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Experimental determination of the temperature- and phase-dependent elastic constants of FeRh
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The elastic constants of an epitaxial film of FeRh have been determined experimentally in both ferromagnetic
(FM) and antiferromagnetic (AF) phases, using a combination of Brillouin light scattering and picosecond
acoustics experiments. The C11 constant is noticeably larger in the FM phase than in the AF phase, while
C12 and C44 are both lower, leading to larger Rayleigh wave velocities in the FM phase than in the AF phase.
The elastic constants were calculated numerically using first-principles anharmonic modeling and machine-
learned interatomic potentials. We find that using a temperature-dependent effective potential is indispensable
to correctly reproduce the experimental values to within 80–100%. The accurate knowledge of the temperature-
and phase-dependences of the elastic constants of crystalline FeRh are valuable ingredients for the predictive
modeling of the acoustic and magnetoacoustic properties of this magnetostrictive material.
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I. INTRODUCTION

FeRh is a fascinating magnetic material discovered in 1938
by Fallot [1]. It is currently being revisited in light of novel
magnetic and spintronic applications. Its room-temperature
bistable antiferromagnetic (AF) states herald the possibility
of robust magnetic encoding [2–5], while its first-order tran-
sition to a ferromagnetic (FM) state is responsible for large
entropy changes promising solid-state magnetic refrigeration
[6,7]. This transition is accompanied by a substantial (∼1%)
isostructural volume change [8,9] that is intertwined with the
magnetic transition [10,11].

While much attention has been dedicated to the magnetic
characteristics of this material, few experimental studies have
been devoted to its elastic properties as a function of the mag-
netic phase and/or temperature. Notably, there is no record
of the complete set of elastic constants C11, C12, and C44

of crystalline cubic FeRh in the literature. The value of C11

is the one that is most readily obtained by measuring the
longitudinal acoustic wave velocity and the volume density

ρ, with VL =
√

C11
ρ

. Combining this value with a specific heat

measurement within a Debye model yields an estimate of the
transverse acoustic velocity, and hence C44 given that VT =√

C44
ρ

. This enabled Cooke et al. [12] to estimate the values of

C11 and C44 in the AF and FM phases, both obtained at room
temperature by imposing slightly different Rh concentrations
in two distinct samples. No value has been provided so far

*Contact author: thevenard@insp.jussieu.fr

for C12, which is more challenging to measure. There are
somewhat more data for polycrystalline FeRh [13–15], on
which it is straightforward to estimate the Young modulus
E by measuring bulk acoustic wave velocities. Finally, there
is a substantial corpus of theoretical papers reporting den-
sity functional theory (DFT) simulations of the phonon band
structure of FeRh [16–19], from which the elastic constants
in both phases can be estimated. However, to our knowledge,
the explicit temperature dependence of Ci j has never been
determined.

In this work, we measure experimentally the temperature
dependence of C11, C12, and C44 in both AF and FM phases of
a single FeRh crystal by a combination of Brillouin light scat-
tering (BLS) and picosecond acoustic wave interferometry.
We follow the strategy developed for other materials by previ-
ous authors [20–23], who measured the dispersion relations of
phonons, using either inelastic BLS [20,21] or time-of-flight
methods [23]. For sufficiently complete data sets including
different modes (bulk/surface or Rayleigh/Sezawa), or var-
ious crystallographic directions, the elastic constants can be
recovered by global fits, e.g., using simplex methods applied
to the modeling of the acoustic wave dispersion. Our findings
are supported by machine-learning molecular-dynamics sim-
ulation fits to ab initio data, and they are in agreement with
previously published theoretical estimates [16–19], which re-
port a substantially larger C11 and lower C12, C44 in the FM
phase, with respect to the AF one. Moreover, the measured
temperature dependence of the elastic constants is very well
corroborated by these temperature-dependent simulations.

The first sections of this article are dedicated to a descrip-
tion of the sample, and the BLS and picosecond acoustics
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FIG. 1. Characterization of the AF-to-FM phase transition of
FeRh using VSM and reflectivity (inverted scale and normalized to
its maximal value).

experiments. The following sections describe the analytical
modeling of the acoustic dispersion, the resulting deduction of
the elastic constants, and a comparison to available theoretical
elastic constants from our calculations and the literature.

