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Magnetic properties of diluted hexaferrites
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We revisit the magnetic properties of the hexagonal ferrite PbFe12−xGaxO19. Recent experiments have reported
puzzling dependences of the ordering temperature and the saturation magnetization on the Ga concentration
x. To explain these observations, we perform large-scale Monte Carlo simulations, focusing on the effects of
an unequal distribution of the Ga impurities over the five distinct Fe sublattices. Ab initio density-functional
calculations predict that the Ga ions preferably occupy the 12k sublattice and (to a lesser extent) the 2a sublattice.
We incorporate this insight into a nonuniform model of the Ga distribution. Monte Carlo simulations using
this model lead to an excellent agreement between the theoretical and experimental values of the ordering
temperature and saturation magnetization, indicating that the unequal distribution of the Ga impurities is the
main reason for the unusual magnetic properties of PbFe12−xGaxO19. We also compute the temperature and
concentration dependences of the sublattice magnetizations, and we study the character of the zero-temperature
transition that takes place when the ordering temperature is tuned to zero.
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I. INTRODUCTION

Recent years have seen renewed interest in the properties of
hexagonal ferrites (hexaferrites). These materials have numer-
ous technological applications including permanent magnets,
magnetic recording and data storage devices, as well as
high-frequency electronics [1,2]. In addition, they feature in-
teresting magnetic and ferroelectric quantum behavior at low
temperatures [3–5].

The magnetic properties of hexaferrites can be tuned by
diluting the magnetic degrees of freedom. Several experimen-
tal studies [5–7] reported the results of randomly substituting
nonmagnetic Ga ions for the magnetic Fe ions in magneto-
plumbite, PbFe12O19. Magnetoplumbite is a Lieb-Mattis type
ferrimagnet [8] with a magnetic ordering temperature Tc of
about 720 K and a low-temperature saturation magnetiza-
tion Ms of 20µB per formula unit. The magnetic ordering
temperature of PbFe12−xGaxO19 decreases with increasing
Ga concentration x and vanishes at a critical concentration
xc ≈ 8.6. The value of xc is very close to the site percolation
threshold of the lattice spanned by the exchange interactions
between the Fe ions, suggesting that the zero-temperature
magnetic phase transition at xc is of percolation type [5].
The magnetic phase boundary can be approximated well by
the relation Tc(x) = Tc(0)(1 − x/xc)φ with φ = 2/3 over the
entire concentration range. Interestingly, the low-temperature
saturation magnetization Ms decreases much faster with x than
Tc, as is shown in Fig. 1.

To explain these findings, Khairnar et al. [9] performed
Monte Carlo simulations of a randomly diluted Heisenberg
model, employing the magnetoplumbite crystal structure and
realistic exchange interactions. As shown in Fig. 1, the re-
sults of these simulations did not agree with the experimental
data. Specifically, the ordering temperature predicted by the
simulations is lower than the experimental values and does

not follow the striking 2/3 power law, whereas the saturation
magnetization predicted by the simulations is significantly
higher than the experimental findings. This is a puzzling
situation for at least two reasons. First, while it is relatively
easy to identify possible mechanisms that could lead to a
faster reduction of Tc with x compared to a simple Heisenberg
Hamiltonian (e.g., frustrating interactions, noncollinear order,
or quantum fluctuations) it is harder to find reasons for the
experimental Tc to decay more slowly than the model calcu-
lation. Second, one would usually assume that a mechanism
that increases Tc to also increase Ms, but the experimental
Ms values are significantly below the simulation results. In
summary, these finding imply that our understanding of the
magnetic properties of the diluted hexaferrites remains incom-
plete, especially at higher dilutions.

The M-type hexaferrites PbFe12O19, BaFe12O19 and
SrFe12O19 crystalize in the magnetoplumbite structure pre-
sented in Fig. 2. The 12 Fe3+ ions per unit cell, each in the
S=5/2 spin state, are located on five distinct sublattices: six
ions on the octahedral 12k sublattice, one ion on the oc-
tahedral 2a sublattice, one ion on the pseudohexahedral 2b
sublattice, two ions on the tetrahedral 4 fIV sublattice, and
two ions on the octahedral 4 fVI sublattice. Below Tc of about
720 K, the spins feature collinear ferrimagnetic order with
eight spins (12k, 2a, and 2b) pointing up and four spins (4 fIV

and 4 fVI) pointing down.
As the crystal structure contains five inequivalent iron

