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Ferromagnetic Haldane state and dimer multiplet state of quantum ferromagnets
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We present a theory of the realization of a ferromagnetic Haldane state in a spin-2 bilinear-biquadratic spin
system on an orthogonal-dimer chain. The coexistence of a ferromagnetic state and a Haldane state is due
to the rigorous correspondence between the eigenstates of a spin-2 model and a spin- 1

2 Heisenberg model,
i.e., “eigensystem embedding.” Numerical exact-diagonalization calculations indicate that the ground state in
the model is a fractionally magnetized M = 3/4 Haldane state. Moreover, a ferromagnetic-dimer multiplet
state is an exact ground state on a lattice, where the direct product of dimer singlet states is the ground
state in a spin- 1

2 Heisenberg model that includes one-, two-, and three-dimensional orthogonal-dimer lattices.
Eigensystem embedding demonstrates that a quantum ferromagnet can be obtained for an arbitrary spin S � 2 in
any dimension and for any lattice in which anomalous ground states are realized in a spin- 1

2 Heisenberg model.

DOI: 10.1103/PhysRevB.110.014433

I. INTRODUCTION

Quantum spin states have been attracting a wide range
of researchers in physics and quantum computer science.
To date, investigations of quantum spin states have been
restricted to antiferromagnets, e.g., to entangled gapped quan-
tum spin-liquid states [1], Haldane gap states [2], Affleck-
Kennedy-Lieb-Tasaki (AKLT) states [3], symmetry-protected
topological (SPT) states [1,4,5], resonating-valence-bond
(RVB) states [6,7], spin-liquid states [8–10], and direct
products of dimer singlet states [11–13]. Recently, “spin liq-
uefaction” of a ferromagnet has been proposed, in which an
antiferromagnetic quantum state develops in a classical fer-
romagnetic background, in the spin-projection Hamiltonian,
which includes a bilinear-biquadratic (BLBQ) model and this
fractional ferromagnet can be regarded as the realization of
entangled quantum states [14]. The existence of such a quan-
tum ferromagnet is ensured in any dimension and for any
lattice because of the rigorous correspondence between a
subset of the eigenstates in a spin-S model and the entire
set of eigenstates in a spin- 1

2 Heisenberg model. Since this
correspondence can be regarded as “eigensystem embedding,”
studies of quantum ferromagnets are attractive even in the
context of quantum many-body scars [15–19]. In a quantum
ferromagnet, a ferromagnetic and a quantum spin state coex-
ist; consequently, a quantum spin state can be manipulated by
using an external magnetic field.

A fractionally magnetized quantum spin state is rigorously
an eigenstate at special points in a BLBQ model described by

H (S)(α) =
∑

Ki j[cos α Si · S j + sin α(Si · S j )
2]. (1)

*Contact author: smiyahara@fukuoka-u.ac.jp

That is, rigorous eigenstate correspondence occurs at the
points α = αr, αr + π which are defined by

αr = π − arctan

[
1

2S(S − 2) + 1

]
, (2)

for arbitrary S � 1 [14]. Here, the eigenstates consisting of
the spin states S and S − 1 in the BLBQ model are equiv-
alent to the eigenstates in a spin- 1

2 Heisenberg model. The
corresponding eigenstates can be obtained by using the in-
tertwiner Ĉ = ∏N

i=1(|S〉i〈 1
2 | + |S − 1〉i〈− 1

2 |), where | 1
2 〉 and

| − 1
2 〉 are eigenstates of the z component of the spin operator

sz
i in the spin- 1

2 model [14]. The corresponding eigenstate
obtained by the intertwiner Ĉ from a spin-singlet state in
the spin- 1