II. SAMPLE

The epitaxial 195-nm-thick FeRh film under study was
grown on a MgO(001) substrate via dc magnetron sputter-
ing from an equiatomic target. The FeRh film was grown
at 430 ◦C after preheating the substrate in high vacuum for
60 min at the same temperature. An Ar pressure of 2.7 × 10−3

mbar and a sputtering power of 50 W led to a deposition rate
of 2 nm min−1. The film was then annealed in situ in high
vacuum at 780 ◦C for 80 min, and a protective 2-nm-thick
Pt capping layer was grown after cooling down the sam-
ple below 120 ◦C. X-ray diffraction characterization shows a
high-quality FeRh(001) out-of-plane texture of the sample and
the attainment of a homogeneous CsCl-type structure, show-
ing cube-on-cube epitaxy with the FeRh unit cell being 45◦
in-plane rotated with respect to MgO [9]. Strain in the FeRh
film is largely relaxed (with the out-of-plane lattice parameter
c = 2.988 Å approaching the bulk value) due to the relatively
large thickness of the film. Transmission electron microscopy
imaging of a cross-sectional lamella allowed a more precise
determination of the film thickness, d = 195 ± 2 nm [24].

The AF ↔ FM transition of the sample is characterized
by both vibrating sample magnetometry (VSM, probing the
entire volume of the sample) and light reflection microscopy
(probing the topmost 10 nm of the film into which the λR =
635 nm light is absorbed). As shown in Fig. 1, the onset of
the transition occurs at very similar temperatures with both
methods, respectively ≈89 ◦C/98 ◦C (warming and cooling
branch) from VSM and ≈94 ◦C/101 ◦C from light reflection.
The slight discrepancy in the transition temperatures obtained
by these two methods arises from the difference in the probed
area and volume. The transition width is relatively narrow
(≈10 ◦C) and the sample possesses a very low (≈ 16 kA m−1)
residual magnetization at room temperature, both confirming
the excellent quality of the film.

III. METHODOLOGY

The experimental approach is the following: using Bril-
louin light scattering, we measure phonon frequencies at fixed
temperatures and variable incident wave vectors to extract
the temperature-dependent dispersion relationships of the first
three acoustic modes (Rayleigh and two Sezawa modes).
We then perform temperature-dependent picosecond acoustic
wave interferometry to measure the longitudinal velocity and
obtain C11(T ). Fixing this value, we then adjust C12(T ) and
C44(T ) to reproduce the BLS-measured dispersion curves. To
analyze the anharmonic and elastic properties, we perform
first-principles calculations for T = 0, and then we augment
these with a machine-learning interatomic potential (MLIP)
to be able to run large molecular-dynamics simulations, and
to compute the temperature dependence of phonons and the
corresponding elastic constants.

IV. BRILLOUIN LIGHT SCATTERING MEASUREMENTS

A. Description of the experiment

Over the past few decades, BLS has proven to be a pow-
erful technique for characterizing elastic [via surface acoustic
waves (SAWs)] and magnetic [via spin waves (SWs)] prop-
erties of thin films and multilayer structures. In our BLS
experiments, a monochromatic solid-state laser with a wave-
length of λBLS = 532 nm and a power of 150 mW is focused
onto the sample surface after passing through a set of mirrors
and lenses. The backscattered beam from the sample (accord-
ing to elastic and inelastic processes) is directed to a tandem
Fabry-Pérot interferometer at (3 + 3)-pass to determine the
frequency shift with respect to the incident beam. The wave-
vector (k) is determined by the angle of incidence of the laser
with respect to the normal to the sample (θin) according to
the relationship k = 4π sin θin/λBLS. All the measurements
carried out in this work were made for a wave-vector parallel
to the [100] ([110]) direction of MgO (FeRh).

In Fig. 2(a) we present three spectra obtained for differ-
ent k values at room temperature (AF phase). Note that in
this phase, magnetic modes are expected to be out of the
observed frequency range [25]. Three surface acoustic modes
can be seen, corresponding to the Rayleigh and the so-called
Sezawa guided waves. Lorentzian fits of these spectra are then
performed to obtain the positions of the Stokes (S) and anti-
Stokes (aS) lines, which correspond to negative and positive
frequency shifts respectively, fS and faS. They were found to
be identical in absolute value.

