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AC conductivity and magnetic dichroism of two-dimensional antiferromagnetic Dirac semimetals
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We investigate the magneto-optical properties of two-dimensional nonsymmorphic Dirac semimetals in the
presence of antiferromagnetic order. Using the Kubo formula, we calculate the conductivity tensor of two-
dimensional CuMnAs, a prototype antiferromagnetic Dirac material, as a function of light frequency. From the
finite-frequency conductivity tensor, we derive the dynamic dielectric function and magnetic linear dichroism,
demonstrating how they are influenced by the orientation of the Néel order parameter. Adjusting the Néel vector
changes both the sign and amplitude of the system’s magneto-optical response. We propose that magnetic linear
dichroism spectroscopy is a powerful technique for determining the orientation of the Néel vector.
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I. INTRODUCTION

On-demand manipulation and readout of the staggered
Néel order parameter in antiferromagnetic (AFM) systems are
challenging problems in the emerging field of AFM-based
spintronics [1,2]. Both theoretically and experimentally, spin-
orbit and spin-transfer torques have been demonstrated to be
finite in AFM systems under certain symmetry conditions
[3–11]. It was shown that in AFM systems with preserved
combined PT symmetry, while the time-reversal T symmetry
and the inversion P symmetry are each broken, staggered
spin-orbit torques acting on the magnetic sublattices may re-
orient the AFM Néel vector [3,5,6,10–13].

Two-dimensional (2D) Dirac materials are a recently dis-
covered class of 2D materials that are not gapped by spin-orbit
couplings (SOCs) [14–16], and thus exhibit behavior dis-
tinct from graphene [17,18], surface states of topological
insulators [19], and 3D Dirac and Weyl semimetals [20,21].
They have more than one Dirac point in their first Brillouin
zone (BZ). The band crossing at the Dirac points of these
materials is protected by nonsymmorphic lattice symmetry
[14]. The 2D CuMnAs is a prototype of Dirac materials
with a long-range AFM order [22–24]. The recent discov-
ery of electrical switching, via staggered spin-orbit torque,
and readout of the Néel order vector in CuMnAs AFM
layers, via anisotropic magnetoresistance [11,25] and Voigt
effect [26], was an important step towards next-generation
AFM-based solid-state memory chips. It was also shown
that the fourfold degeneracy of Dirac points in this material
can be lifted by manipulating nonsymmorphic symmetries.
This is achieved by electrically altering the direction of the
Néel vector through spin-orbit torques. Therefore a topo-
logical metal-insulator transition can happen in this system
electrically [6].

*Contact author: sepehrinia@ut.ac.ir

AC conductivity is a crucial parameter in condensed matter
physics because it provides information on the electronic and
magnetic behavior of materials in response to electromag-
netic radiation, particularly in the optical frequency range
[27–38]. AC conductivity is related to various material prop-
erties such as dielectric functions, absorption spectra, charge
susceptibilities, plasmon dispersion, and its linewidth, as well
as magneto-optical effects [27,39–41]. Very recently, tera-
hertz time-domain spectroscopy was used to measure the
anisotropic conductivity of CuMnAs thin films [42]. Al-
though there are a few studies on the optical properties of
2D Dirac materials in the presence of an external magnetic
field with broken PT symmetry [43,44], to the best of our
knowledge, no comprehensive investigation of the AC con-
ductivity of 2D AFM CuMnAs layers that preserve PT
symmetry [25] has been conducted so far [13]. This article
aims to bridge this gap by examining the AC conductiv-
ity, magnetic dichroism, and dielectric function of the 2D
AFM CuMnAs layer. We specifically explore variations in
these properties by tuning the orientation of the Néel vec-
tor by employing a time-dependent linear response Kubo
formalism.

The rest of the paper is organized as follows. We first intro-
duce the effective model Hamiltonian for a 2D AFM CuMnAs
in Sec. II. In Sec. III, we compute the AC conductivity of
the system. Magnetic dichroism and dielectric function for
different Néel vector orientations are investigated in Secs. IV
and V, respectively. Finally, we summarize our results
in Sec. VI.

