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Many-body phase transitions in a non-Hermitian Ising chain
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We study many-body phase transitions in a one-dimensional ferromagnetic transversed field Ising model with
an imaginary field, and show that the system exhibits three phase transitions: one second-order phase transition
and two PT phase transitions. The second-order phase transition occurring in the ground state is investigated
via biorthogonal and self-normal entanglement entropy, for which we develop an approach to perform finite-size
scaling theory to extract the central charge for small systems. Compared with the second-order phase transition,
the first PT transition is characterized by the appearance of an exceptional point in the full energy spectrum,
while the second PT transition only occurs in specific excited states. Furthermore, we interestingly show that
both exceptional points are second-order in terms of scalings of imaginary parts of the energy. This work provides
an exact solution for many-body phase transitions in non-Hermitian systems.
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I. INTRODUCTION

Quantum phase transitions, which represent changes in
the ground state of a system controlled by external param-
eters, are a fundamental concept in the field of condensed
matter physics [1]. Most quantum phase transitions can be
understood via Ginzburg-Landau symmetry breaking [2,3] or
Wilson renormalization group theory [4,5]. Phase transitions
caused by symmetry breaking are usually characterized by
order parameters [1,3]. Finite-size scaling theory [6,7] can be
used as a powerful method to analyze phase transitions based
on finite-system order parameters.

Thermal phase transitions (TPTs), caused by thermal fluc-
tuations rather than quantum fluctuations, are well-known
finite-temperature phase transitions [1] in statistical mechan-
ics. In addition to TPTs, dynamic quantum phase transition
(DQPTs) [8,9] and excited-state quantum phase transitions
(ESQPTs) [10–15] are two other quantum phase transitions
beyond the ground state quantum phase transition. DQPT
concerns the excited states of a system in its time evolution
[8,9], but in contrast, ESQPT depends directly on the structure
of the full spectrum [10–15].

In non-Hermitian systems, the PT phase transition, which
reveals the full energy spectrum as well [16,17], is another
fascinating phase transition that has attracted great interest in
recent years [18,19]. As critical points of PT phase transition
and a unique feature of non-Hermitian systems, many un-
known properties of non-Hermitian exceptional points remain
to be explored. Recently, it has been argued interestingly that
phase transitions may occur in specific excited states, such
as the first excited state rather than the ground state [20–22].
For non-Hermitian systems, this phase transition corresponds
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to a PT transition between the first and second excited
states [20,21]. These PT phase transitions, dubbed as first
excited-state PT transitions, are caused by nearest-neighbor
interactions and strongly supported by numerical simulations
[20,21]. The understanding of first excited-state PT transi-
tions is an interesting issue.

In the paper, we show that first excited-state PT transitions
can also be caused by imaginary fields in a PT symmetric
system. We provide exact solutions for the emergence of
first excited state PT transitions in a one-dimensional non-
Hermitian ferromagnetic transverse field Ising (NHTI) model.
Furthermore, we show that both the first excited-state and the
full PT transitions belong to second-order exceptional points
from the finite-scaling of imaginary parts of the energy. Our
results indicate that the occurrence of first excited-state PT
transitions may be a universal feature of PT symmetric many-
body systems. In addition, we investigate the entanglement
entropy of the second-order phase transition in the real-energy
regime and the PT transition of the full energy spectrum,
and develop an approach that allows performing the finite-size
scaling theory to extract the central charge even for small
systems.

This paper is organized as follows. In Sec. II, we introduce
the NHTI model in one dimension. In Sec. III, we discuss
the concept of entanglement entropy. In Sec. IV, we study the
phase transitions of the NHTI model. In Sec. V, we summarize
our results.