Finally, an in situ heating system was integrated into the
BLS bench in order to vary the temperature and perform
measurements in the uniform AF and FM phases (please refer
to Appendix A for technical details). As the temperature was
increased to enter the FM phase, a magnetic field of 200 mT
was applied to isolate the purely elastic modes.

B. Discussion of f (T ) and f (k) curves

Two kinds of spectra were recorded: (i) at a fixed wave
vector and variable temperature (k = 15.18 µm−1) used to
locate the phase transition, and (ii) at a fixed temperature and
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FIG. 2. Room-temperature (T = 25 ◦C), antiferromagnetic phase data: (a) BLS spectra at fixed temperature, variable wave vectors, and
no applied external field. (b) Dispersion relationship of the first three acoustic surface modes: symbols refer to BLS data, and solid lines are
calculations with the FeRh elastic coefficients C11 = 219, C12 = 148, and C44 = 125 GPa, optimized via the procedure described in the text.

variable wave-vector, giving access to dispersion relationships
from which the elastic constants were extracted.

We first comment on the dispersion relationship measure-
ments, performed upon warming, from T = 25 to 121 ◦C. The
measured frequencies reflect the effective acoustic velocities
of the entire FeRh film over the MgO substrate system. Be-
cause acoustic waves in the magnetic film are slower than
in the substrate, a dispersive character is obtained, as clearly
evidenced in Fig. 2(b) (room-temperature measurement). Sur-
face acoustic waves have an evanescent decay perpendicular
to the surface with a depth of the order of the acoustic
wavelength (2π/k). As the wave vector increases, the corre-
sponding acoustic wavelength decreases, exploring a volume
with a larger fraction of FeRh. At the lowest wave vector, it
is essentially only the MgO substrate that is probed. For the
largest probed wave vector, k = 21.4 µm−1, the corresponding
phonon wavelength is λ = 294 nm, a little thicker than the
film.

We now consider how the acoustic frequencies vary during
a complete temperature warming/cooling cycle at fixed k =
15.18 µm−1 (Fig. 3). Strikingly, by comparing similar tem-
peratures on the warming and cooling branches, one clearly
observes a hysteresis opening up, e.g., about 0.63 GHz for
the first Sezawa mode, 0.46 GHz for the second one, and
0.17 GHz for the Rayleigh mode. This behavior is due to the
hysteretic nature of the first-order AF ↔ FM phase transition
of FeRh, which can be probed by the acoustic waves given
the appreciable ratio λ/d between the wavelength and thick-
ness. The onsets of the transition for the heating and cooling
branches occur in the same temperature range as presented
earlier (Fig. 1), about 5–7 ◦C lower than for the reflectivity
data. This difference is well explained by the downshift of the
transition temperature under magnetic field (the −8 ◦C/T shift
recorded by Maat et al. [26] leads to a −1.6 ◦C shift for the
200 mT field applied here), and by the static heating induced
by the CW laser beam, estimated using the thermal conductiv-
ity of FeRh to 7 ◦C at most [27]. Finally, we emphasize that,
away from the transition on either side, all mode frequencies

decrease with increasing temperature, a signature of the usual
decrease of acoustic velocities upon warming.

V. PICOSECOND ACOUSTIC MEASUREMENT OF C11

The temperature-dependent BLS measurements give a set
of dispersion relations in the AF and FM phases. They reflect
the values of the (unknown) FeRh and (known) MgO elastic
constants, the (known) film thickness, and the material volume
density. To narrow the parameter space to determine the C′

i js,
we measure the longitudinal (bulk) acoustic wave velocity
independently.

For this, we use a standard pump-probe technique in which
a pump beam impinging on the metallic FeRh surface gener-
ates a picosecond-long acoustic pulse [28]. The probe beam is

FIG. 3. Acoustic frequencies of the Rayleigh and first two
Sezawa modes, measured at k = 15.18 µm−1 vs temperature. The
background color illustrates the nature of the magnetic phase (uni-
form antiferromagnetic or ferromagnetic, and mixed for the warming
branch).
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FIG. 4. (a) Longitudinal picosecond acoustic wave interferome-
try at different temperatures, in the AFM phase up to 86.5 ◦C, and
in the FM phase above. Inset: the arrival times of the echoes are
found by fitting the data after removal of the thermal background
(here T = 70 ◦C). See Appendix B for experimental details. (b) The
difference in echo arrival time gives the velocity, and from there C11

knowing the volume density.

passed through a Sagnac interferometer in order to detect the
displacement of the surface. Please refer to Appendix B for
more experimental details on this technique.