II. MODEL

We employ the minimal model, introduced in Ref. [6],
to describe a tetragonal CuMnAs on a crinkled quasi-2D
square lattice with a collinear AFM state, depicted in Fig. 1,
where each atom is characterized by one orbital in the model
Hamiltonian. The total Hamiltonian consists of a kinetic term
for conduction electrons H0, a SOC term HSO, and an s–d(f)
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FIG. 1. Lattice structure for a 2D Dirac semimetal. A (gray) and
B (black) sublattices are displaced in the out-of-plane ẑ direction,
which makes the lattice nonsymmorphic. This crinkling of the lattice
permits a second neighbor spin-orbit interaction [14]. The blue and
red arrows indicate the AFM magnetic moment directions on each
sublattice. (Right) The first BZ and its high-symmetry points.

exchange interaction between the spin of itinerant electrons
and localized AFM spins Hsd,

H = H0 + HSO + Hsd, (1a)

H0 = −2tτxσ0 cos
akx

2
cos

aky

2
− t ′τ0σ0[cos(akx ) + cos(aky)], (1b)

HSO = λτz[σy sin(akx ) − σx sin(aky)], (1c)

Hsd = Jnτzσ · n, (1d)

where a is the lattice constant, k = {kx, ky} is the 2D electron
wavevector, τ and σ are 2 × 2 Pauli matrices describing the
lattice and spin degrees of freedom, respectively; n is the
Néel vector direction; t , t ′, λ, and Jn parametrize the nearest-
neighbor-hopping integral, next-nearest-neighbor hopping
integral, next-nearest-neighbor SOC, and AFM s–d(f) ex-
change coupling strength, respectively. The Hamiltonian (1)
has two doubly degenerate eigenvalues,

E±
k = γ2 ± εk, (2)

and the corresponding eigenvectors are given by

ψ±
1 = (−γ1, δz ∓ εk, 0, δx + iδy)T /N∓, (3a)

ψ±
2 = (δz ± εk, γ1, δx + iδy, 0)T /N±, (3b)

where T denotes the transpose symbol, N± =
√

2εk(εk ± δz )
is the normalization factor, and we define the following
parameters:

γ1 = −2t cos
akx

2
cos

aky

2
, (4a)

γ2 = −t ′[cos(akx ) + cos(aky)], (4b)

δx = Jnnx − λ sin(aky), (4c)

δy = Jnny + λ sin(akx ), (4d)

δz = Jnnz,

εk =
√

γ 2
1 + δ2

x + δ2
y + δ2

z . (4e)

In the absence of AFM order, Jn = 0, there are three dis-
tinct Dirac points at the symmetry points X = ±(π/a, 0),
Y = ±(0, π/a), and M = ±(π/a, π/a) of the BZ, in which
γ1 = δx(y) = 0. As we mentioned earlier, these Dirac points

FIG. 2. The band structure of a 2D Dirac semimetal in the pres-
ence of AFM order for different directions of the Néel vector. The
Fermi level, set at EF = 0.5t , is shown with a horizontal pink line.
In the absence of AFM order, Jn = 0 (solid-gray line), there are
three distinct Dirac nodes in the first BZ. The Dirac node at the M
symmetry point is in different energy than the Dirac nodes at X and
Y symmetry points. We set t ′ = 0.08t , λ = 0.8t , and Jn = 0.6t [6].

can even persist in the presence of SOC. Figure 2 shows the
electronic band structure, Eq. (2), in the absence of an AFM
order (Jn = 0) with a solid gray line. Three Dirac points are
located at the symmetry points X , Y , and M of the BZ. In
Ref. [14] it is discussed that one of these Dirac points can be
lifted by deforming the lattice, but not all of them.

