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Reversible electric field manipulation of the Dzyaloshinskii-Moriya
interactions in transition metal dimers
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The anisotropic antisymmetric Dzyaloshinskii-Moriya (DM) interactions between local magnetic moments
μi and μ j , which can be induced by an external electric field (EF) are investigated in the framework of density
functional theory by considering all 3d , 4d , and 5d freestanding transition metal dimers. The possibilities of
triggering and reversibly tuning chiral magnetic couplings by electric means are demonstrated. The dependence
of the DM-coupling vector Di j on the EF strength E is shown to be approximately linear for |E | � 0.6 V/Å,
with only minor third-order corrections. The first- and third-order zero-field electric susceptibility of the DM
couplings are determined and analyzed as a function of d-band filling. The correlations between them and the
chirality of the spin-orbit energy are displayed. From a microscopic perspective, the EF-induced DM couplings
are shown to stem from the permanent electric dipole moments p0 that are already present in the field-free dimers
whenever their local magnetic moments are not collinear. The symmetry rules governing p0 and its chirality
are discussed. Finally, the dependence of the EF-induced DM couplings on the degree of noncollinearity of
the magnetic order is quantified by varying systematically the angle θ between the local moments. While the
electronic calculations show that the changes in the effective Di j can be quite important for arbitrary θ , one also
observes that Di j depends weakly on θ and is thus transferable within a limited range of noncollinear magnetic
arrangements, provided that they are not too far from the lowest-energy configuration.
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I. INTRODUCTION

Low-dimensional magnetic materials such as clusters,
one-dimensional (1D) chains, and thin film remain one
of the most active and stimulating fields in fundamental
and applied condensed-matter research. On the one hand,
their remarkable size-, structural-, and dimensional-dependent
behaviors offer multiple possibilities of tuning and opti-
mizing the magnetic characteristics of materials for specific
technological purposes, for example, for the development
of high-density storage media, medical applications, and
spin-electronic devices. On the other, from a fundamental
perspective, considerable efforts are being dedicated to un-
derstanding magnetoanisotropic phenomena, which reflect the
subtle effects of spin-orbit interactions on quantum many-
body systems. One of the most fundamental manifestations
of magnetic anisotropy is the dependence of the electronic
energy on the spin-magnetization direction, defining the low-
temperature orientation of the average magnetization, as well
as its stability at finite temperatures or under the action of
external fields. Recent investigations have also revealed the
importance of the anisotropy of the interactions between the
local magnetic moments, which are not only responsible for
the shape and stability of the magnetic order but are also
crucial for the dynamical response of magnetic materials to
currents, laser pulses, and external fields. Particularly inter-
esting are the antisymmetric anisotropic couplings, known
as Dzyaloshinskii-Moriya (DM) interactions since they re-
sult in remarkable noncollinear magnetic orders with distinct
chiralities, for example, spin-density waves, skyrmions,
and other localized magnetic textures [1–8]. Therefore,

elucidating the microscopic origin and quantitative values of
the anisotropic magnetic interactions is a matter of central
importance.

In past years, significant progress has been made in con-
trolling the magnetic properties of nanostructures by external
sources such as spin-polarized currents, laser fields, and static
electric fields (EFs). In particular, the use of EFs appears
as a very promising method of steering the spin degrees
of freedom since it is both reversible and energy efficient.
Recent experiments have in fact shown that an external EF
can modify the magnetoanisotropic behavior of a large vari-
ety of materials including metal-oxide semiconductors, thin
films, nanomagnets, and small clusters [9–21]. For instance,
an EF-induced magnetization reversal has been achieved by
modifying the interface exchange bias in multiferroic lami-
nates [19] and the magnetization directions of nanomagnets
have been manipulated by means of the EF generated by the
tip of a scanning tunneling microscope [20,21].

The experimental results are supported by theoretical
studies of the effects of EFs on molecules, clusters, mul-
tilayers, and surface nanostructures [22–33]. For example,
Oba et al. have calculated the EF-induced modifications of
the frozen-magnon dispersion relations and effective Heisen-
berg exchange couplings in a freestanding Fe monolayer
and in a Co monolayer on Pt(111) within density func-
tional theory (DFT) [30]. Moreover, the resulting changes
in the Curie temperature of the films have been estimated
by performing Monte Carlo simulations. Goerzen et al. have
investigated the EF-assisted nucleation and annihilation of
magnetic skyrmions in Pd/Fe/Ir(111) using a classical spin
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model in which the interaction parameters are derived from
DFT calculations [31]. Concerning the magnetoanisotropic
behavior, the work of Paul and Heinze on an FeRh bi-
layer deposited on Re(0001) has shown that the EF-induced
changes in the interaction parameters play an important role
in defining the energy barriers for the EF-assisted writing and
deleting of skyrmions [32]. Moreover, Desplat et al. have
calculated how an external EF generates a DM interaction
in an inversion-symmetric ultrathin film [33]. By performing
atomistic simulations within the framework of an effective
Heisenberg model with parameters derived from DFT, these
authors have also shown how an EF pulse can result in the
nucleation of a localized AF skyrmion around a magnetic
defect.

The functionalities introduced by applying external EFs
also open new prospects in the search for advanced mag-
netic materials that not only have a large magnetic anisotropy
energy (MAE), and thus a particularly stable magnetization,
but that are also tunable for fast and efficient magnetization
reversal in the writing processes [20]. One expects in fact to
design magnetic materials in which an external electric field
is used to reduce the MAE when a spin reversal is intended,
thus rendering the process faster and feasible at comparatively
weaker magnetic fields or currents. Removing the EF after the
writing process would then restore the full MAE, thus avoid-
ing a superparamagnetic information loss. In this way, fast
magnetization-reversal process could be achieved at relatively
low-power consumption.