A typical time delay scan [Fig. 4(a)] results in an elec-
tronic peak at the pump-probe coincidence, followed by a
slow decay over which appear features (echoes), correspond-
ing to the displacement of the surface upon arrival of the
acoustic wave after reflection off the FeRh/MgO interface.
We point out that the electronic response is much stronger
in the AF phase. While a proper analysis of this interesting
feature is beyond the scope of this paper, we suggest this
might be attributed to the more electrically resistive nature
of the low-temperature phase. Within our time window, two
echoes are clearly visible, separated in time by a delay �t
related to the longitudinal velocity �t = 2d

VL
. Measurements

are then performed at discrete rising temperature values on
the warming branch of the transition, and the values of �t (T )
and VL(T ) are estimated precisely (see Appendix B for de-
tails). Using the temperature/phase dependence of the volume
density (see Appendix C), we obtain the thermal variations of

C11(T ) using VL(T ) =
√

C11(T )
ρ(T ) [Fig. 4(b)]. The main source of

error comes from the ±2 nm uncertainty on the d = 195 nm
layer thickness.

As is often the case in solid crystals, C11 decreases steadily
with temperature. It undergoes a steep jump upon crossing
the transition (between T = 86 and 107 ◦C). Despite being
minute (a mere 2 ps), the difference in echo delays at the
onset of the transition (T = 86 ◦C) undoubtedly points to
a larger C11 constant in the FM phase, with C11,AF ≈ 216–
218 GPa between 25 and 86 ◦C, and C11,FM ≈ 228–232 GPa
(T > 105 ◦C). These values align with those found by pre-
vious authors [12,13]: Cooke et al. had similarly found an
increase of C11 from 218 to 236 GPa when going from AF
to FM by changing the Rh concentration, at T = 25 ◦C.

VI. DETERMINATION OF THE ELASTIC CONSTANTS

A. Fitting procedure

We now follow the “layer-on-substrate” approach of Far-
nell and Adler [29] to derive the frequency versus wave-vector
f (k) relationship of surface acoustic waves propagating along
x||[100] ([110]) in MgO (in FeRh). The elastic constants of
both materials are expressed in the [100] reference frame
of MgO, labeling C∗

i j the π/4-rotated Ci j elastic constants of
FeRh, and C0,i j those of MgO (see Appendix C for the explicit
expressions of the [C], [C∗], and [C0] tensors). Displacement
waves in both materials are taken as linear combinations of
z-damped terms of the general form ui = Uie−αze j(kx−ωt ) with
i = x, z, ω = 2π f = V k, and j = √−1. Injecting these in
the elastic dynamical equation and imposing the adequate
boundary conditions gives a system of six equations, whose
determinant D (V ) must be nullified:

D (V ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 −1 −1 −1 −1

r0,1 r0,2 −r1 −r2 −r3 −r4

a0,1 a0,2 −a1 −a2 −a3 −a4

b0,1 b0,2 −b1 −b2 −b3 −b4

0 0 a1eq1kh a2eq2kh a3eq3kh a4eq4kh

0 0 b1eq1kh b2eq2kh b3eq3kh b4eq4kh

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(1)

The full procedure is described at length in Appendix C,
as well as the explicit dependency of the coefficients r, a, and
b on the elastic coefficients of FeRh and V . The roots Vi of
Eq. (1) correspond to the different acoustic modes, the lowest
one being the Rayleigh wave, and the second and third being
the first and second Sezawa modes. It is then straightforward
to compute fi(k) = Vik

2π
in order to compare with the experi-

mental fexp(kexp) of Fig. 2(b).
Inspired by previous work [22,30], we find the elastic con-

stants of FeRh by testing numerically a large set of (C11, C12,
C44) values. C11 is set by the picosecond acoustics measure-
ments [Fig. 4(b)], while C12 was typically searched between
120 and 200 GPa, and C44 between 70 and 150 GPa in steps
of 1 GPa. All the corresponding combinations were tested,
and we choose the best solution as the triplet that minimizes
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FIG. 5. Temperature-dependence of elastic constants of FeRh,
determined by the analysis of the BLS and picosecond acoustics data
(symbols with dashed lines, at more temperatures for the latter), or
calculated by TDEP anharmonic lattice dynamics (full lines). Note
that the latter were obtained in both phases in the entire temperature
range, and that we are only showing values relevant to the experi-
mentally observed phases.