2 model is a fractional ferromagnetic state, with
Sz

tot = ∑
Sz

i = N (S − 1
2 ), where N is the number of spins. The

other degenerate states due to the ferromagnetism are obtained
through the application of (S−

tot )
s [s = 1, . . . , N (2S − 1)] to

the corresponding states.
The rigorous eigenstate correspondence, i.e., eigensystem

embedding, in the BLBQ model can be understood from
the matrix elements of h(S)

i j (α) = Ki j[cos α Si · S j + sin α(Si ·
S j )2]. The matrix elements 〈S S − 2|h(S)

i j (α)|S − 1 S − 1〉 and

〈S − 2 S|h(S)
i j (α)|S − 1 S − 1〉 are given by

Ki j{cos α + sin α[2S(S − 2) + 1]}
√

2S2 − S, (3)

which vanishes at α = αr and αr + π . At those points, the
matrix of h(S)

i j (αr ) [h(S)
i j (αr + π )] becomes a block-diagonal

matrix in the subspace defined by Sz = Sz
i + Sz

j = 2S − 2, and

|S − 1 S − 1〉 becomes an eigenstate of h(S)
i j (αr ) [h(S)

i j (αr +
π )]. As a result, the blocks with the bases |S S〉, |S S − 1〉,
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FIG. 1. (a) An orthogonal-dimer-chain model. (b) A two-
dimensional orthogonal-dimer model, i.e., a two-dimensional
Shastry-Sutherland Heisenberg model. (c) Phase transition from a
direct product of dimer singlet states to a Haldane state in a spin- 1

2
orthogonal-dimer-chain Heisenberg model. (d) Phase transition from
a ferromagnetic-dimer septet state to a ferromagnetic Haldane state
in a spin-2 BLBQ orthogonal-dimer-chain model at αr .

|S − 1 S〉, and |S − 1 S − 1〉 at αr (αr + π ) are given by

(4S2 − 2S)

⎛
⎜⎜⎜⎜⎝

J
4 0 0 0

0 − J
4

J
2 0

0 J
2 − J

4 0

0 0 0 J
4

⎞
⎟⎟⎟⎟⎠ − CJÎ4, (4)

where J ≡ Ki j sin αr [J ≡ Ki j sin(αr + π )], C ≡ −(S4 −
4S3 + 2S2 − S

2 ), and Î4 is the identity matrix. Equation (4) is
equivalent to the matrix of a spin- 1

2 Heisenberg model [20].
As a result, the number of |S〉 and |S − 1〉 states is conserved
for those states consisting only of |S〉 and |S − 1〉 in H (S)(αr )
[H (S)(αr + π )] [Eq. (1) at α = αr (αr + π )], and a rigorous
correspondence between the eigenstates of the spin- 1

2 Heisen-
berg model and those of H (S)(αr ) [H (S)(αr + π )] is realized.
Moreover, when a corresponding state of a spin-singlet ground
state in the spin- 1

2 Heisenberg model is a ground state of the
BLBQ model, a fractionally magnetized quantum spin state
can become stabilized in the BLBQ model, i.e., a spin-singlet
state in a spin- 1

2 model corresponds to a state with magne-
tization M = 1 − 1

2S in H (S)(αr ), in which the ferromagnetic
moment is reduced due to quantum fluctuations of the spins.
In fact, an M = 1 − 1

2S state is the ground state in a finite chain
model at αr for S � 2 [14].

In this paper, we study the ground state in a spin-2 BLBQ
model on a chain of orthogonal dimers [21–24] [Fig. 1(a)] and
two-dimensional orthogonal-dimer lattice, i.e., the Shastry-
Sutherland lattice [13] [Fig. 1(b)]. We discover anomalous
fractionally magnetized states, i.e., a ferromagnetic Haldane
state and a ferromagnetic dimer septet state [Fig. 1(d)],
where spin gap states realized in spin- 1

2 Heisenberg models
[Fig. 1(c)] and ferromagnetic state with the reduced magnetic
moment coexist. The total spin moments Stot in the ferro-
magnetic Haldane state and the ferromagnetic dimer septet
state are reduced from a fully polarized state Stot = 2N to
Stot = 3

2 N , where N is the total number of spins. Reflecting the
coexistence of gapped and gapless states, the lowest excitation

energy for the �Stot = 1 process is finite, although the lowest
excitation energy for the �Stot = −1 process is gapless. These
anomalous states are stabilized due to applications of the spin
liquefaction of a ferromagnet [14] to frustrated-spin models.