From a theoretical perspective the challenge remains to
characterize and understand the microscopic origin of the EF
dependence of the magnetic interactions and their anisotropy,
which would be most useful for guiding material design and
optimization. The EF manipulation of magnetic behaviors is
particularly interesting in systems showing chiral magnetic or-
der and chiral magnetic interactions. One of the main reasons
is that chiral magnetic interactions are critically sensitive to
the symmetry of the lattice structure and, more generally, to
the form of the external potential vext (r) acting on the va-
lence electrons responsible of magnetism. Indeed, if a system
shows inversion symmetry [i.e., if vext (r) = vext (−r)] one can
show that the energies of a magnetic configuration and its
mirror image are the same. In this case, a qualitative important
mechanism of stabilizing noncollinear magnetic arrangement
is absent because no energy can be gained by adopting a
specific chirality. This problem has recently motivated a con-
siderable experimental and theoretical research activity in
relation to the formation, stabilization, and transport of local-
ized noncollinear magnetic textures [29,31–33]. Applying an
EF or attaching foreign atoms to a magnetic material opens
remarkable opportunities of manipulating the magnetic be-
havior since these external sources break inversion symmetry,
thus triggering the onset of DM couplings, which are respon-
sible of chirality. The prospects of tuning the chirality of the
magnetic order by EFs are particularly appealing in the case
of low-dimensional systems and nanostructures (e.g., clusters,
wires, and thin films) since screening is strongly limited in
these systems due to their reduced coordination number and
dimensionality.

The purpose of this paper is to demonstrate and quan-
tify the possibilities of triggering and tuning chiral magnetic

interactions in low-dimensional transition metal (TM) sys-
tems by means of EFs. To this aim a systematic study
involving all 3d , 4d , and 5d freestanding TM dimers has been
performed in the framework of DFT. The method used for
the calculations is described in Sec. II. The results, presented
in Sec. III, include an analysis of the EF dependence of the
DM couplings, an account of the trends in the field-induced
couplings as a function of band filling and across the different
TM series, as well as an analysis of the dependence of the
EF-induced DM couplings on the degree of noncollinearity
between the local magnetic moments. Finally, the paper is
closed in Sec. IV with a summary of our conclusions.

II. THEORETICAL METHODS

The effective pairwise interaction between the local mag-
netic moments μi at the atoms i are obtained by expanding
the total electronic energy to second order in the orientations
of μi. The resulting approximation of the interaction energy
takes the form of a classical spin Hamiltonian, which can
be expressed, without loss of generality, as the sum of ir-
reducible terms corresponding to different symmetries. One
may thus distinguish isotropic, symmetric anisotropic, and
antisymmetric anisotropic couplings [34,35]. The focus of
this work is on the antisymmetric contribution known as
the Dzyaloshinskii-Moriya interaction [36–39], which can be
written in a geometrically transparent form as

HDM = 1

2

∑

i, j

Di j · (
μ̂i × μ̂ j

)
, (1)

where Di j = −D ji ∈ R3 is the DM pseudovector and μ̂i =
μi/μi is the unit vector giving the orientation of the magnetic
moment at atom i. Physically, Di j defines the most favorable
polarization plane and sense of rotation of μi in noncollinear
arrangements. Its magnitude determines the relative stability
between magnetic configurations having opposite chiralities.
The sign convention in Eq. (1) is such that the favored sense
of rotation of the local magnetic moments, as we move from
atom i to atom j, is the one in which μ̂i, μ̂ j , and Di j form
a left-handed basis [i.e., Di j · (μ̂i × μ̂ j ) < 0]. For example,
for a pair of atoms having local moments μ1 and μ2 located
along the x axis, a DM vector D12 pointing along the pos-
itive z axis stabilizes the clockwise sense of rotation of the
moments from μ1 towards μ2 within the xy plane relative to
the counterclockwise sense of rotation. We denote here the
left-handed or clockwise chirality with − and the right-handed
or counterclockwise one with + (see Fig. 1).

As almost every magnetoanisotropic property, the strength
of the DM vector Di j depends critically on the details of
the electronic structure and on the parameters that control
it. This includes in particular the composition of the system,
the strength of the spin-orbit (SO) interactions, and the local
environment of the atoms [5,6,35,40,41]. In contrast, the di-
rection of Di j and the very presence of a nonvanishing DM
coupling are largely defined by the point-group symmetry
around the bond connecting the atoms i and j [37]. Consider
two magnetic moments μi and μ j located at ri and r j , with
ri j = r j − ri being the vector connecting them and C the point
bisecting the segment ri j . The following symmetry constraints
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(a)

(b)

FIG. 1. Illustration of the noncollinear magnetic configurations
used for calculating the electric field induced Dzyaloshinskii-Moriya
(DM) interactions in transition metal dimers. The arrows at the atoms
1 and 2 indicate the orientation of the local magnetic moments μi

which turn in counterclockwise (+) or clockwise (−) sense within
the xy plane as we move from 1 to 2: (a) maximal noncollinearity
θ = π/2 and (b) variable angle θ between the local moments. The
positive directions of the electric field E = (0, Ey, 0) and DM vector
D12 = (0, 0, Dz

12) are indicated.

on Di j can then be derived by exploiting the pseudovector
character of the local moments and the invariance of the
interaction energy under symmetry transformations [37]: (i)
If the system has an inversion symmetry with respect to C,
then Di j = 0. (ii) If the system exhibits a mirror-symmetry
plane that is perpendicular to ri j and passes through C, then
Di j is perpendicular to ri j . And (iii) Di j is perpendicular to
any mirror-symmetry plane of the system that includes the
bond ri j connecting ri and r j . Consequently, changing the
symmetry of the system offers numerous possibilities of trig-
gering DM couplings and thereby manipulating the stability
of noncollinear magnetic arrangements with specific chiral-
ities. For instance, in the case of one-dimensional chains,
inversion symmetry implies Di j = 0. Therefore, breaking this
symmetry, for example, by deposing the chains on a sub-
strate, by decorating them with adatoms, or by applying an
external electric field, would trigger finite DM couplings, thus
resulting in a qualitative change of magnetic behavior [33,35].
Applying external electric fields is particularly interesting in
this context since it offers a continuous reversible way of
controlling the strength and orientation of the DM vectors.