sublattices, the distribution of the gallium ions over these
sublattices can be expected to play an important role for the
magnetic properties. In fact, this question has been consid-
ered in several publications in the literature, with inconclusive
results. Marysko et al. [6] concluded from their magnetic
measurements and ferromagnetic resonance experiments that
the Ga3+ ions are distributed over all sublattices except
the 2b sublattice, at least for x up to about 4 (in analogy
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FIG. 1. Magnetic ordering temperature Tc (top) and low-
temperature saturation magnetization Ms per formula unit (bottom)
of PbFe12−xGaxO19 as functions of the Ga concentration x. The
experimental data for Tc are taken from Refs. [5,7], and the Ms data
stem from Refs. [6,7]. The solid line represents the 2/3-power law for
Tc put forward in Ref. [5]. The Monte Carlo simulations assumed a
uniform distribution of the Ga atoms over all available iron sites. The
results for Tc are from Ref. [9] whereas those for Ms were computed
here, using the algorithm of Ref. [9].

FIG. 2. Double unit cell of PbFe12O19. Twelve Fe3+ ions per unit
cell are located on five distinct sublattices.

with earlier results for other hexaferrites [10,11]). In con-
trast, Albanese et al. [7] more recently reported accurate
Mössbauer measurements indicating that the Ga3+ ions are
distributed over all five sublattices with nearly equal proba-
bility (even though a slightly higher gallium concentration in
the spin-up sublattices could not be excluded). For the related
compound SrFe12−xGaxO19 (whose Tc(x) curve is virtually in-
distinguishable from that of PbFe12−xGaxO19 [7]), Mössbauer
studies [12] suggested that the Ga ions preferably occupy
the octahedral 4 fVI site. First-principles calculations [13], in
contrast, show a strong preference of the Ga ions for the 12k
sublattice.

The percolation calculations in Ref. [5] as well as the
Monte Carlo simulations of Ref. [9] were performed under the
assumption that the Ga impurities are distributed with equal
probability over all sublattices. In view of the disagreement
between the magnetic measurements on PbFe12−xGaxO19 and
the results of the Monte Carlo simulations in the literature, it
is prudent to revisit this assumption.

In the present paper, we therefore combine ab initio
density-functional calculations and large-scale Monte Carlo
simulations to systematically study how an unequal gallium
distribution over the available sublattices affects the magnetic
properties of PbFe12−xGaxO19. Our results can be summarized
as follows. According to the density-functional calculations,
the 12k sublattice is the most favorable location for the Ga3+

ions, followed by the 2a sublattice. Ga3+ ions in any of the
other sublattices lead to significantly higher total energies. We
use this insight to construct a diluted Heisenberg Hamiltonian
with a biased distribution of spinless impurities. Monte Carlo
simulations of this Hamiltonian lead to an excellent agreement
between the experimental data for the ordering temperature
Tc and the low-temperature saturation magnetization Ms and
the corresponding simulation results. This indicates that the
unequal distribution of gallium impurities is likely the main
reason for the unusual magnetic behavior of PbFe12−xGaxO19.

The rest of the paper is organized as follows. In Sec. II,
we introduce the site-diluted Heisenberg Hamiltonian, and
we discuss the density-functional calculations that inform our
model of the impurity distribution. The Monte Carlo simu-
lation methods and data analysis techniques are described in
Sec. III. Section IV is devoted to the simulation results and
the comparison with the experimental data. We conclude in
Sec. V.

II. MODEL

A. Site-diluted Heisenberg Hamiltonian

The high spin value S = 5/2 of the Fe3+ ions and the
high ordering temperature of about 720 K for the undiluted
compound suggest that a classical approach to the magnetic
degrees of freedom should provide a good approximation. To
describe the magnetism of PbFe12−xGaxO19, we therefore de-
fine a classical Heisenberg model by placing either a classical
Heisenberg spin or a vacancy on each Fe site in the hexaferrite
crystal structure. The Hamiltonian is given by

H =
∑
i, j

Ji jεiε jSiS j . (1)
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TABLE I. Values of the exchange interactions. Ki j denotes the in-
teractions computed in Ref. [15] for an effective Hubbard interaction
Ueff = 6.7. We have absorbed the values of the magnetic moments
into the interactions Ji j used in the Heisenberg Hamiltonian (1) and
scaled them with a constant factor c = 1.212 to reproduce the clean
ordering temperature of 720 K, i.e., Ji j = (5/2)2cKi j