II. QUANTUM FERROMAGNET IN SPIN-2 BLBQ MODELS

In the following, we restrict ourselves to a spin-2 BLBQ
model. However, similar arguments are applicable to arbitrary
spin-S (�2) models. The spin-2 BLBQ model at αr = 3

4π ,
with Ji j ≡ Ki j sin αr , is described by

H (2)(αr ) =
∑

Ji j[−Si · S j + (Si · S j )
2]. (5)

Rigorous eigenstate correspondence occurs between a subset
of the eigenstates in the spin-2 BLBQ model and the entire
set of eigenstates in a spin- 1

2 antiferromagnetic Heisenberg
model in any dimension and for any lattice. When we con-
sider a spin- 1

2 Heisenberg model for which the ground state
is anomalous, e.g., an SPT [1,4,5] or a spin-liquid [8–10]
system, the corresponding eigenstate of the BLBQ model is a
ferromagnetic quantum state that has both an anomalous spin
structure stabilized by quantum fluctuations and a ferromag-
netic moment. However, whether the corresponding state is
the ground state depends on the model.

A. S = 2 orthogonal-dimer chain

Let us start from an S = 2 orthogonal-dimer chain
[Fig. 1(a)], i.e., a highly frustrated ladder [21–24], defined by

H (2)
1D (αr ) =

L∑
x=1

J[−Sx,1 · Sx,2 + (Sx,1 · Sx,2)2]

+
L∑

x=1

2∑
i, j=1

J ′[−Sx,i · Sx+1, j + (Sx,i · Sx+1, j )
2],

(6)

where Ji j on a dimer bond is defined as J and Ji j on interdimer
bonds is defined as J ′. We assume the periodic boundary
conditions SL+1,i = S1,i (i = 1, 2) unless specified otherwise.
Here, L is the length of the chain, and the total number of
spins is N = 2L. The corresponding states obtained from the
entire set of eigenstates, which includes a Haldane state, in
the spin- 1

2 Heisenberg model h1D are also eigenstates of the
spin-2 model (6).

We summarize the features of the spin- 1
2 orthogonal-dimer-

chain model. The model is defined as

h1D =
L∑

x=1

Jsx,1 · sx,2 +
L∑

x=1

2∑
i, j=1

J ′sx,i · sx+1, j . (7)

Here, J and J ′ are exchange interactions and sx,i is a spin- 1
2 op-

erator. The ground states of the spin- 1
2 model (7) are a Haldane

state (J ′/J � 0.714) and a dimer singlet state (J ′/J � 0.714)
[23] [Fig. 1(c)]. Note that the spin- 1

2 model (7) is equivalent
to a one-dimensional, spin-1 chain Heisenberg model,

H (tx ) = J

2

L∑
x=1

(
t2

x − 3

4

)
+ J ′

L∑
x=1

tx · tx+1, (8)
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FIG. 2. (a) Ground-state energy per site, E0/N , as a function
of J ′/J on 8- and 12-site clusters with Sz

tot = 0 in a spin-2 BLBQ
orthogonal-dimer chain at αr . (b) A comparison of E0/N for a spin-2
BLBQ model and for a spin- 1

2 Heisenberg model on a 12-site cluster.
(c) Dimer-dimer correlations 〈Dz

1Dz
i 〉 of the polarized state for J ′/J =

1 in a spin-2 BLBQ orthogonal-dimer chain on a 16-site cluster
with periodic boundary (PB) conditions and open boundary (OB)
conditions. This is equivalent to the spin-spin correlations 〈T z

1 T z
i 〉

in a spin-1 Heisenberg chain.

where the operator tx = sx,1 + sx,2 is defined at each dimer,
and the Haldane state, which is the state tx = 1, is identical to
the ground state in a spin-1 Heisenberg chain [23].