the following figure of merit χ :

χ =
∑

p

∑
l

|D (C11,C12,C44, kexp,l ,Vp(kexp,l ))|2. (2)

In this expression, p = 1, 2, 3 labels the Rayleigh, first, and
second Sezawa modes, l = 1, . . . , Nl are the data points for a
given mode number, and Vp(kexp,p) = 2π fexp,l,p

kexp,p
is the velocity

computed from the experimentally observed mode frequency
at wave vector kexp,p.

B. Results

A typical adjustment in the AF phase at room temperature
is shown in Fig. 2(b), with the resulting calculated dispersion
relation of the three acoustic modes plotted in full lines.
An excellent agreement with the experimental data is found
for the following FeRh constants: C11 = 219, C12 = 148, and
C44 = 125 GPa. Note that the calculated Sezawa modes only
exist above a particular cutoff wave vector (kS1 = 1.58 and
kS2 = 10.25 µm−1), a well-known feature of these semiguided
surface modes [29]. The fact that we nevertheless observe the
guided modes below kS2 might be due to a slight misalignment
off high-symmetry crystalline axis. We have discarded these
points from the fitting procedure and only used points in the
interval k = 13–21.4 µm−1. The fitting procedure is applied
to all the temperatures of the warming branch of Fig. 3. The
resulting temperature-dependent FeRh elastic constants are
shown in Fig. 5, with the error bars reflecting the uncertainty
on the film thickness (d = 195 ± 2 nm).

We find C44 has a rather flat behavior with temperature in
the AF phase, and then decreases from 130 to 110 GPa at the
transition. This drop is similar to the one seen by Cooke et al.,
albeit on very different values (77 to 57 GPa) estimated quite
indirectly from a heat-capacity measurement. We evidence
a nonmonotonic evolution of C12 in the AF phase, with a
sharp increase (≈20 GPa) as the FM phase is approached.

While this is not unheard of [C12(T) of MgO is, for instance,
nonmonotonous at low temperatures [31]], one might wonder
whether it is related to the volume increase taking place at the
transition. There is no previous record of any estimate of C12

in either phase with which to compare our results. Instead,
we can “isotropize” our coefficients into a Young modulus
E , using the well-known Hill method [32], and compare it
to values of the literature. We find in the AF phase EAF =
187 GPa (T = 86 ◦C), and a higher value EFM = 198 GPa in
the FM phase (T = 107 ◦C). This is reassuringly similar to the
values found on polycrystalline FeRh by both Palmer et al.
[13]: EAF = 196 and EFM = 211 GPa (T ≈ 40 ◦C), and by
Ricodeau et al. [14,33]: EAF = 170 (T ≈ 25 ◦C) and EFM =
190 GPa (T ≈ 100 ◦C). Let us recommend comparing abso-
lute values of the elastic coefficients in different phases with
caution if taken at very different temperatures, or Rh concen-
tration, since both of these parameters have a strong influence.
Comparing to other materials, it is worth mentioning that the
elastic constants of FeRh (i) vary overall more weakly with
temperature than for instance those of Fe [34] or MgO [31]
(for which C11 loses ≈6 GPa, C12 ≈0.5 GPa, and C44 ≈ 1–
2 GPa between 25 and 125 ◦C), and (ii) are very similar, in
the FM phase, to those of crystalline iron taken at a similar
temperature (T = 125 ◦C [34]): C11 = 225, C12 = 133, C44 =
114 GPa, to be compared to those we found for FeRh in the
FM phase: C11 = 227, C12 = 135, C44 = 105 GPa.

VII. NUMERICAL ESTIMATES OF Ci j OF FeRh

We now discuss the first-principles modeling of the elastic
constants of FeRh. To compare quantitatively to our experi-
ments, it is essential to go beyond the harmonic approximation
by including thermal expansion and intrinsic anharmonicity,
in particular for AF FeRh. Existing T = 0 K theoretical stud-
ies in the literature predict the appearance of an imaginary
phonon mode [17,35–37], which prevents the evaluation of
thermodynamic quantities.