The expression (1) for the DM interactions does not
presuppose any specific microscopic mechanism responsible
for these couplings. It simply encompasses the antisymmet-
ric contributions to the two-body magnetic interactions, or
quadratic dependence of the electronic energy, as a function
of the orientation of the local magnetic moments μi and μ j .
Therefore, it applies in principle to all intrinsic workings.

However, the strength and orientation of Di j , as well as its
geometric relation to the position and local environment of
μi and μ j , do depend on the underlying electronic processes,
which necessarily involve spin-orbit coupling. For example,
in the derivations proposed by Moriya [37] and by Fert and
Levy (FL) [3] an additional, typically nonmagnetic atom is
required in the environment of μi and μ j (e.g., an impurity
or interface atom) in order to bring about the superexchange
coupling or the scattering of the conduction electrons. In par-
ticular, the FL mechanism predicts that Di j is proportional to
(ri − r0) × (r j − r0), where r0 is the position of the mediat-
ing atom [3]. A different DM-coupling mechanism has been
proposed in the converse spin-current model [42]. In this case,
the presence of a permanent electric polarization, which can
be driven, for example, by lattice distortions as in BiFeO3 and
which is essentially independent of the orientation of the mag-
netic moments, results in antisymmetric interactions between
them. The corresponding DM vector Di j bears here a very
different relation to the local environment of the magnetic
atoms i and j, as it is proportional to pi × ri j , where pi stands
for the local electric polarization. In one- and two-dimensional
systems, where the atoms and permanent electric dipoles lie
on a common plane, it not possible to discern between these
two mechanisms from the symmetry of Di j . However, in
three-dimensional materials such a distinction is in principle
possible. Indeed, a detailed analysis of the frozen-magnon
dispersion relations in BiFeO3 calculated with DFT has re-
cently revealed the significance of the asymmetric exchange
interactions induced by a converse spin-current effect over the
structural asymmetry induced by the anionic octahedrons of
the BiFeO3 lattice [43]. Clearly, none of these mechanisms
apply to freestanding homogeneous dimers since both a medi-
ating atom and a preexisting permanent dipole are absent. As
discussed in Sec. III, the EF-induced DM couplings that we
observe can be qualitatively understood from the perspective
of a magnetoelectric effect of a different nature, namely, in
the frame of the spin-current model proposed by Katsura,
Nagaosa, and Balatsky (KNB) [44]. According to this work,
the spin-orbit interactions result in an electric polarization that
is proportional to ri j × (μ̂i × μ̂ j ) already in the absence of an
external EF, provided that the magnetic order is noncollinear.

In this paper the DM interactions have been calculated
by performing independent calculations of the electronic en-
ergy for different noncollinear magnetic configurations of
the system. This is achieved by imposing constraints to
the orientations of the local magnetic moments μi at each
atom i in the framework of Hohenberg-Kohn-Sham’s DFT
[45,46]. The DM vectors Di j between atoms i and j are
obtained by building appropriate total-energy differences be-
tween configurations having opposite chiralities. Figure 1
shows representative magnetic configurations of the dimers,
in which the local moments are located in the xy plane and
the chirality is counterclockwise (+) or clockwise (−). Once
the corresponding total energies ε+ and ε− are obtained, the z
component of the DM vector is given by

Dz
12 = ε+ − ε−

2 sin(θ )
, (2)

where θ is the angle between the local moments. Notice
that the symmetric isotropic and anisotropic interactions
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cancel out in �ε = ε+ − ε− because the magnetic config-
urations + and − are the chiral image of each other. In
the limit of collinear local moments, Dz

12 remains finite
since �ε vanishes linearly as θ tends to 0 or π . If neces-
sary, the other components of Di j can be determined in an
analogous way by considering similar magnetic configura-
tions with local moments in the corresponding orthogonal
planes. In the present case, Dz

12 is the only nonvanishing
component.

The DFT calculations have been done using the Vi-
enna ab initio simulation package (VASP) [47,48]. The
spin-polarized Kohn-Sham orbitals are expanded in an
augmented plane-wave basis set, taking into account the in-
teraction between valence electrons and ionic cores within
the projector-augmented wave approximation [49]. Exchange
and correlation effects are described by means of the
Perdew-Burke-Ernzerhof parametrization of the generalized-
gradient approximation [50]. While the orientations μ̂i of
the local moments are constrained, no restriction is im-
posed to their moduli. Thus, these degrees of freedom
are optimized, which corresponds to the most stable solu-
tion of the Kohn-Sham equations for the given μ̂i [51,52].
In practice, the sizes of the local magnetic moments are
largely independent of the chirality of the magnetic con-
figuration, although they may well depend on the angle
between them.