Sublattice pair 2a − 4 fIV 2b − 4 fVI 12k − 4 fIV 12k − 4 fVI

Ki j 5 meV 5 meV 3.5 meV 5 meV
Ji j 439 K 439 K 311 K 439 K

Here, Si is an O(3) unit vector at site i. The exchange inter-
actions Ji j are all positive, i.e., antiferromagnetic. We base
their values on density functional calculations in Refs. [14,15]
(for BaFe12O19) and Ref. [16] (for SrFe12O19). The resulting
interactions depend weakly on the value of the effective Hub-
bard interaction energy Ueff assumed in the density functional
algorithm, and they vary somewhat between the different
calculations. However, scaling the interactions by a common
factor to reproduce the clean ordering temperature Tc = 720 K
of the undiluted material suppresses most of these variations.
In our simulations, we only include the strongest interactions
which are between the following sublattice pairs: 2a − 4 fIV,
2b − 4 fVI, 12k − 4 fIV, 12k − 4 fVI. Their values are listed in
Table I. These interactions are nonfrustrated and establish the
ferrimagnetic order. We will discuss in the concluding sec-
tion the effects of additional couplings which are significantly
weaker but frustrate the ferrimagnetic order. We employ the
exchange interactions computed for the undiluted system for
our simulations in entire x-range. This neglects variations of
the interactions caused by changes in the lattice geometry due
the substitution of Fe ions by Ga ions. These changes are ex-
pected to be small because of the small difference between the
ionic radii of Ga3+ (0.62 Å) and Fe3+ (0.64 Å) cations [17].

The εi are independent quenched random variables that im-
plement the site dilution. They can take the values 0 (vacancy)
with probability pi and 1 (occupied site) with probability
1 − pi. In the simulations performed in Ref. [9], all lattice
sites were assumed to feature the same vacancy probabilities,
pi = p which is related to the average number of Ga ions
in the unit cell via p = x/12. The goal of the present paper
is to explore the effects of deviations from such a uniform
Ga distribution. Nonuniform Ga distributions are discussed in
detail in the next subsection.

B. Distribution of the Ga impurities

As pointed out in Sec. I, the available results on the dis-
tributions of the Ga ions over the five Fe sublattices [6,7] are
inconclusive and partially contradict each other. We therefore
perform state-of-the-art ab initio density-functional calcula-
tions to determine the preferred locations of the Ga impurities
(for details see the Appendix).

Specifically, we calculate the energies Em required for the
Ga atoms to occupy different Fe sites in the lattice. This is
done in an iterative way. We start from an undiluted double
unit cell and compute the energy of a single Ga substitution in
one of the five sublattices. As shown in Fig. 3, we find that the
first Ga impurity prefers the 12k sublattice by about 0.1 eV

FIG. 3. Energy cost �E of the N th Ga impurity in a PbFe12O19

double unit cell relative to the most favorable position in the double
unit cell. The energy of the N th Ga impurity is computed while fixing
Ga impurities 1 to N − 1 at their most favorable position (see text for
details). We test two possible positions of the 7th impurity (2a and
4fIV ) when calculating the energy cost of the 8th one.

over the 2a sublattice. All other sublattices have much higher
energies. For more than one impurity, we employ an iterative
procedure. We fix the positions of Ga atoms 1 to N − 1 at
their most favorable positions and then compute the energies
for all possible positions of the N th Ga atom. Only the lowest
energy configurations are shown in Fig. 3 for the N th Ga atom
among all considered nonequivalent positions with respect to
the N-1 Ga substitutions. We find that at low dilutions, the Ga
impurities overwhelmingly favor filling sites in the 12k sub-
lattice, followed by the 2a sublattice. It should be noted that
the energy difference between the two sublattices decreases
to below 45 meV at N = 3, 5, and 6. In addition, the energy
difference with both 4f sublattices decreases steadily as the Ga
concentration at the 12k sites increases. Beyond a dilution of
about p = 0.25 (six impurities in the double unit cell), the 12k
preference changes, and several sublattices have comparable
Em, suggesting a more even distribution of the impurities. We
note that in the lowest energy configurations, the Fe-O dis-
tances and the Fe magnetic moments change remarkably little
during the dilution process among all Fe sublattices except for
the 2b, the pseudohexahedral site. The results are consistent
with the four- and sixfold Ga coordination with oxygen atoms
in monoclinic β-Ga2O3 structure. This is despite the sizable
changes in mass and magnetization of our system (with the
largest increase of 5% in the negative magnetic moments of
Fe 4f sites).

To model a nonuniform vacancy distribution in the Heisen-
berg Hamiltonian (1), we introduce weights w(2a), w(2b),
w(4 fIV), w(4 fVI), and w(12k) that modify the vacancy proba-
bility compared to the uniform case. Specifically, the vacancy
probability in sublattice Y is given by w(Y ) p. (This means
that the uniform case is recovered if all weights are equal to
unity.) In the presence of these weights, the average number
of vacancies in a unit cell is given by w(2a) p + w(2b) p +
2w(4 fIV) p + 2w(4 fVI) p + 6w(12k) p. This implies that the
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weights have to fulfill the constraint

w(2a) + w(2b) + 2w(4 fIV) + 2w(4 fVI) + 6w(12k) = 12,

(2)
to ensure that the overall vacancy probability in the system
still equals p and, equivalently, the average number of vacan-
cies per unit cell is 12p.