We employ the temperature-dependent effective potential
(TDEP) method [38–40] to include anharmonicity and renor-
malize phonon-phonon interactions. To reduce the simulation
costs while keeping the accuracy of DFT, we constructed two
machine-learning interatomic potential (MLIP [41]) models
for the FM and AF phases. The details of the simulations are
described in Appendix D. We calculate the elastic constants
of both phases as a function of T (0–500 K, i.e., −273 to
227 ◦C) through their relation to the real-space interatomic
force constants. Aschauer et al. [17] in particular showed
the importance of nonlinear elasticity in FeRh. These effects
on the measured Ci j are folded in through the temperature
dependence of the TDEP force constants.

Considering first T = 0 K DFT values, Table I shows that
our results compare well with available literature [16,17,19],
with slight differences that can be attributed to the choice of
exchange and correlation functionals or the use of DFT + U .
The temperature dependence of the elastic constants of FeRh
in both phases are then shown in Fig. 5, with values cut off to
mimic the experimentally observed warming transition.

When comparing with the experimentally determined val-
ues of C11, C12, and C44, a particularly good agreement is
obtained for C11 in both phases, with a maximum discrepancy
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TABLE I. Survey of the elastic constants of the Ci j constants
of FeRh obtained by DFT computations and this work, at 25 °C in
the AF phase and 121 °C in the FM phase, and comparison to our
experimental data.

Phase C11 (GPa) C12 (GPa) C44 (GPa)

This work exp 25 ◦C 219 148 125
This work DFT 25 ◦C 224 177 116

AF This work DFT 0 K 239 184 129
He et al. DFT 0 K [16] 219 188 120
Aschauer et al. DFT 0 K [17] 225 181 120

This work exp 121 ◦C 227 135 105
This work DFT 121 ◦C 225 165 103

FM This work DFT 0 K 262 169 111
He et al. DFT 0 K [16] 278 179 110
Aschauer et al. DFT 0 K [17] 252 161 110
Hao et al. DFT 0 K [19] 259 162 111

(in absolute value) of 2.4%. For the other C′
i js, the agreement

is good overall, with a maximum discrepancy (in absolute
value) of 23% for C12 and 13% for C44. More importantly,
the temperature evolution is well described, particularly the
changes when going from the AF to the FM phase. It should
be noted that explicitly including atomic vibrations in the tem-
perature evolution is important for a quantitative description.
In particular, and as shown in Appendix D, only including
thermal expansion as a mechanism for the temperature evo-
lution results in an overestimation of the C11 in the FM phase
and the C44 in the AF phase.

VIII. CONCLUSIONS

We measured the phonon dispersion relationship of epi-
taxial FeRh/MgO using Brillouin light scattering at variable
temperature in both the uniform ferro- and antiferromagnetic
phases of this material. Modeling the obtained dispersion by
a “layer-on-substrate” approach, using the known parameters
of MgO, and the independently measured C11 constant, we
obtained the other two constants; C12(T) and C44(T). As is very
often the case, C11 is substantially larger than the other two.
Unlike the latter two, C11 is larger in the FM phase than in the
AF phase. A temperature-dependent first-principles modeling
of the elastic constants renders the experimental values very
closely. This work represents a substantial step towards the
accurate modeling of the magnon-phonon interaction, thanks
to a proper description of the elastic system in both phases,
and at varying temperature. In this respect, it should also pro-
vide a new tool to determine the role of strain in the intriguing
first-order AF-FM transition of FeRh.

ACKNOWLEDGMENTS

This work has been partly supported by the French Agence
Nationale de la Recherche (ANR ACAF 20-CE30-0027).
Access to the CEITEC Nano Research Infrastructure was
supported by the Ministry of Education, Youth and Sports
(MEYS) of the Czech Republic under the project Czech-
NanoLab (LM2023051). A.C. and M.J.V. acknowledge the
Fonds de la Recherche Scientifique (FRS-FNRS Belgium)

for PdR Grant No. T.0103.19 - ALPS, and ARC project
DREAMS (G.A. 21/25-11) funded by Fédération Wallonie
Bruxelles and ULiege. Simulation time was awarded by
the Belgian share of EuroHPC in LUMI hosted by CSC
in Finland, by the CECI (FRS-FNRS Belgium Grant No.
2.5020.11), as well as the Zenobe Tier-1 of the Fédération
Wallonie-Bruxelles (Walloon Region Grant Agreement No.
1117545). We acknowledge the technical assistance of Math-
ieu Bernard from Institut des Nanosciences de Paris.