In this way at least, a ferromagnetic Haldane state and a
ferromagnetic dimer septet state are eigenstates of Eq. (6).
Note that in the dimer septet state, the total spin quantum
number at each dimer is 3, and a polarized dimer state is

1√
2
(|21〉 − |12〉). Numerical evidence is required to show that

such a ferromagnetic quantum state can be the ground state.
We therefore performed an exact diagonalization using the
Lanczos method. The ground-state energy per site, E0/N , is
shown in Fig. 2(a) as a function of J ′/J (0 < J ′/J � 1) on
8- and 12-site clusters in sectors with Sz

tot = ∑
Sz

i = 0. We
also calculated the total spin Stot of the ground state, and the
result indicates that the ground state is a unique ferromagnetic
state with the total spin Stot = 3

2 N and that it has (3N + 1)-
fold degeneracy due to the ferromagnetic moment. Note that
the lowest energies obtained using the Lanczos method are
identical in sectors with Sz

tot = 0, 1, . . . , 3
2 N . As shown in

Fig. 2(b), the eigenenergies of the ground states are repro-
duced well by those of the spin- 1

2 model described by Eq. (4).
In these ways, fractionally magnetized states, i.e., a ferromag-
netic Haldane state and a ferromagnetic dimer septet state, are
ground states, and the quantum phase transition point is also
identical to that in a spin- 1

2 system with (J ′/J )c ∼ 0.714 in a
finite cluster [Fig. 1(d)]. To clarify the identity of the polarized
ferromagnetic Haldane states, we calculated the dimer-dimer

FIG. 3. Magnetization M ≡ Sz
tot/2N for J ′/J = 0.2 and 1 on 12-

and 16-site clusters as a function of the external magnetic field
gμBH/J in a spin-2 BLBQ orthogonal dimer chain. (Inset) A com-
parison of the magnetization of the spin-2 BLBQ model and the
spin- 1

2 Heisenberg model on a 16-site cluster. The magnetization of
the spin- 1

2 Heisenberg model, m ≡ sz
tot/(N/2), is plotted as a function

of the external magnetic field gμBh/J .

correlation 〈Dz
1Dz

i 〉 = 〈(Sz
1,1 + Sz

1,2 − 3)(Sz
i,1 + Sz

i,2 − 3)〉 and
compared the value of 〈Dz

1Dz
i 〉 for an N-site cluster with the

spin-spin correlation 〈T z
1 T z

i 〉 of an N/2-site spin-1 Heisenberg
chain. The results for J ′/J = 1 and N = 16 are shown in
Fig. 2(c). This figure shows that 〈Dz

1Dz
i 〉 and 〈T z

1 T z
i 〉 are identi-

cal for both periodic boundary conditions and open boundary
conditions. We used the results in the sector with Sz

tot = 18
(Sz

tot = 0) for the periodic boundary conditions and in the sec-
tor with Sz

tot = 19 (Sz
tot = 1) for the open boundary conditions

in the BLBQ (Heisenberg) model. We thus conclude that the
polarized state of a ferromagnetic Haldane state is identical to
a Haldane state that includes topological edge states. On the
other hand, the polarized dimer septet states with Sz

tot = 3
2 N

are explicitly represented by

|�D〉 =
∏
n.n.

1√
2

(|21〉 − |12〉)x, (9)

for which the eigenenergy is given by ED = 18J ′N . The entan-
gled dimer septet state polarized with Sz

tot = 3
2 N is explicitly

represented by the Sz = 2 and 1 spin states |2〉 and |1〉. In
addition, the ground state in a finite-size cluster in an exter-
nal magnetic field gμBH is also a corresponding state. The
magnetization M ≡ Sz

tot/2N in 12- and 16-site clusters for
J ′/J = 0.2 and 1 is shown in Fig. 3. The inset in Fig. 3 shows
that the magnetization in the BLBQ model is identical to the
magnetization m ≡ sz

tot/(N/2) in a spin- 1
2 model in an external

magnetic field gμBh, except for the shift due to the ferro-
magnetic component of the ferromagnetic quantum state and
the modification of the magnitude of gμBh/J obtained from
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FIG. 4. The dynamical structure factor S±(q, ω) for J/J ′ = 1 on
12- and 16-site clusters in a spin-2 BLBQ orthogonal-dimer chain.
The peak positions obtained from a spin-1 Heisenberg chain are
shown by triangles.