Motivated by the density-functional results, we focus on
model distributions where w(12k) is larger than unity while
all other weights are identical to each other and smaller
than unity. Inserting w(2a) = w(2b) = w(4 fIV) = w(4 fVI)
into the constraint (2) yields

w(2a) = w(2b) = w(4 fIV) = w(4 fVI) = 2 − w(12k). (3)

We also perform a few exploratory calculations for models in
which both w(12k) and w(2a) are increased while all others
weights are identical and decreased compared to unity.

III. MONTE CARLO SIMULATIONS

A. Algorithm

We carry out large-scale Monte Carlo simulations of the
classical Heisenberg model (1) to determine the magnetic
ordering temperature Tc, the saturation magnetization Ms,
and other magnetic quantities. These simulations utilize both
Wolff cluster updates [18] and Metropolis single-spin up-
dates [19]. The Wolff algorithm greatly reduces the critical
slowing down of the system near criticality and thus allows
us to study large systems with reasonable numerical effort.
However, the Wolff algorithm alone is not sufficient in the
presence of site dilution because small isolated clusters of
spins may form that are not connected to the bulk of the sys-
tem. The Wolff cluster construction cannot reach such isolated
spins and therefore fails to equilibrate them. To overcome this
problem, we complement the Wolff algorithm with single-spin
Metropolis updates which consider all spins including those
that are isolated from the bulk. Specifically, a full Monte Carlo
sweep in our simulations consists of a Wolff sweep (a number
of cluster flips such that the total number of flipped spins
equals the number of Fe lattice sites in the system) followed
by a Metropolis sweep (one attempted single-spin flip per
lattice site).

We simulate systems consisting of L3 double unit cells with
L ranging from 6 to 48. As each double unit cell contains 24
Fe sites, our largest systems contain about 2.6 million spins.
All physical quantities of interest are averaged over 6400
to 25 600 independent disorder configurations for each size.
Statistical errors are obtained from the variations of the results
between the configurations.

To find the number of Monte Carlo sweeps required for the
system to equilibrate, we compare the results of runs with hot
starts (for which the spins initially point in random directions)
and with cold starts (for which all spins are initially aligned
with the ferrimagnetic order). An example of such a test for
a system close to its critical point is shown in Fig. 4. The
energy and order parameter reach their equilibrium values
after roughly 300 Monte Carlo sweeps. Similar numerical
checks were performed for other parameter values. Based on
these tests, we have chosen to perform 1000 equilibration
sweeps and 2000 measurement sweeps. Note that performing

FIG. 4. Equilibration of the energy E per site and the order
parameter ψ for a system of 483 double unit cells, dilution p = 0.66,
weight w(12k) = 1.25 and temperature T = 27 K. The data are av-
erages over 10 runs. The comparison of hot and cold starts shows
that the system equilibrates after roughly 300 Monte Carlo sweeps
despite being close to the critical point.

comparatively short Monte Carlo runs for a large number
of disorder configurations reduces the total statistical er-
ror [20–22].

B. Data analysis

The order parameter ψ of the ferrimagnetic transition in
the hexaferrites is the “staggered” magnetization that counts
the spin-up sublattices positive and the spin-down sublattices
negative,

ψ = 1

N

∑
i

fiεiSi, (4)

where N is the total number of lattices sites. fi = 1 for sites in
the 2a, 2b, and 12k sublattices whereas fi = −1 for the 4 fIV

and 4 fVI sublattices. In contrast, the physical magnetization is
given by

m = 1

N

∑
i

εiSi. (5)

For easier comparison with experiment, we will use M =
20µB m, which specifies the magnetization in Bohr magnetons
per formula unit. We also compute the sublattice magnetiza-
tions ml for each of the five Fe sublattices. They are defined
as

ml = 1

Nl

∑
i∈l

εiSi, (6)

where the sum runs over all sites in the sublattice, and Nl is
their number.