II. MODEL

The NHTI model in one dimension is given by [23–27],

H = −
L∑

j=1

Jσ x
j σ

x
j+1 +

L∑

j=1

h
(
σ z

j + iγ σ
y
j

)
, (1)
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FIG. 1. The phase diagram of the NHTI model with respect to
h and γ . The ground-state, full PT , first excited-state PT transi-
tions are marked by the dashed magenta, red solid and red dash dot
lines, respectively. Here, the white dotted line indicates the system is
Hermitian at h = 0. The color bar represents imaginary parts of first
excited-state energies obtained with L = 8 and J = 1. The notations
FM and PM denote ground-state phases, PTf and BRf represent PT
symmetric and PT broken phases in full many-body energy spectra.
While PT1 and BR1 indicate PT symmetric and PT broken phases
of first excited states.

where σα
j are three Pauli matrices along α = x, y, z directions

at the site j. We assume that the coupling strength J and the
amplitudes h, γ of transversed fields are real numbers. The
notation i = √−1 is the imaginary unit. The periodic bound-
ary conditions (PBCs) are imposed by σ x

L+1 = σ x
1 throughout

the paper, with L is the length of the chain.
When γ = 0, the model in Eq. (1) is the well-known

Hermitian ferromagnetic transverse-field Ising model, which
undergoes a second-order phase transition between the ferro-
magnetic (FM) phase and the paramagnetic (PM) phase. In the
case of γ �= 0, the Hamiltonian in Eq. (1) is non-Hermitian
as H �= H ′ due to the imaginary field along the y direction.
However, the NHTI model has the PT symmetry [26], thus
the eigenvalues are either real or complex in conjugate pairs
[16,17]. The NHTI model in Eq. (1) can be transformed into
the transverse-field Ising model,

H = −
L∑

j=1

Jτ x
j τ

x
j+1 +

L∑

j=1

h
√

1 − γ 2τ z
j , (2)

through a similarity transformation [23,26],

σ z
j = S−1

j τ z
j S j, (3)

on each site j, with S j = e
β

2 σ x
j and β = 1

2 ln( 1+γ

1−γ
) denoting the

transformation matrix and the non-Hermiticity. Consequently,
when γ < 1, the system has real-valued energies and under-
goes an Ising transition at [23–26]

γc1 =
√

1 − (J/h)2, (4)

analogous to the Hermitian Ising model [c.f. Fig. 1]. As a
simple non-Hermitian spin model, the NHTI model in Eq. (1)
has been studied as a benchmark for topological degeneracy

[23], biorthogonal fidelity susceptibility [24], biorthogonal
Loschmidt echo [25], and phase transitions without gap
closing [26] in the regime of real eigenenergies. In the fol-
lowing, we will instead investigate quantum entanglement,
and focus mainly on phase transitions in the complex energy
regime in PBCs.

III. ENTANGLEMENT

If a system is divided into two parts, denoted as A and B,
then the von Neumann entanglement entropy S of the system
is defined as [28,29]

S = −Tr[ρA ln ρA] = −Tr[ρB ln ρB], (5)

where the reduced density matrices ρA = TrB(ρ) and ρB =
TrA(ρ). It is known that the entanglement entropy of a
one-dimensional system with length L near a critical point
scales as [30]

S ∝ c

3
ln L. (6)

under PBCs, where c represents the central charge. We will
show that this definition of the entanglement entropy holds for
non-Hermitian systems as well. However, the eigenstates |φR〉
and |φL〉 of H and H† are usually different as H �= H† in non-
Hermitian systems. This indicates that two types of density
matrices can be defined.

First, let us introduce the self-normal density matrix ρRR

using only the right eigenstates |φR〉, which is given by

ρRR = |φR〉〈φR|
Tr(|φR〉〈φR|) . (7)

The definition of ρRR is the same as in Hermitian systems,
which describes the physics originating from right eigenvec-
tors. It should be noted that right eigenvectors are not all
orthogonal in non-Hermitian systems, which in principle can
have certain effects. In the framework of biorthogonal quan-
tum mechanics [31], one can also introduce the biorthogonal
density matrix ρRL, defined as

ρRL = |φR〉〈φL|
Tr(|φR〉〈φL|) , (8)

where 〈φL| = (|φL〉)†. For certain phase transitions or phases,
it is argued that both the biorthogonal entanglement entropy
and the self-normal entanglement entropy, defined respec-
tively by ρRL and ρRR, can work in the real-energy regime
[21]. In the next section, we will demonstrate that only
biorthogonal entanglement entropy can characterize the phase
transitions under study.