The numerical convergence and stability of the calculations
is ensured by considering fractional occupations of Kohn-
Sham orbitals with a Gaussian smearing. The width of the
Gaussian is progressively decreased in the range 0.9 eV �
σ � 0.01 eV until the entropy contribution to the free en-
ergy is less than 10−3 eV/atom, often even practically zero.
Concerning the expansion of the Kohn-Sham orbitals, a cutoff
energy Emax = 500 eV has been used for the plane-wave ba-
sis set. The self-consistent calculations are pursued until the
change in the total energy between subsequent optimization
steps is smaller than 10−6 eV. This is sufficient for our pur-
poses, as we are interested in determining energy differences
of the order of 10−4 eV or larger. The dimensions of the
supercell are chosen to be large enough (at least 12 Å) so as to
avoid any spurious interactions between the cluster images.
As in any finite-cluster calculation only the gamma point
is taken into account. The orientation of the local magnetic
moments μi is constrained along the directions n̂i correspond-
ing to the considered noncollinear magnetic configuration by
adding the penalty function to the Hohenberg-Kohn energy
functional [53,54]. The local magnetic moments μi are ob-
tained by integrating the magnetization density m(r) within
the Wigner-Seitz sphere �i of atom i. Two methods are
compared concerning the effects of spin-orbit interactions.
The first and most rigorous one is a fully self-consistent
treatment for each independent calculation with its specific
chiral magnetic order. The second one is the force-theorem
(FT) approximation, in which the spin-orbit interactions are
incorporated a posteriori, once self-consistency at the scalar
relativistic level has been reached [55]. By comparing these
two approaches the relevance of a self-consistent treatment
of SO interactions to the DM couplings can be quantified. In
both cases the method implemented by Lebacq and Kresse is
used [56,57].

III. RESULTS AND DISCUSSION

The general rules defining the orientation of Di j with re-
spect to the vector ri j = ri − r j connecting the locations of a
pair of magnetic moments μi and μ j have been formulated
by Moriya [37]. While these symmetry criteria certainly ap-
ply to the present situation, it is still instructive to consider
the case of an external EF perpendicular to the dimer bond
explicitly, by exploiting the pseudovector character of Di j .
In fact, a reflection across the xy plane defined by r12 =
(x12, 0, 0) and the electric field E = (0, Ey, 0) leaves both r12

and E unchanged, while reversing the x and y components
of D12 (see Fig. 1). Consequently, Dx

12 = Dy
12 = 0 for all Ey.

Moreover, a reflection across the zx plane perpendicular to E
reverses both Ey and Dz

12. Therefore, Dz
12 is an odd function

of Ey, i.e., Dz
12(−Ey) = −Dz

12(Ey). For completeness, note
that the reflection across the yz plane passing through the
middle of the bond provides no further information since E
is unchanged while D12 transforms to (Dx

21,−Dy
21,−Dz

21) =
(−Dx

12, Dy
12, Dz

12). This confirms that Dx
12 = 0 but yields no

information on the other components.
In the following we focus on the nonvanishing component

Dz
12 of the DM vector. In Sec. III A the EF dependence of

Dz
12 is analyzed and the electric susceptibilities characteriz-

ing it are identified. The trends across the 3d , 4d , and 5d
series are discussed in Sec. III B, giving emphasis to the
microscopic origin of the observed Dz

12(E ). Complementary
information on the local magnetic moments and SO energies
is provided in Sec. III C. Finally, in Sec. III D we analyze
how the EF-induced DM couplings depend on the degree of
noncollinearity between the local magnetic moments.

A. Electric field dependence of the
Dzyaloshinskii-Moriya interaction

In order to quantify the electric field induced DM coupling
systematically and to identify the trends as a function of
d-band filling and SOC strength we have performed density
functional calculations for all 3d , 4d , and 5d dimers at the
corresponding bulk nearest-neighbor (NN) distances. In Fig. 2
the EF dependence of the nonvanishing component Dz

12 of
the DM vector is shown for a few representative examples.
Only positive values of Ey are considered since Dz

12 is an
odd function of Ey. One observes that the EF-induced DM
couplings are largely dominated by a linear term, which is
characterized by the first-order electric susceptibility of the
DM interaction δ12 = ∂Dz

12/∂Ey at zero field. The proportion-
ality between Dz

12 and Ey at low fields indicates that there
are nonvanishing permanent dipole moments p0

+ and p0
− in

the noncollinear configurations + and −, whose y compo-
nent p0,y

± along the field depends on chirality. Aside from the
linear term, a weaker cubic contribution to the field depen-
dence of Dz

12 is found, which can be characterized by the
third-order susceptibility γ12 = ∂3Dz

12/∂E3
y at zero field. In

order to quantify δ12 and γ12 for the different elements, we
have fitted the self-consistent (SC) density functional results
(crosses) with functions of the form Dz

12(E ) = δ12E + γ12E3.
Figure 2 shows that these cubic expansions, given by the
curves, describe remarkably well the EF dependence of the
DM couplings. Concerning the role of SO interactions, it is
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FIG. 2. Dzyaloshinskii-Moriya vector D12 = (0, 0, Dz
12) in tran-

sition metal dimers as a function of the applied electric field
E = (0, Ey, 0). Results are shown for representative (a) 3d , (b)
4d , and (c) 5d transition metals, as obtained from self-consistent
(crosses) and force-theorem (circles) calculations. The solid curves
show the fit of the DFT results using the weak-field expansion
Dz

12(E ) = −pE = −p(0)
+ E − α

(2)
+ E 3, where p(0)

+ = −p(0)
− is the zero-

field electric dipole moment and α
(2)
+ = −α

(2)
− the quadratic electric

polarizability in the + configuration (see Fig. 1).

interesting to note that the results obtained using the sim-
pler force-theorem (FT) approximation (circles) are in general
very similar to the SC ones. The largest discrepancies are
found for elements showing a particularly strong response to
the field: Ni, Nb, and most notably the heavier Ir and Re.
Nevertheless, even in these cases, the FT approximation is
qualitatively correct. This indicates that, although SO inter-
actions are central to the DM couplings, the redistributions of
the spin-polarized electronic density resulting from them do
not play an important role.