To determine the ordering temperature Tc, we analyze the
crossing of the Binder cumulant vs temperature curves [23].
The Binder cumulant of the order parameter is defined as

g =
[

1 − 〈|ψ|4〉
3〈|ψ|2〉2

]
dis

. (7)
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Here 〈...〉 denotes the thermodynamic (Monte Carlo) average
and [...]dis denotes the average over disorder configurations.
The behavior of the Binder cumulant in the thermodynamic
limit of infinite system size is well understood. In the ordered
phase, T < Tc, all spins are correlated, and the magnetization
has negligible fluctuations around a nonzero value. Therefore,
〈|ψ|4〉 ≈ 〈|ψ|2〉2, and the Binder cumulant approaches 2/3.
In the disordered phase, T > Tc, the system consists of many
independent fluctuators. Consequently, 〈|ψ|4〉 can be decom-
posed using Wick’s theorem. For O(3) symmetry this gives
〈|ψ|4〉 ≈ (15/9)〈|ψ|2〉2, and the Binder cumulant approaches
4/9. For finite system size, this step-function dependence of g
on temperature is rounded.

Because the Binder cumulant g is a dimensionless quantity,
it fulfills the finite-size scaling [24] form

g(t, L, u) = g(tλ−1/ν, Lλ, uλδ ). (8)

Here, λ is an arbitrary length scale factor, t = (T − Tc)/Tc

is the reduced temperature, and ν is the correlation length
critical exponent of the magnetic phase transition. As we an-
ticipate corrections to scaling to be important in the presence
of disorder, we have included the irrelevant variable u and
the corresponding exponent δ > 0. By setting the scale factor
λ = L−1, we obtain g(t, L, u) = F (tL1/ν, uL−δ ) where F is
a dimensionless scaling function. Expanding F in its second
argument results in

g(t, L, u) = 
(tL
1
ν ) + uL−δ
u(tL

1
ν ). (9)

If corrections to scaling are negligible (u = 0), the Binder
cumulant vs temperature curves for different system sizes all
cross at the reduced temperature t = 0 (i.e., at T = Tc) and
the value g = 
(0).

If corrections to scaling cannot be neglected (u �= 0), the
analysis is slightly more complicated because the g vs T
curves do not all cross right at Tc. Instead, the crossing point
shifts with L and approaches t = 0 as L → ∞. Expanding the
scaling functions 
 and 
u gives the following expression for
the crossing temperature T ∗(L) between the Binder cumulant
curves for sizes L and cL (where c is a constant):

T ∗(L) = Tc + bL−ω with ω = δ + 1

ν
, (10)

where b ∼ u is a nonuniversal amplitude [9]. In our sim-
ulations, we determine the ordering temperature Tc by
extrapolating the numerically found crossing temperatures to
infinite system size using the relation (10). An example of this
analysis is shown in Fig. 5.

IV. RESULTS

A. Critical Ga concentration from percolation theory

Before we turn to the Monte Carlo simulations, we deter-
mine the critical Ga concentration, i.e., the Ga concentration
at which the ordering temperature is suppressed to zero, by
means of percolation theory. Specifically, we compute the site
percolation threshold of the lattice spanned by the nonfrus-
trated interactions listed in Table I, taking into account that
the vacancy probability varies from sublattice to sublattice.

FIG. 5. Binder cumulant g vs temperature T for several sys-
tem sizes L, dilution p = 0.5 and weights w(12k) = 1.25, w(2a) =
w(2b) = w(4 fIV) = w(4 fVI ) = 0.75. The statistical errors are
smaller than the symbol size. Inset: Extrapolation of the crossing
temperature T ∗ of the g vs T curves for system sizes L and 2L to
infinite system size, using Eq. (10) with exponent value w = 1.5.

We employ a version of the fast percolation algorithm by
Newman and Ziff [25] which allows us to study systems of
up to 3003 double unit cells (648 million Fe sites). For each
system size, the percolation threshold is determined from the
onset of a spanning cluster, averaged over several hundred
disorder configurations. The results are then extrapolated to
infinite system size.

We have applied this analysis to a sequence of systems
with varying vacancy weight w(12k) for the 12k sublat-
tice. All other sublattices have identical weights given by
Eq. (3). Figure 6 presents the resulting critical Ga concentra-
tions. For w(12k) = 1, this calculation reproduces the value
xc = 8.846 found in Ref. [5]. As w(12k) is increased above

w(12k)

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

p c

0.9 1 1.1 1.2 1.3 1.4
w(12k)

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

9.5

x c

FIG. 6. Critical Ga concentration xc and the corresponding crit-
ical vacancy probability pc = xc/12 as functions of the weight
w(12k). The statistical errors of the data points are much smaller
than the symbol size. The solid line is a guide to the eye only. The
dashed line represents the Ga concentration x = 12/w(12k) at which
the 12k sublattice becomes completely depleted of Fe atoms.
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FIG. 7. Magnetic ordering temperature Tc as a function of the
weight w(12k) at fixed Ga concentrations x = 7.2 and 8.4. The sta-
tistical errors are smaller than the symbol size. The lines are guides
to the eye only.

unity, the critical Ga concentration first increases. It reaches a
maximum of about 9.27 for w(12k) ≈ 1.18 before decreasing
again. For weights w(12k) � 1.4, the critical Ga concentra-
tion is given by x = 12/w(12k) in very good approximation,
indicating that the transition coincides with the complete de-
pletion of the 12k sublattice. It is worth emphasizing that xc

deviates by less than 5% from its value for a uniform Ga
distribution over a wide range of w(12k) between about 0.9
and 1.4.