IV. PHASE TRANSITIONS

A. Phase transition in real-energy regime

In order to verify whether these two entanglement
entropies can characterize the phase transitions in the
real-energy regime, we calculate the half-chain entanglement
entropy SRL

L/2 and SRR
L/2 of the ground state using Eqs. (7) and

(8) by exact diagonalization. Numerical results of SRL
L/2 and

SRR
L/2 as a function of h for L = 10 to L = 20 are presented
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FIG. 2. Entanglement entropy of ground states in the PT regime
(γ = 0.5 and J = 1). (a), (c) The biorthogonal and self-normal en-
tanglement entropy with respect to h for systems from L = 10 to L =
20. (b), (d) The finite-size scaling of the biorthogonal and self-normal
entanglement entropy at their peaks shown in (a) and (c), which are
fitted by using Eq. (6) and SRR

L/2 = SRR
∞ + ae−bL , respectively. Here,

SRR
∞ , a, b are fitting parameters. The central charge is identified as

c = 0.346 from the biorthogonal entanglement entropy. (e), (f) The
finite-size scaling of biorthogonal entanglement entropy for large
systems up to L = 1000, where the central charge is determined to
be c = 0.495.

in Fig. 2, where we find that the peaks of SRL
L/2 obey the

logarithmic scaling law [c.f. Figs. 2(a) and 2(b)] predicted
in conformal field theory, while the peaks of SRR

L/2 exhibit
exponential decay [c.f. Figs. 2(c) and 2(d)]. However, as
the lattice size is too small, the central charge we obtained
c = 0.346 is inconsistent with the analytical solution c = 0.5.
To achieve a more precise determination of the central charge,
we compute SRL

L/2 by mapping the spin model in Eq. (2) to the
free fermionic Kitaev chain. The central charge c = 0.495
[c.f. Figs. 2(e) and 2(f)] of this free fermionic chain is
determined using correlation functions [32]. However,
simulations for large interacting non-Hermitian systems
are nontrivial because of the non-Hermiticity, which are
under development [33,34]. Therefore, it would be helpful
to develop an approach that uses exact diagonalization to
investigate non-Hermitian models in small systems.

To achieve it, we attempt to study the scaling behavior
of h · SRL

L/2 instead of SRL
L/2 as done in Ref. [24] for the sec-

ond derivative of the ground-state energy [c.f. Fig. 3]. We
find surprisingly that SRL

L/2 obeys a logarithmic scaling law
[c.f. Figs. 3(a) and 3(c)] perfectly with the central charge
c = 0.501, which matches with the analytical value c =
0.5. In contrast, SRR

L/2 continues to decay exponentially and
converge [c.f. Figs. 3(b) and 3(d)]. Consequently, in the real-
energy regime of the NHTI model, the phase transition is

FIG. 3. (a) Modified witness of the entanglement entropy of
ground states in the PT regime (γ = 0.5 and J = 1). (a), (b) The
entanglement entropy SRL

L/2 and SRR
L/2 multiplying the factor h with re-

spect to h for systems from L = 10 to L = 20. (c), (d) The finite-size
scaling of SRL

L/2 and SRR
L/2 at new peaks as shown in (a) and (b), which

are fitted by using Eq. (6) and SRR
L/2 = SRR

∞ + ae−bL , respectively.
Here, SRR

∞ , a, b are fitting parameters. The central charge is derived
as c = 0.501 from SRL

L/2.

characterized by biorthogonal entanglement entropy rather
than self-normal entanglement entropy, which is different
from the phase transition in the hard-core bosonic Hatano-
Nelson model, where both SRL

L/2 and SRR
L/2 are valid [21].