Eq. (4). In the dimer septet phase, a magnetization plateau
appears at the magnetization M = 7

8 , as observed in the spin- 1
2

model [23].
Because both the Haldane state and the product of the

dimer singlet states are spin-gapped states, the ferromagnetic
Haldane state and the product of dimer septet states have spin-
gap excitations, i.e., excitations for the process �Stot = 1. The
spin-gap energy can be read off from Fig. 3. The magnitude of
the spin gap in a finite cluster is identical to that in the spin- 1

2
model. The magnetic excitation in the ferromagnetic Haldane
phase can be obtained from the dynamical structure factor,

S±(q, ω) = − 1

π
Im

∑
n

|〈n|S±(q)|0〉|2
h̄ω − h̄ωn0 + iε

, (10)

where S±(q) = ∑
(S±

x,1 + S±
x,2)eiqx. Here, |0〉 is the ground

state, which has the eigenenergy E0, and |n〉 is the nth mag-
netic excitation state, with the eigenenergy En. In addition,
h̄ωn0 = En − E0 and ε/J = 0.1. We calculated S±(q, ω) for
J ′/J = 1 on 12- and 16-site clusters via a continued-fraction
expansion using the Lanczos method [25]. We fixed the num-
ber of Lanczos steps to be 1000, which achieved convergence
of S±(q, ω) in the energy range 0 � h̄ω/J � 45. The results
are shown in Fig. 4. The lowest energy �Stot = 1 branch of
S+(q) in the ferromagnetic Haldane state is identical to the
lowest triplet branch in the Haldane state of an S = 1 chain
model. In addition, a spin-wave-like branch (�Stot = −1) ex-
ists, which reflects the ferromagnetic component. Note that we
calculated the total spin of each excited state using the conven-
tional Lanczos method. The magnitude of the spin-gap energy
�EH in the ferromagnetic Haldane phase can be estimated
in the thermodynamic limit to be �EH ∼ 12 × 0.41J ′ from

that of an S = 1 spin chain [26]. The spin-gap energy in the
dimer septet phase is exactly given by �ED = 12J , and nonet
excitations with Stot = 3

2 N + 1 and Sz
tot = 3

2 N + 1 are given
by |�+

D 〉 = |22〉y
∏

x �=y
1√
2
(|21〉 − |12〉)x. The nonet excita-

tions have a localized character, as do the triplet excitations
in the spin- 1

2 model, which leads to the flat-band excitation
�Stot = 1 and a magnetization plateau. As in the ferromag-
netic Haldane phase, a spin-wave-like branch (�Stot = −1)
exists that reflects the ferromagnetic component.

B. S = 2 Shastry-Sutherland lattice

A quantum ferromagnet can be realized even in higher-
dimensional lattices. As a typical example of two-dimensional
models, let us consider a two-dimensional Shastry-Sutherland
lattice [Fig. 1(b)],

H (2)
2D (αr ) =

∑
n.n.

2J[−Si · S j + (Si · S j )
2]

+
∑
n.n.n.

J ′[−Si · S j + (Si · S j )
2], (11)

where interactions on a dimer bond are defined as 2J and
interactions between dimers are defined as J ′. Even in a two-
dimensional model, the corresponding states obtained from
the entire set of eigenstates in the spin- 1

2 Heisenberg model
h2D are also eigenstates of the spin-2 model (11).

A spin- 1
2 Heisenberg model on a Shastry-Sutherland lattice

[13] is described as

h2D =
∑
n.n.

2JSi · S j +
∑
n.n.n.

J ′Si · S j, (12)

where interactions on a dimer bond are defined as 2J and
interactions between dimers are defined as J ′. It is well known
that a direct product of dimer singlet states on 2J bonds is
a rigorous eigenstate and a ground state when J ′/2J < 0.765
[27]. As shown in Ref. [13], the Shastry-Sutherland lattice can
be represented by a sum of isosceles triangles.