B. Magnetic phase boundary

We now turn to the results of the Monte Carlo simulations.
We start by analyzing how the magnetic ordering temperature
Tc depends on the vacancy weights w at fixed overall vacancy
concentration. Figure 7 presents Tc vs w(12k) at fixed Ga
concentration x = 7.2 and 8.4 (i.e., dilutions p = 0.6 and 0.7,
respectively) for the same sequence of systems as in Fig. 6,
i.e., a sequence for which the weight w(12k) differs from
all the other weights which are given by Eq. (3). The fig-
ure shows that the behavior of Tc is qualitatively similar to
that of the critical Ga concentration xc discussed in Sec. IV A.
As the weight w(12k) is increased from the uniform case,
w(12k) = 1, the ordering temperature increases, reaches a
maximum, and then decreases for larger w(12k). However,
the relative change of Tc is much stronger than that of
xc. The maximum Tc is about 50% higher than the Tc value
in the uniform case for x = 7.2 and twice as high for x =
8.4. Moreover, for weights w(12k) in the range from 1.2
to 1.3, the ordering temperature roughly agrees with the ex-
perimental value obtained from the data in Refs. [5,7] (see
Fig. 1).

Based on this observation, we have computed the ordering
temperature Tc(x) over the entire x range between 0 and xc

for the weight w(12k) = 1.25. The resulting phase bound-
ary for w(12k) = 1.25 is shown in Fig. 8 together with the
corresponding experimental data. Clearly, the Monte Carlo
results for w(12k) = 1.25 are in excellent agreement with

FIG. 8. Magnetic ordering temperature Tc vs Ga concentration x
for w(12k) = 1.25. All other weights take the value 2 − w(12k). The
statistical errors are smaller than the symbol size. The dashed line is a
guide to the eye only. The experimental values stem from Refs. [5,7].

experiment, in contrast to the Monte Carlo results for the
uniform case, w(12k) = 1 shown in Fig. 1. The corresponding
Tc(x) curves for weights w(12k) = 1.2 and 1.3 deviate only
slightly from the phase boundary for w(12k) = 1.25.

For comparison, we have also analyzed a case in which
the impurity weights in both the 12k sublattice and the 2a
sublattice are increased, w(12k) = w(2a) = 1.2, whereas the
other weights are reduced, w(2b) = w(4 fIV) = w(4 fVI) =
0.72. The resulting phase boundary is virtually indistinguish-
able from that for the case (3) with w(12k) = 1.2.

C. Saturation magnetization

In addition to the ordering temperature, we have also cal-
culated the low-temperature limit of the magnetization M. As
all interactions in our model Hamiltonian are nonfrustrated,
this value can be directly compared to the low-temperature
saturation magnetization Ms measured in experiment.
Figure 9 presents Ms vs x for w(12k) = 1.25 [and all other
weights given by Eq. (3)] together with the experimental
values from Refs. [6,7]. The figure demonstrates that the
increased w(12k) weight leads to a reduction of the saturation
magnetization compared to the case of uniform vacancy dis-
tribution and produces a good agreement between our model
and the experimental data.

The fact that an increased vacancy weight w(12k) leads
to an increase of Tc and xc but a decrease of Ms appears
somewhat counterintuitive at first glance. However, it can
be readily explained by the ferrimagnetic order in the hex-
aferrites. An increased w(12k) weight reduces the number
of Fe atoms in the majority (spin-up) sublattices whereas it
increases the number of Fe atoms in the minority (spin-down)
sublattices. As a result, the difference between the numbers
of spin-up and spin-down Fe ions is reduced, leading to a
significant reduction of Ms. Note that this explanation does not
rely on noncollinear magnetic order caused by the subleading
(frustrating) interactions. We will return to this point in the
concluding section.
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FIG. 9. Low-temperature saturation magnetization M (in µB per
formula unit) vs Ga concentration x for w(12k) = 1.25. All other
weights take the value 2 − w(12k). The line is a guide to the eye
only. The experimental values stem from Refs. [6,7].

