
and empty states outside M is relatively weak compared with
X = O due to the larger εe (see Fig. 16). This suggests the
intra-M space screening dominates over the other screening
channels for X = F, Cl. (Note that, besides the decrease in
WM, the decrease in |εo| with increasing δ also participates in
increasing the intra-M space screening.)

The higher |R2| in X = F, Cl compared with X = O implies
a nontrivial point on the origin of the superconductivity in
oxychlorides and oxyfluorides. [Confirmation of this point
requires to improve the derivation of the AB Hamiltonian at
the cGW -SIC + LRFB level (this may change the values of
R0, R1, and R2), which is left for future studies.] Even though
u and R are higher in the undoped compound for X = F, Cl
compared with X = O [according to Eq. (3) and (5)], u may
become lower in the hole doped compound at optimal hole
doping for X = F, Cl compared with X = O due to the higher
|R2|. In particular, u may fall into the weak-coupling regime
(u � 6.5–8.0) at δ � 0.2 for X = F, Cl, which may correspond
to the optimal hole doping. For instance, in Table I, the ex-
perimental Tc in Ca2−xNaxCuO2Cl2 is T expt

c � 27 K [12], and
this is realized at δ = 0.18, which is close to δ = 0.2 at which
the sharp decrease in R happens. If u is in the weak-coupling
regime at δ = 0.18, then the lower Tc compared with other
cuprates is caused by the decrease in FSC with decreasing u in
the weak-coupling regime.
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FIG. 22. Partial densities of states within the M space and
near the Fermi level for Ba2−δCsδCuO2Cl2, Sr2−δRbδCuO2Cl2, and
Ca2−δKδCuO2Cl2, at hole doping δ = 0.2.

APPENDIX H: DENSITY OF STATES NEAR THE FERMI
LEVEL IN HOLE-DOPED OXYCHLORIDES

In item (9) (dependence of |εo| on V1) in Sec. IV C, we
mention the increase in |εo| with decreasing RA in the MOD2
of |εo| [Eq. (28)]. Here, we discuss the interpretation of the
increase in |εo| with decreasing RA. To do so, we consider as
an example the three CFs in the training set such that δ = 0.2,
X = Cl and A = Ba2−δCsδ (i), Sr2−δRbδ (ii), and Ca2−δKδ

(iii). We choose the three above CFs (i)–(iii), because (i)
has the lowest value of |εo| among the compounds in the
training set (|εo| = 0.134 eV; see the purple diamond marker
in Fig. 16), and the value of RA is progressively reduced from

(i) to (iii). [We have RA = 1.508 Å for (i), RA = 1.354 Å for
(ii), and RA = 1.178 Å for (iii)].

The interpretation of the increase in |εo| with decreasing
RA is based on two observations: (a) The value of |εo| mainly
depends on the O2pz and Cu3dyz/zx orbitals, and (b) the
O2pz and Cu3dyz/zx orbitals are deeper in energy when RA

decreases. Below, we discuss items (a) and (b).
First, we discuss item (a). Because εo is the highest energy

of the occupied bands outside the AB band, the value of |εo|
mainly depends on the orbitals that form the density of states
near the Fermi level, excluding the Cu3dx2−y2 and O2pσ or-
bitals. Thus, we examine the character of the occupied bands
near the Fermi level, for the three above CFs. To do so, we rep-
resent the partial density of states (pDOS) for several types of
orbitals in Fig. 22. Near the Fermi level, the Cu3dx2−y2/O2pσ

pDOS corresponds to the AB subspace, and the character
of the highest occupied bands outside the AB band is given
by the pDOS other than Cu3dx2−y2/O2pσ . Outside the AB
band, the density of states near the Fermi level is dominated
by the O2pz pDOS and Cu3dyz/zx pDOS (see Fig. 22). Thus,
the value of |εo| mainly depends on the O2pz and Cu3dyz/zx

orbitals. In particular, |εo| increases if the O2pz and Cu3dyz/zx

orbitals are deeper in energy.
Now, we discuss (b), i.e., why the O2pz and Cu3dyz/zx

orbitals are deeper in energy when RA decreases. If RA is
reduced, then a is reduced [see Eq. (20)], and the in-plane
O is closer to the A cation. Thus, the positive MP from the A
cation that is felt by the in-plane O is stronger. [See Fig. 9(a)
for an illustration.] Thus, the O2p orbitals in the M space are
stabilized, i.e., their onsite energy is reduced. This shifts the
O2p pDOS downward, i.e., farther from the Fermi level. With
respect to the O atom in the unit cell, the positions of the four
nearest A cations (in Cartesian coordinates) are ±a/2y ± dz

Az
(y and z are unitary vectors along the y and z directions that
are considered in Table II): The O2pσ orbital extends along
x direction and thus avoids the A cations, whereas the O2pz

orbital extends along z direction, so that the O2pz electrons are
closer to the A cation compared with the O2pσ electrons. This
explains why the O2pz electrons are prominently affected by
the positive MP from the A cation. Similarly, the Cu3dyz/zx

orbitals extend along the z direction, and may be prominently
affected by the positive MP from the A cation. The above
discussion is supported by the values of the onsite energies
of the orbitals: From (i) to (iii), εO

pσ
decreases by 0.97 eV,

whereas εO
pz

decreases by 1.16 eV, so that the O2pz orbital
is indeed more stabilized than the O2pσ orbital. Also, εCu

x2−y2

decreases by 0.26 eV, whereas εCu
yz/zx decreases by 0.48 eV, so

that the Cu3dyz/zx orbital is indeed more stabilized than the
Cu3dx2−y2 orbital.
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