According to the symmetry rules governing antisymmetric
magnetic interactions [37], a dimer shows no DM coupling
in the absence of an external EF because the lattice structure
has inversion symmetry. From this perspective, the DM vector
induced by Ey can be regarded as the consequence of break-
ing the inversion symmetry and the C∞ rotational symmetry
around the bond axis. Electric fields along the dimer bond
yield no DM coupling because of the remaining combination
of C∞ and σv symmetries [37]. However, a linear dependence
of Dz

12 on Ey, as shown in Fig. 2, is only possible when
different permanent dipole moments p0,y

+ and p0,y
− are already

present in the magnetic configurations + and − in the absence
of any external EF. In fact, it is the dependence of p0,y on

the chirality of these magnetic configurations what explains
the linear behavior of the DM coupling at finite fields [see
Fig. 1(a)]. From this perspective, the microscopic origin of the
EF-induced DM couplings is intrinsic to field-free dimer. It is
rooted in the noncollinearity of the magnetic configurations
+ and −, and in the way in which the SO interactions are
affected by their opposite chiralities. The EF serves then only
as the means of rendering this chiral behavior apparent in the
form of an antisymmetric interaction energy.

Symmetry arguments provide very useful information on
the orientation of the dipole moments p0

+ and p0
− resulting

from SO interaction in the noncollinear magnetic configu-
rations of the field-free dimers. One should first of all note
that the total electronic density n(r) is invariant upon time
inversion. Therefore, the electric dipole moments are invariant
upon reversing all local magnetic moments μi. Furthermore,
concerning point-group symmetries, p0 transforms as a vec-
tor while μi as a pseudovector. To be explicit, consider the
configuration + shown in Fig. 1(a) and apply time inversion
followed by a reflection across the xy plane. This combination
of operations leaves the magnetic configuration unchanged.
At the same time, the dipole moment p0

+ is unaffected by
time inversion and its z component p0,z

+ changes sign upon
the xy reflections. Consequently, p0,z

+ = 0. Consider now the
reflection of the configuration + across the zx plane, which
leaves μ1 unchanged and reverses μ2, thus transforming the
configuration + into the configuration −. In this case, p0,y

changes sign while p0,x and p0,z remain unchanged. This im-
plies that p0,y changes sign upon changing the chirality from
+ to − (i.e., p0,y

− = −p0,y
+ ) and that the other components are

independent of chirality (i.e., p0,z
− = p0,z

+ = 0 and p0,x
− = p0,x

+ ).
One therefore concludes that the chirality of the dipole mo-
ment is given by �p0 = p0

+ − p0
− = (0, 2p0,y

+ , 0). As a result,
the dominant part of the EF-induced D12 arises from the dipole
moments along the direction y or, more generally, along r12 ×
(μ1 × μ2) which is perpendicular to the vector connecting the
atoms and lies within the plane spanned by μ1 and μ2. This
component of p0 is consistent with the electric polarization
derived in Ref. [44] from the spin current. Notice, however,
that the dipole moment p0,x

+ along the the bond connecting the
atoms need not be zero since the noncollinear configurations
+ and − in Fig. 1(a) break the reflection symmetry across
the plane passing through the middle of the dimer bond. In
any case, the value of p0,x does not affect the DM coupling
because p0,x

+ = p0,x
− [58].

In order to assess the importance of the EF-induced DM
couplings quantitatively, it is useful to compare the results
shown in Fig. 2 with the corresponding Heisenberg exchange
couplings J12 typically found in dimers. These can be de-
rived from the energy difference J12 = (ε↑↓ − ε↑↑)/2 between
antiparallel and parallel alignment of the local moments.
We focus on the dominant isotropic part of the exchange
interaction and therefore average the spin-flip energies for ori-
entations of the magnetic moments along the x, y, and z axes.
Results for representative dimers are shown in Table I. As ex-
pected, J12 is orders of magnitude stronger than the spin-orbit
driven D12. The relative changes in J12 induced by an external
electric field amount to a small percentage, at most 4% in the
examples considered in Table I. However, in absolute values,
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TABLE I. Symmetric isotropic exchange interaction J12 in tran-
sition metal dimers. Results are given in meV for the field-free case
(Ey = 0) and for Ey = 0.5 V/Å (see Fig. 1). Positive (negative)
values correspond to ferromagnetic (antiferromagnetic) couplings.

Dimer Ey = 0 Ey = 0.5 V/Å

Fe2 323 310
Ru2 366 403
Os2 281 258
Cr2 −449 −447
Mo2 −937 −934
W2 −464 −462

the EF effect on J12 is similar and sometimes even larger that
the EF-induced DM couplings (see also Fig. 2). Comparison
with previous DFT calculations of the EF-induced modifica-
tion of the Heisenberg exchange couplings for a freestanding
Fe(001) monolayer and a Co monolayer on Pt(111) [30] in-
dicates that in freestanding dimers J12 is significantly larger
than the NN couplings in ultrathin films. This trend is consis-
tent with the increasing stability of short-range ferromagnetic
correlations observed in small Fe clusters as the cluster size
decreases [59]. It can be ascribed to the reduction of the
effective d-band width and the concomitant enhancement of
the local magnetic moments and exchange splittings as the
coordination number is reduced. Concerning the EF-induced
modifications of J12, the dimers often show a reduction (see
Table I) whereas for the Fe monolayer an increase of the NN
coupling has been reported [30]. Quantitatively, the absolute
changes found in the dimers also tend to be stronger, which
could be related to poorer screening.