D. Sublattice magnetizations

In addition to the ferrimagnetic order parameter ψ and the
total magnetization m, we have also calculated how the sub-
lattice magnetizations ml [defined in Eq. (6)] depend on the
impurity concentration x, the weights w and the temperature
T . Figure 10 shows the sublattice magnetizations as func-
tions of temperature at fixed x = 3.6 and w(12k) = 1.25. [All
other weights are equal and given by Eq. (3).] As expected,
ml (12k) is significantly lower than all the other sublattice
magnetizations because the vacancy concentration in the 12k
sublattice is higher than those of the other sublattices. In
fact, the zero-temperature limit of ml agrees with the fraction
of occupied sites in each sublattice. The differences of the
sublattices magnetizations between the other sublattices (2a,
2b, 4 fIV, 4 fVI) are very small. They reflect the differences in
the environments of the Fe atoms in the different sublattices.

FIG. 10. Sublattice magnetizations ml vs temperature T for x =
3.6 and w(12k) = 1.25. All other weights take the value 2 − w(12k).

FIG. 11. Ordering temperature Tc vs distance from the percola-
tion threshold pc − p for w(12k) = 1.25. All other weights take the
value 2 − w(12k). The dashed line is a power-law fit Tc ∼ (pc − p)φ

of the data points close to xc. The dotted line is the corresponding
fit of the preasymptotic behavior. The statistical errors are about
a symbol size for the data closest to pc and smaller further away
from xc.

E. Critical behavior at xc

Finally, we turn to the critical behavior of the zero-
temperature phase transition at xc. To this end, we analyze
the the dependence of Tc on the distance x − xc from the
zero temperature transition. For the case of a uniform vacancy
distribution, Khairnar et al. [9] showed that Tc ∼ (xc − x)φ

with φ = 1.12 in a narrow asymptotic region close to xc. This
value of the crossover exponent φ agrees with the predic-
tions of classical percolation theory [26–28], confirming that
transition at xc is a percolation transition. The preasymptotic
behavior of Tc further away from xc still followed a power
law in (xc − x), but with a nonuniversal crossover exponent.
Its value was below unity but well above the experimentally
observed 2/3.

Here we employ the same analysis for the case of a nonuni-
form vacancy distribution, specifically for our sequence of
systems with increased vacancy weight w(12k) and reduced
weights (3) for all other sublattices. We find two different
regimes, depending on w(12k).

In the first regime, the zero-temperature transition occurs
(as a function of increasing x) before the 12k sublattice is
completely depleted of Fe atoms. As shown in Fig. 6, this
happens for w(12k) � 1.4. In this regime the behavior of
Tc with x − xc is analogous to the case of uniform dilution:
Asymptotically close to xc, the ordering temperature follows
Tc ∼ (xc − x)φ with the φ value from percolation theory. Fur-
ther away from xc, the behavior crosses over to a weaker
dependence on x. This is illustrated in Fig. 11 for w(12k) =
1.25.

In the second regime, the zero-temperature transition co-
incides with the complete depletion of the 12k sublattice of
Fe atoms, as is the case for w(12k) � 1.4 (at least in very
good approximation). Figure 12 shows the dependence of
Tc on xc − x for w(12k) = 1.5 with xc = 12/w(12k) = 8.
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FIG. 12. Ordering temperature Tc vs distance from the percola-
tion threshold pc − p for w(12k) = 1.5. All other weights take the
value 2 − w(12k).

Clearly, the shape of the phase boundary Tc(x) differs from the
percolation scenario described above, suggesting a different
universality class of the zero-temperature critical point.

V. CONCLUSIONS

In summary, motivated by the disagreement between ex-
perimental data and theoretical predictions, we have revisited
the magnetic properties of diluted hexagonal ferrites, in par-
ticular PbFe12−xGaxO19. We have focused on the effects of an
uneven distribution of the nonmagnetic Ga impurities over the
five distinct Fe sublattices.

Our ab initio density-functional calculations have shown
that the preferred sublattice for the Ga atoms is the 12k
sublattice. To include this preference in the Monte Carlo
simulations, we have created model impurity distributions
with increased vacancy probability in the 12k sublattice and
correspondingly reduced probabilities in all other sublattices.
These probabilities are parameterized by weights w such that
the vacancy probability in sublattice Y is given by w(Y ) p with
p = x/12 the overall vacancy probability.

For appropriately chosen sublattice weights [w(12k) ≈
1.2 to 1.3 and the other w correspondingly reduced], our
Monte Carlo results for the phase boundary Tc(x) and the
low-temperature saturation magnetization Ms are in excellent
agreement with the experimental data of Refs. [5–7]. This in-
dicates that the uneven distribution of the Ga impurities is the
main reason for the discrepancies between the measurements
and previous theoretical work in the literature. Notably, the
uneven Ga distribution explains why the experimental satu-
ration magnetization drops rapidly with increasing x whereas
the critical temperature Tc decreases much more slowly.