In the presence of AFM order, it is possible to break
the fourfold degeneracy of Dirac points and open a gap and
have a semimetal-insulator transition. The condition for band
crossing, E+

k = E−
k , requires εk = 0 and thus γ1 = δx = δy =

δz = 0. To preserve the fourfold degeneracy at the Dirac
points, where γ1 = 0, in the presence of AFM order, the out-
of-plane component of the Néel vector must be zero nz = 0.
In addition, the system must satisfy either of the following
two criteria: (i) at kx = ±π/a, we should have sin(aky) =
Jn/λ � 1, that requires nx = 1 and ny = 0; or (ii) at ky =
±π/a, we should have sin(akx ) = Jn/λ � 1, that requires
nx = 0 and ny = 1. Therefore, the only directions of the Néel
vector in which the fourfold degeneracy is preserved at two
out of three Dirac points, are in-plane directions along the
x and y directions if the exchange coupling is smaller than
the SOC parameter, Jn/λ � 1. It is evident that by changing
the direction of the Néel vector, one can turn on and off the
Dirac gap in this system. In addition, the positions of the Dirac
cones are shifted by changing the direction of the Néel vector,
see Fig. 2. When the Néel vector has either an out-of-plane
or in-plane component between the x and y directions, all
Dirac points become gapped; see electronic dispersion with
the green and black curves in the bottom panel of Fig. 2.
Conversely, if the Néel vector lies in-plane along the x or y
directions, only some of Dirac points become gapped in first
BZ, as shown by the blue and red curves in Fig. 2. With the
material parameters used in Fig. 2, the system becomes an
insulator when the Néel vector is aligned along the z direction.

III. AC CONDUCTIVITY

The AC conductivity in the clean limit within the Kubo
formalism is given by [27,45],

σαβ (ω) = ih̄

A

∑
mn

fm − fn

Em − En

〈n| jα|m〉〈m| jβ |n〉
(Em − En) − h̄(ω + iη)

(5)
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where jα = (−e/h̄)∂H/∂kα is the current density operator in
the direction α, −e < 0 denotes the electron charge, |n〉 is the
eigenstate, Eq. (3), with n(m) represent the collective quantum
numbers, including wavenumber k and band index ±; fn is the
equilibrium Fermi-Dirac distribution function of the state n, A
is the area of the two-dimensional lattice, and η parametrizes
the impurity scattering rate. The optical conductivity con-
sists of intraband (Drude) and interband contributions. In
the present paper, we compute the AC conductivity at zero
temperature.

The conductivity tensor satisfies the Onsager-Büttiker re-
lation σαβ (ω; n) = σβα (ω; −n). If the system exhibits PT
symmetry, the conductivity tensor contains only symmetric
components, and there is no Hall effect. However, a trans-
verse response and an anisotropic longitudinal response are
still possible, depending on the relative direction of the ap-
plied electric field and the Néel vector in the presence of
SOC. In the absence of AFM order or in the presence of
an out-of-plane Néel vector, the off-diagonal elements of the
conductivity tensor vanish and the longitudinal conductivity
is isotropic. In general, if the Néel vector resides in the
xz or yz planes, the transverse conductivity is zero. When
the Néel vector has an in-plane component, the longitudinal
conductivity is anisotropic.

To better understand direct optical transitions around three
Dirac points in the absence of the AFM order, we first lin-
earize the dispersion around these three symmetry points.
Around the M = (π, π ) symmetry point, the low-energy gap-
less Dirac-like dispersion is isotropics and reads,

E±
M � −2t ′ ± λaq, (6)

where q = (kx, ky) − M is the wavevector measured from the
M symmetry point. The dispersion relation is isotropic around
this symmetry point and the nodal point is shifted by a con-
stant −2t ′. The minimum photon energy, required for the
direct interband transitions around the M symmetry point is
given by

h̄ω = E+
qF

− E−
qF

= 2λaqF, (7)

where qF = (EF + 2t ′)/λ is the Fermi wavenumber.
On the other hand, the electronic dispersion around the

X = (π, 0) symmetry point, is given by an anisotropic gapless
Dirac-like dispersion relation

E±
X � ±

√
(t2 + λ2)(aqx )2 + λ2(aqy)2, (8)

where q = (kx, ky ) − X . Around the Y = (0, π ) symmetry
point, we should interchange the labels qx ↔ qy in Eq. (6).
As we can see, the above dispersion relation is anisotropic but
particle-hole symmetric. In the absence of t , this dispersion
is reduced to the isotropic Dirac dispersion relation. We can
simply see that the minimum photon energy for this case is
h̄ω = 2EF .