APPENDIX A: DETAILS ON THE HEATING SYSTEM
INTEGRATED IN THE BLS SETUP

To study the sample in both AF and FM phases, an in situ
heating system was integrated into the BLS bench. This sys-
tem is placed in the air gap of an electromagnet consisting of a
cylindrical oven with an internal diameter of 1 Cm, having an
electrical resistance of 380 
 powered by a dc current source
to ensure the heating. The sample is held on a metal rod with
a thermal paste, inserted into the oven near a thermocouple
probe to get the heating temperature, which is adjusted from
ambient to 150 ◦C corresponding to a maximum current of
260 mA. For each temperature, the heating process, thermal
equilibrium, and spectrum acquisition take around 3 h, corre-
sponding on average to 1 count/min for the Rayleigh peak.

APPENDIX B: PICOSECOND ACOUSTICS

The picosecond acoustics pump-probe setup is described
in Ref. [28]. The Sagnac interferometer measures Im(�r/r),
where r is the amplitude reflection coefficient of the light
electric field. One can show that this quantity gives the mod-
ification of the phase of the electric field of the light induced
by the vertical displacement of the sample surface [42]. More
specifically to these measurements, the laser repetition rate
was 80 MHz, with a modulation of the pump at 1 MHz. Its
wavelength was 773 nm, and the beam diameter was of the
order of ≈15 µm. The power of the pump beam was around
P = 32 mW, and that of the probe was around 4 mW. The de-
lay line was scanned mechanically at 40 nm/ps. To determine
precisely the arrival time of the echoes, the thermal back-
ground is removed, and the peaks are fitted by a Lorentzian
[inset of Fig. 4(a)].

APPENDIX C: DETAILS ON THE MODELING OF THE
ACOUSTIC DISPERSION

In this Appendix, we give the cumbersome details on how
the determinant of Eq. (1) is obtained. It is then used to
determine the elastic constants of FeRh from the dispersion
relation measured by BLS.

Waves and tensors are all given in the 〈100〉 reference
frame of the cubic MgO substrate. For MgO, we have

[C0] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0,11 C0,12 C0,12 0 0 0
C0,12 C0,11 C0,12 0 0 0
C0,12 C0,12 C0,11 0 0 0

0 0 0 C0,44 0 0
0 0 0 0 C0,44 0
0 0 0 0 0 C0,44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The elastic coefficient tensor of cubic FeRh has an identical
symmetry, but needs to be rotated π/4 to render the epitaxial
match condition of the layer on its substrate:

[C∗] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C∗
11 C∗

12 C∗
13 0 0 0

C∗
12 C∗

11 C∗
12 0 0 0

C∗
13 C∗

12 C∗
33 0 0 0

0 0 0 C∗
44 0 0

0 0 0 0 C∗
44 0

0 0 0 0 0 C∗
66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

C∗
11 = 1

2 (C11 + C12) + C44,

C∗
12 = 1

2 (C11 + C12) − C44,

C∗
13 = C12,

C∗
33 = C11,

C∗
44 = C44,

C∗
66 = 1

2 (C11 − C12).

Following Farnell et al. [29], the procedure to obtain
the dispersion relationship of the FeRh/MgO system is the

following: (i) fix a wave vector k, (ii) calculate the implicit
relationship relating the Rayleigh wave velocity V to the elas-
tic constants of each material, and (iii) find the solution V (k)
satisfying the boundary conditions at the film/substrate and
air/film interfaces.