We have also studied the critical behavior of the zero-
temperature phase transition at the critical Ga concentration
xc. If this transition happens before any of the sublattices
becomes completely depleted of Fe, the critical behavior of
Tc follows the predictions of percolation theory. For a more
unequal Ga distribution (larger weight w(12k) � 1.4), the

zero-temperature transition coincides with the emptying of the
12k sublattice. This leads to a different critical behavior of
Tc(x).

Our results suggest that the agreement between the exper-
imental Tc data and the striking 2/3 power-law behavior of
the phase boundary Tc(x) put forward in Ref. [5] is actually
“accidental.” It appears to be the result of the particular Ga
weights rather than a fundamental principle. In fact, the data
in Fig. 8 suggest that the 2/3 power law may not accurately
describe the data close to xc. Testing this predictions requires
additional experiments at Ga concentrations close to xc.

The Ga distributions employed in our simulations should
be considered simple models rather than a quantitatively ac-
curate description of the real materials. For example, we do
not include possible dependences of the weights w on the
concentration x, and we neglect any correlations between
neighboring impurities. Extracting a more detailed descrip-
tion of the Ga distribution from our Monte Carlo simulations
requires additional experimental input beyond Tc and Ms. In
particular, fully disentangling the Ga concentrations in all five
sublattices would require the measurement of sublattice mag-
netization curves (or equivalent local information) over the
full x range. To the best of our knowledge, such experimental
data are not yet available.

Our present simulations do not include any of the sub-
leading exchange interactions that frustrate the ferrimagnetic
order. As a consequence, the magnetic order remains collinear
over the entire x range. Simulations performed in Ref. [9]
showed that subleading frustrating interactions and the result-
ing noncollinear order lead to a reduction in Tc. This implies
that the frustrating interactions (by themselves) cannot ex-
plain the disagreement between the experiments and previous
theoretical work. Even though our results demonstrate that
noncollinear order is not the main reason for the rapid drop
of the saturation magnetization Ms with x, the frustrating in-
teractions and the resulting noncollinear order likely become
important at larger x close to the zero-temperature transition.

We hope that our study will encourage further experimental
and theoretical work that helps resolving the open questions
about the behavior of PbFe12−xGaxO19 and other diluted
hexaferrites.

ACKNOWLEDGMENTS

This work has been supported in part by the National
Science Foundation under Grants No. DMR-1828489 and No.
OAC-1919789. The simulations were performed on the Pega-
sus and Foundry clusters at Missouri S&T. We acknowledge
helpful discussions with S. Rowley.

APPENDIX: DETAILS OF THE AB INITIO CALCULATIONS

To determine preferred distribution of Ga atoms among
the five distinct Fe sublattices in the hexaferrite, the elec-
tronic and magnetic properties of Ga-doped PbFe12O19 were
studied using first-principles density functional calculations
as implemented in the Vienna Ab initio Simulation Pack-
age (VASP) [29–32]. The generalized gradient approximation
(GGA) in the Perdew-Burke-Ernzerhof form [33,34] within
the projector augmented-wave method was used [35,36]. The
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GGA + U method was employed with an on-site Coulomb
U = 0 and U = 3 eV for Fe–d states.

It was found that the U correction is necessary to at-
tain the correct antiferromagnetic ordering in PbFe12O19:
the calculated magnetic moments are found to be 4.10 µB,
4.00 µB, −3.96 µB, −4.01 µB, and 4.12 µB for Fe in octahe-
dral 2a, pseudo-hexahedral 2b, tetrahedral 4fIV , octahedral
4fV I , and octahedral 12k position, respectively, when U =
3 eV, whereas at U = 0 the moments are 2.28 µB, 3.72 µB,
−3.47 µB, 0.81 µB, and 3.45 µB. Further increase in U
value (U = 4, 5, or 6 eV) lead to an insignificant in-
crease in the Fe magnetic moments with no effect on the

antiferromagnetic ordering. Therefore, U = 3 eV was em-
ployed in this work to study the effect of Ga on the
electronic and magnetic properties of PbFe12O19. The con-
ventional, double unit cell, Pb2Fe24O38, was used for both
the undoped and Ga-doped structures. Both the internal
atomic positions and the lattice parameters in all structures
were optimized using force and total energy minimiza-
tion until the Hellmann-Feynman force on each atom was
below 0.01 eV/Å. Brillouin-zone sampling was done with
�-centered Monkhorst-pack with k-mesh of at least 8x8x2;
the cut-off energy of 500 eV and Gaussian smearing were
used.
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