Figure 3 presents the real (top) and imaginary (bottom)
parts of the longitudinal AC conductivity of this system along
the x direction in the absence Jn = 0 and presence of the
AFM order Jn �= 0 with different Néel vector direction. As
we discussed earlier, the longitudinal part, in general, can be
anisotropic in this AFM system in the presence of SOC and
thus σxx �= σyy. This leads to a magnetic linear dichroism,

FIG. 3. The real (top) and imaginary (bottom) parts of the longi-
tudinal conductivity along the x direction in the absence (gray color
line) and presence of the AFM order as a function of the frequency.
The conductivity is changed by varying the Néel vector direction.
There is no DC conductivity when the Néel vector is out-of-plane
since the Fermi energy lies inside the electronic band gap and the
system becomes an insulator. h̄η = 0.002EF .

which we will discuss in the next section. The real part of
the longitudinal conductivity represents the in-phase current,
which induces resistive Joule heating. In contrast, the imag-
inary part corresponds to the π/2 out-of-phase current. The
sign of the imaginary part of the longitudinal conductivity
indicates inductive behavior Im[σxx] > 0 and capacitive be-
havior Im[σxx] < 0. The bottom panel of the Fig. 3 shows that
changing the Néel vector orientation in this system, control
the sign of Im[σxx].

In the low-frequency regime, when the Néel vector is out
of the plane, the longitudinal DC conductivity drops to zero
within our parameters. This occurs because the Fermi energy
(EF ) is smaller than the band gap of the system, rendering
it an insulator. Conversely, if EF exceeds the band gap, the
intraband contribution dominates at low frequencies, leading
to standard DC Drude conductivity. At higher frequencies, the
interband contribution becomes the predominant contribution
in the conductivity.

The real and imaginary parts of the transverse AC conduc-
tivity of the system are plotted in the top and bottom panels of
Fig. 4, respectively. As we discussed earlier, this transverse
conductivity is symmetric σxy = σyx and thus dissipative,
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FIG. 4. The real (top) and imaginary (bottom) parts of the trans-
verse conductivity in the presence of the AFM order as a function of
the frequency. The sign and amplitude of the transverse conductivity
are changed by varying the Néel vector direction. The transverse
conductivity is zero when the Néel vector direction is in the xz or
yz planes. We set h̄η = 0.002EF .

contrary to the Hall response, related to the antisymmetric
part of the transverse response. When the Néel vector lies
within the xz or yz planes, the system maintains mirror sym-
metry relative to these planes, resulting in zero transverse
conductivity. Conversely, if the Néel vector has an in-plane
component between the x and y directions, this symmetry is
broken, leading to a finite transverse conductivity. Figure 4
shows that both the sign and the amplitude of the real and
imaginary parts of the transverse conductivity can be tuned
by changing the orientation of the Néel vector.

In general, Figs. 3 and 4 show that the AC response of the
system is very sensitive to the Néel vector orientation.

IV. MAGNETIC DICHROISM

Magnetic circular and linear dichroism are optical tech-
niques for measuring the electronic band structure and the
magnetic orientation of the system [27]. These two effects
are related to different components of the AC conductivity
tensor. Circular dichroism is the differential absorption of
left and right circularly polarized light in a magnetically or-
dered material. This effect is finite in chiral systems in which
antisymmetric part of the off-diagonal elements of the AC
conductivity tensor is finite [44,46–49]. In the Dirac AFM

FIG. 5. The magnetic linear dichroism (LD) as a function of the
frequency, Eq. (9). The amplitude and sign of the LD signal are
sensitive to the direction of the Néel vector and frequency.

system, considered in this study, because of the PT symme-
try, there is no antisymmetric (anomalous Hall) component
[25] and therefore no circular dichroism. Therefore, both
magneto-optical Faraday and Kerr effects are absent in this
system. This fact makes the optical readout of the staggered
order parameter challenging.