B. Full PT transition

In a non-Hermitian system, even if the PT symmetry
exists, real energy spectra cannot be always ensured as the
PT symmetry can be spontaneously broken [16,17]. Thus, a
PT transition with an exceptional point as its critical point
can in principle occur between a PT symmetric phase with a
real energy spectrum and a PT broken phase with a complex
energy spectrum. This kind of PT transition that character-
izes the change of the full many-body energy spectrum is
dubbed as full PT transition. In this section we will study
the full PT transition by looking at the energy spectrum and
the biorthogonal entanglement entropy SRL

L/2.
The full PT transition of the NHTI model is expected to

occur at

γc2 = ±1, (9)

as the coupling coefficient of the transverse field τ z
j in Eq. (2)

becomes complex when γ > 1. To confirm this, we take L =
8 as an example to calculate the total eigenenergies of the
system. As shown in Fig. 4, we find that all energy levels
are real when 0.8 < γ < 1, while complex energy levels ap-
pear when γ > 1 except for h = 0 which corresponds to the
Hermitian Ising model. The complete phase diagram based
on the maximum imaginary energy of the system is shown
in Fig. 1. As expected, the eigenenergies of the system are
entirely real for |γ | < 1 but become complex when |γ | > 1,

independent of h. This clearly indicates that PT transitions
occur at |γ | = ±1.

To investigate the properties of exceptional points, we cal-
culate SRL

L/2 near the exceptional point (γ = 0.98, h = 1) in
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FIG. 4. Energy spectrum as a function of γ for L = 8 at J = 1
and h = 1.8. (a) Real parts of energies, (b) imaginary parts of en-
ergies. The red dotted symbols denotes the energies of the first and
second excited states. EPf denotes the full PT transition, and EP1

denotes the first excited-state PT transition.

the PT symmetric phase [35–40]. However, we observe that
SRL

L/2 exhibits large and meaningless values. Further investiga-
tion revealed that this anomaly stems from the ground state’s
degeneracy, which results in the orthogonality between the
left and right eigenvectors of the ground states. We illustrate
the normalization factors of the biorthogonal eigenvectors of
the ground states in Fig. 5 and observe that the normalization
coefficients of biorthogonal eigenvectors near the exceptional
point are small and decrease rapidly as L increases. This
suggests that the computation of SRL

L/2 may fail due to the
ineffective determination of biorthogonal eigenvectors.

C. First excited-state PT transition

Phase transitions in the regime of real energies can be
understood by transforming non-Hermitian Hamiltonians to
their Hermitian counterparts via similarity transformations
[23,26,41]. The universality class of the phase transition under
the biorthogonal basis of the NHTI model should be identical
with that in the Hermitian transverse-field Ising model. The
imaginary field in the NHTI model shifts the transition po-
sition through the real transverse field [23]. A fundamental
question is whether a phase transition can occur in the regime
of imaginary energies. Naively speaking, this argument makes
no sense, since non-Hermitian systems will amplify or at-
tenuate if the system has complex eigenvalues. However, we
argue that it remains useful to explore the structures of energy
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FIG. 5. The biorthogonal normalization of ground states with
J = 1 and h = 1. (a) The normalization factor of biorthogonal
ground states as a function of γ with L = 10. (b) The normalization
factor of biorthogonal ground states as a function of L near the
exceptional point γ = 0.98.

spectra because they are related to many non-Hermitian
physics, such as the non-Hermitian skin effect [42–56], ex-
ceptional points [57–68], and non-Bloch dynamics [69].

To reveal the physics of the NHTI model in the regime with
imaginary energies, we rewrite the Hamiltonian in Eq. (2) as

H = −
L∑

j=1

Jτ x
j τ

x
j+1 +

L∑

j=1

igτ z
j , (10)

in the case of γ > 1, where g = h
√

γ 2 − 1. We arrive at a
ferromagnetic Ising model with a purely transverse field along
the z direction [70–75], which can be transformed into a
fermionic Kitaev chain with an imaginary potential [70,71],

H = −
L∑

j=1

J (c†
j c j+1 + c†

j c
†
j+1 + H.c.) −

L∑

j=1

ig(2c†
j c j − 1),

(11)

by the Jordan-Wigner transformation. The Hamiltonian in
Eq. (11) can be rewritten in the Bogoliubov-de-Gennes
form as