B. Electric susceptibilities of the DM interaction

The previous section has shown that the EF dependence
of the DM interaction in TM dimers is very well described
by the cubic expansion Dz

12(E ) = −p(0)
+ E − α

(2)
+ E3, where

p(0)
+ = −p(0)

− is the electric dipole moment and α
(2)
+ = −α

(2)
−

is the second-order electric polarizability at zero field in the
magnetic configuration + [see Fig. 1(a)]. It is therefore mean-
ingful to characterize the trends across the TM series by
considering the zero-field electric susceptibility of the DM
interaction δ12 = ∂Dz

12/∂E = p(0,z)
+ and the third-order sus-

ceptibility γ12 = ∂3Dz
12/∂E3. The results for these properties

are given in Figs. 3 and 4, respectively [60].
The coefficient δ12 of the dominant linear dependence

of Dz
12 on the EF strength coincides with the permanent

dipole moment p(0,z)
+ in the configuration + since at zero

field p(0,z)
− = −p(0,z)

+ . In Fig. 3 one observes that δ12 depends
strongly on d-band filling, showing remarkable oscillations
and changes of sign across the TM series. This reflects the
known strong sensitivity of SO effects on the details of the
electronic structure. The amplitude of the oscillations and
typical values of δ12 increase as we move from the lighter
3d to the heavier 5d elements, in accordance with the cor-
responding increase of the SO coupling strength. The variety
of behaviors defies easy generalizations. For example, in the
3d series, δ12 is particularly small, showing weak oscillations

FIG. 3. First-order electric susceptibility of the Dzyaloshinskii-
Moriya interaction δ12 = ∂Dz

12/∂E = p(0,z)
+ at zero field in (a) 3d , (b)

4d , and (c) 5d transition metal dimers. Self-consistent (SC, crosses)
and force-theorem results (FT, circles) are compared. The lines con-
necting the points are a guide to the eye. See also Fig. 2.

as long as the band filling is lower or equal to that of Fe. In
contrast, at the end of the series, the response to the electric
is not only much stronger but it also shows opposite signs in
Co and Ni. Comparison with previous DFT calculations of
the magnetoelectric couplings for freestanding Mn, Fe, Co,
and Ni monolayers [33] confirms that the EF-induced DM
vectors in the dimers follow the same local-symmetry rules
as in these inversion-symmetric extended 2D systems (i.e.,
Di j ∝ E × r̂i j). However, the quantitative differences are very
important. The DM couplings per unit electric field δ12 in 3d-
TM dimers are found to be typically two orders of magnitude
stronger than the results reported in Ref. [33]. This trend is
consistent with the enhancement of the MAE in small TM
clusters as the local coordination number is reduced [61]. The
dependence of the DM interactions on external EFs has also
been theoretically investigated for deposited thin films which
lack inversion symmetry, and therefore show significant DM
couplings already in the absence of a field. In the case of an
FeRh bilayer on Re(0001) one finds that the DM coupling
changes by 0.07 meV upon varying the EF from −0.5 to 0.5
V/Å [32]. This value is significantly smaller than our dimer
results. For example, the corresponding change in Dz

12 for Fe2

is approximately 0.7 meV (see Fig. 2).
In the 4d series the oscillations of δ12 as a function of the

number of d electrons are significantly stronger than in the
3d series. Nevertheless, one observes that most isoelectronic
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FIG. 4. Third-order electric susceptibility of the Dzyaloshinskii-
Moriya interaction γ12 = ∂3Dz

12/∂E 3 at zero field in (a) 3d , (b) 4d ,
and (c) 5d transition metal dimers. Self-consistent (SC, crosses) and
force-theorem results (FT, circles) are compared. The lines connect-
ing the points are a guide to the eye. See also Fig. 2.

3d and 4d elements follow similar trends. Compare the os-
cillations of δ12 upon going from Ti to Fe in Fig. 3(a) with
those found from Zr to Ru in Fig. 3(b). And yet, δ12 in Co and
Rh have opposite signs, thus breaking the common trend. In
the 5d series a comparable increase of the amplitude of the
oscillations is observed relative to the 4d series [cf. Figs. 3(b)
and 3(c)]. While some isoelectronic 4d and 5d dimers show a
similar behavior (e.g., Tc and Re or Rh and Ir), several others
contrast (e.g., Nb and Ta, Mo and W, or Pd and Pt).

Further information of the magnetic response to the EF is
provided by the zero-field third-order electric susceptibility of
the DM coupling γ12, which measures the deviations of Dz

12
from linearity (see also Fig. 2). In Fig. 4 one observes either
that γ12 is quite small or that its sign is opposite to that of δ12.
The former corresponds to a nearly linear behavior, while the
latter reflects a tendency to saturation. Accordingly, relative
large absolute values of δ12 correlate with significant γ12. As
expected, γ12 is generally larger in the 5d elements, which
are subject to stronger SO coupling. In addition, one observes
that the SC and FT treatments of SO interactions yield almost
always very similar results, as in Fig. 2. The discrepancies,
even if not significant qualitatively, are more noticeable in the
heavier elements and in the more subtle γ12 (see Figs. 3 and
4). In particular, the sign of δ12 and γ12 obtained in FT and SC
calculations is almost always the same.

FIG. 5. (a) Local magnetic moments μi and (b) chirality of the
spin-orbit energy per unit electric field �εSO = (εSO

+ − εSO
− )/Ey in

TM dimers with bulk NN distances, as derived from independent
self-consistent calculations. The lines connecting the points are a
guide to the eye [60].