The spin-2 BLBQ model (11) is also regarded as the sum
of the spin-2 BLBQ model on an isosceles triangle:

H (2)
iso (αr ) = J[−Si · S j + (Si · S j )

2]

+ J ′[−Si · Sk + (Si · Sk )2]

+ J ′[−S j · Sk + (S j · Sk )2]. (13)

Since the dimer bonds are shared between two isosceles trian-
gles, we define the interaction on a dimer bond as 2J . When
0 < J ′/J < 1, two of the 20 ground states of h(2)

iso (αr ) (Stot = 4
and 5 states) are given by

1√
2
(|2 1〉i j − |1 2〉i j )|2〉k, (14)

1√
2
(|2 1〉i j − |1 2〉i j )|1〉k, (15)

which have the ground-state energy e0 = 18J ′. When a dimer
septet lies on a J bond, the spin states for an arbitrary spin at
site k, Sz

k = 1 and 2, is already a ground state of h(2)
iso (αr ). If it

is possible to fulfill the condition of having a dimer septet on
every J bond for the Hamiltonian H = ∑

h(2)
iso , the product of

dimer septet states is the ground state, with the eigenenergy
E0 = 18J ′Nt , as is already known for spin- 1

2 systems. Here,
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Nt is the number of isosceles triangles. For J ′
2J � 1

2 , the septet
dimer state

|�D〉 =
∏
n.n.

1√
2

(|21〉 − |12〉)i j (16)

is at least one of the ground states.
Similar arguments can be applied to an S � 2 model on

a lattice for which the ground state is a product of dimer
singlet states, such as a one-dimensional Shastry-Sutherland
lattice [12], which includes the Majumdar-Ghosh point [11],
a maple-leaf lattice [28,29], quasicrystal lattices [30], a three-
dimensional orthogonal-dimer lattice [31], and others.

III. SUMMARY

In conclusion, we found fractionally magnetized quan-
tum states, i.e., coexisting ferromagnetic and spin-singlet
states, in an S = 2 BLBQ model. Especially, we discover
a ferromagnetic Haldane state, where the Haldane state and
ferromagnetic state coexist. The applicability of the fer-
romagnetic quantum states is guaranteed by the rigorous
correspondence between eigenstates at αr , i.e., by the eigen-
system embedding. This means that fractionally magnetized
quantum states can exist in any dimension and for any lattice
in which the ground state of a spin- 1

2 Heisenberg model is
anomalous, e.g., an SPT system [1,4,5] or a spin-liquid system
[8–10]. Similar arguments can be applied to S > 2 BLBQ
models. Thus, fractionally magnetized quantum states can
exist even for models with larger values of S. In addition,
quantized states with Stot/N = S − 1

2 , S − 1, S − 3
2 , . . . can

be stable in a certain parameter range in the model, such as
the magnetization plateau. In this way, the present result can

lead to the discovery of other types of quantum states, which
may be important for both fundamental physics and quantum
computer science.

In this paper, we restricted ourselves to the special parame-
ter point αr to show that a ferromagnetic quantum state can
be realized in a somewhat rigorous way. However, such a
ferromagnetic quantum state may be a ground state around
αr and/or in a model with anisotropic terms. The future ar-
guments of the stability of the ferromagnetic quantum state
will be important to find the materials where a ferromagnetic
quantum state is realized. Moreover, a ferromagnetic quantum
state can be realized even in other spin systems. Thus, the
discovery of a ferromagnetic quantum state in more simple
models will open the experimental realization. On the other
hand, ferromagnetic Haldane state and ferromagnetic dimer
multiplet show an anomalous magnetization curve. Since the
lowest excitation energy for the �Stot = 1 process is gapped
excitation, magnetization remains constant to be M = 1 − 1

2S
up to the critical external magnetic field Hc corresponding to
the spin gap energy. However, the ferromagnetic component
increases in the same way as that in the corresponding spin- 1

2
Heisenberg model by applying the external field above Hc

as shown in Fig. 3. Such magnetization is a peculiar signal
of any ferromagnetic quantum state. Thus, the experimental
observation of such a magnetization curve will open another
stage to study the ferromagnetic quantum state.
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