H =
∑

k>0

ψ
†
k Hkψk, (12)

using the Fourier transformation in momentum space under
PBCs, where

Hk = (−2J cos k − i2g)σ z + (2J sin k)σ y, (13)

and ψk = (ck, c†
−k )T . The energy spectrum is given by

Ek = 2
√

(−J cos k − ig)2 + (J sin k)2. (14)

This spectrum has zero values in k = π/2 in contrast to k = 0
for the normal Kitaev model with a real potential. The energy
gap closes at

γc3 = ±
√

1 + (J/h)2. (15)

Hence, the system undergoes a phase transition [71] from
the FM phase (|γ | < |γc3|) to the PM phase (|γ | > |γc3|)
in the spin language. It seems that this transition is the
same with the traditional Ising transition in the real regime
(γ < 1). However, we argue that this is a phase transition
at which a many-body PT transition occurs between the
first and the second excited states. Since the single-particle
energy spectrum Ek =

√
J2 − h2(γ 2 − 1) has a PT transition

[72] at k = π/2, the eigenvalues of the first and the second
many-body excited states would appear in complex conjugate
pairs in the broken regime if single-particle eigenstates
are labeled and analyzed according to the real parts of
their energies via the Aufbau principle [76]. We note that this
transition is characterized by two features: (i) the ground-state
phase transition from the FM phase to the PM phase, and (ii)
the PT transition between the first and second excited states.

To verify our analytical argument, we demonstrate first
excited-state PT transitions in Fig. 1 with L = 8 at J = 1,
which is obtained from many-body energy spectra as shown
in Fig. 4. It can be clearly seen that the system undergoes a
PT transition (not located at γc2 = ±1) between the first and
the second excited states. In the case of γ < γc3, the first and
the second excited states are separated, but when γ > γc3, the
first and the second excited states become degenerate. This
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PT transition is validated for various lattice sizes, indicating
that it is a robust phase transition. In addition, we find that
the critical points γc3 (the positions of exceptional points)
are independent of the lattice size L, which is different with
the case discussed in Ref. [20]. Interestingly, we find that the
exceptional points of the first excited-state PT transition and
the full PT transition are second-order from the scaling of
imaginary parts of the energies near the critical points γc3 and
γc2, respectively. In conclusion, this phase transition, dubbed
as the first excited-state PT transition before, is a universal
and unique feature of PT symmetric systems. We note that
spectral transitions and the properties of the steady state with
the largest imaginary part have been discussed in Ref. [70].
Our results contribute to a comprehensive understanding of
these spectral transitions, particularly focusing on the proper-
ties of the ground state and low excited states.

V. CONCLUSION

In summary, we study the biorthogonal and self-normal
entanglement entropy for a one-dimensional NHTI model.
Through comparison, we find that the biorthogonal entangle-
ment entropy is more suitable for characterizing the ground
state phase transition than the self-normal entanglement
entropy in the PT -symmetric regime. The biorthogonal en-
tanglement entropy exhibits logarithmic scaling behavior with
the central charge c = 0.5, while the self-normal entangle-
ment entropy decays exponentially and converges.

Furthermore, we investigate the full PT phase transition.
We show that the system is the PT -symmetric phase when
|γ | < 1, and the PT -broken phase when |γ | > 1. Meanwhile,
we study the ground-state biorthogonal entanglement entropy
near the exceptional points. It is found that due to the degen-
eracy of the ground state, the entanglement entropy near the
PT transition may be difficult to calculate.

In addition, we explore a many-body phase transition that
is neither a ground-state phase transition nor a PT transition
of the full spectrum in the PT -broken regime. This transition
is characterized by a second-order exceptional point between
the first and the second excited states, where the critical point
is independent of the system size. Therefore, it would be
interesting in the future to search for the first excited-state PT
transition in high dimensions and to understand the universal-
ity of the transition.
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