C. Local moments and spin-orbit energies

To gain a further insight into possible correlations between
the EF-induced DM interactions and other important magnetic
properties it is useful to analyze the trends in the local mag-
netic moments μi and in the average SO energies εSO

± across
the TM series. In Fig. 5(a) one observes that below half-band
filling μi increases almost linearly with increasing number
of d electrons nd , reaching a maximum for Cr, Mn and the
isoelectronic 4d and 5d elements. Beyond half-band filling
μi decreases as the number of d holes is reduced towards
the end of the series. This corresponds to nearly saturated
moments, which can be qualitatively understood by recalling
that the d-band width is strongly reduced in systems having
such a small local coordination number [62]. The structureless
dependence of μi as a function of nd contrasts with the strong
oscillations found in δ12 and γ12 (see Figs. 3 and 4). No cor-
relation between the strength of the EF-induced DM coupling
and the size of the local magnetic moments is observed. This
behavior differs from the one observed at 3d-5d interfaces,
where the DM interaction was found to follow Hund’s first
rule [7].

In Fig. 5(b) results are shown for the chirality of the SO en-
ergy per unit electric field, which is given by �εSO = (εSO

+ −
εSO
− )/Ey. One observes a strong band-filling dependence with

oscillations whose amplitudes increase as we move from the
3d to the 5d series. Given the strong dependencies of �εSO

and δ12 on nd , it is interesting to compare them in order to
identify possible correlations between these properties. For
instance, in the 3d series, �εSO displays weak oscillations for
band fillings up to Fe, followed by a strong increase for Co,
and a change of sign for Ni. These trends agree qualitatively
with the results on δ12 shown in Fig. 3(a). Furthermore, �εSO

also reproduces most of the nontrivial differences between
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FIG. 6. Dzyaloshinskii-Moriya interaction Dz
12 as a function of the angle θ between the local magnetic moments at the atoms 1 and 2 in

representative TM dimers having bulk NN distances and subject to an external electric field Ey = 0.5 V/Å [see Eq. (2) and Fig. 1(b)]. The
results are derived from independent self-consistent calculations (SC, crosses) or by using the force-theorem approximation (FT, open circles)
[63]. The corresponding increase of the average energy ε = [ε+(θ ) + ε+(θ )]/2 relative to the ground state is given by the solid curves with
dots.

the 3d and 4d values of δ12. Indeed, the oscillations and
changes of sign in �εSO from Mo to Pd are very similar to
the trends observed in δ12. However, in the case of Nb, the
results on �εSO disagree qualitatively with the susceptibility
of the DM coupling δ12 since their signs are opposite. Also
in the 5d series both similarities and discrepancies are found.
For example, the Re (Ir) dimer has a relatively strong posi-
tive (negative) �εSO, which is consistent with the relatively
large positive (negative) δ12. However, �εSO is strongest and
negative for Os, although the corresponding δ12 is relatively
small [cf. Figs. 3(c) and 5(b)]. While these results confirm that
the average SO energy represents an important, most often
dominant contribution to the EF-induced DM interactions,
they also show that other dimer-specific properties, such as
the electric polarizability, the redistributions of the spin and
orbital polarized density, and the details of the electronic
structure, can also play an important role.

D. DM interaction and degree of noncollinearity

The DM interactions discussed in the previous sec-
tions have been derived from electronic calculations on the
magnetic configurations with chiralities + and − illustrated
in Fig. 1(a), in which the interacting local magnetic moments
μ1 and μ2 are orthogonal to each other. These magnetic
arrangements are particularly interesting from the perspec-
tive of anisotropic antisymmetric interactions because they
represent the strongest degree of noncollinearity, halfway

between the ferromagnetic and antiferromagnetic alignments.
Nevertheless, in many situations of practical interest, the angle
between the interacting nearby moments differs strongly from
π/2, particularly when the noncollinearity is the result of
the competition between relatively strong exchange couplings
and much weak anisotropy energies, for example, in domain
walls and skyrmions. It is therefore of considerable interest
to investigate the dependence of the effective DM couplings
Di j on the degree of noncollinearity of the magnetic order. To
this aim we consider the magnetic configurations illustrated in
Fig. 1(b) and determine Dz

12 from Eq. (2) by performing self-
consistent and force-theorem total-energy calculations within
the framework of DFT, by varying systematically the angle θ

between the local moments μ1 and μ2.
The dependence of Dz

12 as a function of θ is shown in Fig. 6
for representative TM dimers subject to an external electric
field Ey = 0.5 V/Å. This figure also includes the average
ground-state energy ε = [ε+(θ ) + ε+(θ )]/2, from which the
ground-state order (ferromagnetic, noncollinear, or antiferro-
magnetic) and its stability can be inferred. The corresponding
local magnetic moments μi are given in Fig. 7. A remarkable
dependence of the EF-induced DM interactions on the degree
of noncollinearity between the local moments is revealed. If
one considers the complete range of relative orientations of
μi, from parallel to antiparallel, the changes in Dz

12 are very
significant indeed [63]. This is not surprising since forcing a
ferromagnetic system to be antiferromagnetic, or vice versa,
implies a drastic change in its electronic structure, which
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FIG. 7. Local magnetic moments μi at the atoms i = 1 and 2
in representative TM dimers as a function of the angle θ between
them [see Fig. 1(b)]. The results are obtained from self-consistent
calculations (SC, full curves with symbols) or force-theorem cal-
culations (FT, dashed curve) for an external electric field Ey = 0.5
V/Å. Except for W, the FT results are indistinguishable from the SC
ones on the scale of the plot. The corresponding DM couplings and
average energies are shown in Fig. 6.

definitely affects the details of the SO interactions and the
anisotropic properties derived from it. Nevertheless, the sign
of Dz

12 and thus the favored chirality are in most cases pre-
served, even when the angle between local moments is far
from the equilibrium one. Quantitatively, |Dz

12| tends to in-
crease for the most part as θ deviates from the value yielding
the lowest average energy ε (see Fig. 6).