On the other hand, the magnetic linear dichroism is the dif-
ference between the absorption of light polarized parallel and
that polarized perpendicular to an orientation axis. This effect
is related to the anisotropy in the longitudinal components of
the AC conductivity tensor. Although the Faraday and Kerr
effects are first order in relation to the local magnetic moment,
linear dichroism may arise from the Voigt-Cotton–Mouton
effect [50], which is proportional to the square of the local
magnetic moment. Additionally, it may stem from electronic
anisotropy, associated with symmetry breaking because of
changes in the direction of the Néel vector [51,52]. Hence,
linear dichroism is a powerful tool for directly exploring sym-
metry breaking in the system. The linear dichroism is defined
as

LD(ω) = Re[σxx] − Re[σyy]

Re[σxx] + Re[σyy]
. (9)

We plot the linear dichroism in Fig. 5 for different Néel vector
orientations. It is evident from this plot that switching the
direction of the Néel vector, from out-of-plane to in-plane,
enhances the linear dichroism signal. The sign and amplitude
of the signal can be changed by the light frequency and Néel
vector direction. The sign of LD indicates the preferential
absorption of light polarized in specific directions within an
anisotropic material. This information is crucial for under-
standing the material’s anisotropic properties.

V. DIELECTRIC FUNCTION AND REFLECTIVE INDEX

The dynamical dielectric permittivity ε±(ω) quantifies a
substance’s ability to hold an electrical charge, many-body
charge screening, and in addition, encodes information about
collective plasmon excitations, Re[ε±] = 0, in the system.
This quantity is also related to the refractive index n± =√

ε± [27], which quantifies the bending of electromagnetic
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FIG. 6. Real (top panel) and imaginary (bottom panel) parts of
the dynamic dielectric function, Eq. (10), at long-wavelength limit
(k = 4.4 × 10−11 m−1), as a function of the frequency in the absence
(gray line) and presence of the AFM order for various Néel vector
directions. We set ε0 = 2.5κ , where κ is the vacuum permittivity.

waves in the medium. In 2D systems, the dynamical dielectric
function, within the random phase approximation at the long-
wavelength limit, reads [45]

lim
k→0

ε±(ω, k) ≈ 1 + i
2πk

ε0ω
σ±(ω), (10)

where ε0 is the static permittivity of the substrate and σ± =
[(σxx + σyy) ± i(σxy − σyx )]/2 is the AC conductivity for the
left (–) and right (+) circularly polarized light. Since there is
no antisymmetric contribution in the transverse conductivity
tensor, the dielectric function is the same for both polar-
izations ε+ = ε−, and thus n+ = n−. Therefore there is no
circular birefringence in the system under study. However,
since in general nxx �= nyy in this system, there might be a
finite linear birefringence [50], which can be tuned by the Néel
vector orientation.

Figure 6 represents the real (top panel) and imaginary
(bottom panel) parts of the dielectric function and shows that
the tuning of the Néel vector changes the dielectric response
and therefore the optical properties of the system.

VI. SUMMARY AND CONCLUDING REMARKS

In this study, we have investigated the effect of the Néel
vector orientation on the dynamical response of CuMnAs, a
prototype of a 2D Dirac antiferromagnetic semimetal with
PT symmetry. We computed the AC conductivity, linear
dichroism, and dielectric function of the system. Our calcu-
lations show that the orientation of the magnetic state may
alter the system’s optical response drastically. Because of the
presence of PT symmetry in our model, there is no anoma-
lous Hall response. This distinguishes our AFM model from
a nonsymmorphic 2D Dirac semimetal in the presence of an
out-of-plane magnetic field, which exhibits a finite anomalous
Hall response [44]. We propose that magnetic linear dichroism
and birefringence are powerful tools for detecting the mag-
netic states in these systems.
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