In usual applications of effective classical spin models it is
implicitly assumed that Dz

12 depends weakly on θ , at least as
long as the noncollinear orientation of the local moments is
not too far from the ground-state order, i.e., small (large) θ for
ferromagnetic (antiferromagnetic) systems. Our calculations
show that, in the ferromagnetic dimers Fe2, Mn2, and Tc2

this assumption is justified. In fact, in these cases, Dz
12 is

not far from its ground-state value, even for the orthogonal
configuration (θ � 90◦). In antiferromagnetic W2, the DM
coupling is enhanced by 10% (22%) when θ varies from 180◦
to about 115◦ (90◦). However, in Cr2 and Mo2, which are
also antiferromagnetic, the dependence of Dz

12 on the degree
of noncollinearity is clearly stronger. For example, in Cr2

(Mo2) we find that Dz
12 changes by 10% with respect to the

value close to antiparallel alignment already when θ � 130◦
(θ � 135◦) reaching a 30% (75%) change in the orthogonal
configuration. These modifications of Dz

12 reflect important
deviations of the DM interaction energy from the proportion-
ality to sin(θ ). In the case of Cr and Mo, they cannot be
ascribed to strong changes in the local magnetic moments μi,
which remain remarkably stable for all θ , as shown in Fig. 7.
Significant changes in μi are found in W2 for θ < 60◦ and
to a lesser extent in Fe2 for θ > 90◦, in both cases far from
the ground-state order. They are the evidence of changes in
the electronic structure which correlate with changes in the
behavior of both Dz

12 and ε (see Fig. 6). In sum, the above
results support the assumption of transferability of the DM
couplings in effective spin models only within a restricted
degree of noncollinearity. Moreover, they also reveal some of
the quantitative limitations of unrestricted applications.

IV. CONCLUSION

Symmetry considerations show that an external EF can
induce antisymmetric DM interactions between local mag-
netic moments μi and μ j whose local environment exhibits
inversion symmetry in the absence of a field. They also predict
the orientation of the DM-coupling vector Di j as the one
perpendicular to the electric field E and the line connecting
the moment locations. And still, they provide no information
on the importance of the EF-induced couplings, their ma-
terial dependence, or their microscopic origin. In this work
the concrete possibilities of triggering and manipulating the
DM couplings in low-dimension systems by electric means
have been demonstrated by performing a systematic electronic
study of all TM dimers in the framework of DFT. The de-
pendence of the nonvanishing DM-vector component Dz

i j on
the electric field E has been shown to be nearly linear for
|E | � 0.6 V/Å, the third-order corrections having mostly a
minor importance. The trends across the TM series have been
characterized by computing the zero-field first-order electric
susceptibility of the DM couplings δi j , as well as the cor-
responding third-order susceptibility γi j , and analyzing them
as functions of the d-band filling. The microscopic source of
the EF-induced antisymmetric magnetic interactions has been
shown to reside in the permanent electric dipole moments p0

that field-free dimers develop as a result of SO coupling when
their local magnetic moments adopt noncollinear configura-
tions. The symmetry rules governing p0 and its dependence
on the chirality of the underlying magnetic configuration
have been derived. Furthermore, interesting correlations be-
tween δi j and the chirality of the spin-orbit energy have been
displayed.

Phenomenological spin models are remarkably useful in
order to investigate the physics of magnetic materials showing
anisotropic competing interactions. Not only their trans-
parency is most appealing from a theoretical perspective. but
also their simplicity is extremely interesting since it allows
a thorough exploration of the complex energy landscapes of
these systems, as well as simulations of dynamical processes.
Still, the determination of material-specific interaction param-
eter must rely on theoretical methods that take into account
how the electronic structure and the resulting interaction en-
ergies depend on the local environment of the atoms and on
the orientations of the magnetic moments. Moreover, once
the effective interactions have been derived from electronic
calculations for a given set of the magnetic arrangements, as in
this work, their transferability to other magnetic orders should
be verified. Investigations of the dependence of the DM cou-
plings on the degree of noncollinearity of the magnetic order
are therefore important. To this aim the EF-induced DM cou-
plings have been calculated within DFT by varying the angle
θ between the local moments. We have shown that changes in
the effective DM-coupling vector Di j are in general important
when θ differs strongly from its ground-state value (i.e., θ = 0
for ferromagnetic dimers and θ = 180◦ for antiferromagnetic
ones). The transferability of Di j is thus restricted to a limited
degree of noncollinearity. These results reflect the impossibil-
ity of casting the full complexity of the quantum many-body
problem of strongly interacting delocalized d electrons into
a classical spin model. Nonetheless, it is quite encouraging
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to see that the changes in Dz
12 are small for values of θ that

deviate from the ground state by as much as 30◦ in the most
complicated cases (Cr and Mo dimers) or even by 90◦ in
other examples (Mn, Fe, and Tc dimers). With these restric-
tions in mind, the effective magnetic interactions derived from
electronic calculations are reasonably transferable and well
suited for simulations in the framework of phenomenological
spin models involving competing interactions and complex
noncollinear orders, particularly when the focus is on the low-
lying states, where the magnetic arrangements do not deviate
strongly from the ground state.

The element-specific behaviors and general tendencies de-
rived in this work, for example, as a function of d-band
filling or across different TM series, are expected to be useful
as a guide for further theoretical investigations of the DM
interactions in other interesting low-dimensional systems. In

this context one should mention small TM clusters, in which
different local environments coexist and influence each other,
and one-dimensional chains, where both extended and local-
ized noncollinear magnetic orders can be anticipated. Further-
more, it would be interesting to extend and compare this study
with investigations on deposited dimers and alloy clusters,
where different microscopic mechanisms leading to antisym-
metric exchange couplings are expected to come into play.
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