With z the normal to the film and x||[100], the partial waves
propagating in MgO and FeRh along x are, respectively, of the
form

u0(x, z, t ) =
∑
i=1,2

⎛
⎜⎝

Ux,0i

0
Uz,0i

⎞
⎟⎠e−q0,ikze j(ωt−kx), (C1)

u(x, z, t ) =
∑

i=1−4

⎛
⎜⎝

Ux,i

0
Uz,i

⎞
⎟⎠e−qikze j(ωt−kx). (C2)

The dimensionless coefficients q0,i, qi convey the pen-
etration profile of the displacements u, u0. Injecting these
wave-forms into the elastic equation of motion leads to the
two quadratic equations (C3) and (C4). We label qi,0 (i = 1, 2)
the two roots of Eq. (C3) exhibiting a positive real part, and qi

(i = 1–4) the four roots of Eq. (C4). ρ0 and ρ are the volume
densities of MgO and FeRh, respectively,

q4
0 +

(
−C2

0,44 − C2
0,11 + (C0,12 + C0,44)2 + ρ0V 2(C0,11 + C0,44)

C0,11C0,44

)
q2

0 + (ρ0V 2 − C0,11)(ρ0V 2 − C0,44)

C0,11C0,44
= 0, (C3)

q4 +
(−C∗2

44 − C∗
11C

∗
33 + (C∗

13 + C∗
44)2 + ρV 2(C∗

33 + C∗
44)

C∗
33C

∗
44

)
q2 + (ρV 2 − C∗

11)(ρV 2 − C∗
44)

C∗
33C

∗
44

= 0. (C4)

The ratios of the amplitudes of the out-of-plane and in-
plane displacements for each solution in MgO and FeRh are
labeled r0,i and ri. They are given by Eqs. (C5) and (C6), in
which we recall that the q0,i, qi depend on V ,

r0,i(V, k) = Uz,0i

Ux,0i
= C11,0 − q2

0,iC44,0 − ρ0V 2

jq0,i(C12,0 + C44,0)
, (C5)

ri(V, k) = Uz,i

Ux,i
= C∗

11 − q2
i C∗

44 − ρV 2

jqi(C∗
13 + C∗

44)
. (C6)

Finally, the conditions of continuous displacements and
tangential and normal stresses across the interface, and zero
stress at the surface, lead to a system of six equations with
six unknown amplitudes (Ux,01,Ux,02,Ux,1,Ux,2,Ux,3,Ux,4).
To find the velocity V corresponding to the chosen k, one must
thus find the roots Vi of the 6 × 6 determinant D (V ) given
in the main text, Eq. (1). The velocity intervenes through the
dependency q0,i(V, k), qi(V, k) and r0,i(V, k), ri(V, k) in the
coefficients a0,i, ai and b0,i, bi:

a0,i(V, k) = C44,0

C44
(q0,i + jr0,i ), (C7)

ai(V, k) = qi + jri, (C8)

b0,i(V, k) = jC12,0 + C11,0q0,ir0,i, (C9)

bi(V, k) = jC∗
13 + C∗

33qiri. (C10)

The numerical values for C0,i j (T ) and ρ0(T ) of MgO were
taken from Sumino et al. [31]. The volume density of FeRh
was taken phase-dependent with ρFM = ρAF/1.007 = 9820
kg m−3, where ρAF = 9888.49 kg m−3 was computed from
in-plane and out-of-plane lattice parameters a||,AF = 2.987 Å
and c⊥,AF = 2.988 Å measured by x-ray diffraction at room
temperature [9,24].

APPENDIX D: DETAILS ON THE FIRST-PRINCIPLES
ANHARMONIC MODELING

1. First-principles forces and machine-learning
interatomic potential

As a reference potential for the MLIP, we performed DFT
calculations with the ABINIT suite [43,44] using the PBE [45]
parametrization of the exchange and correlation functional in
the PAW formalism [46,47]. To ensure the convergence of
the calculations, the kinetic energy cutoff was set to 20 Ha,
while the Brillouin zone integration was discretized on a
21 × 21 × 21 k-point grid. The ground-state lattice constants
obtained with these parameters are shown in Table II. They
are in agreement with previous theoretical results [17,37] and
very close to room-temperature experimental values [24].

The MLIP were constructed using the moment tensor
potential [41,48]. For both phases, we set the level of the
MLIP to 22, and a cutoff of 5.6 Å is used, in order to
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TABLE II. Comparison of structural properties at 0 K computed
with DFT and the MLIP using finite deformation and fitted using the
elastic package [52].

a (Å) C11 (GPa) C12 (GPa) C44 (GPa)

DFT AF 3.004 231 188 121
MLIP AF 3.004 239 184 129
DFT FM 3.019 267 169 114
MLIP FM 3.020 262 169 111

ensure an accurate description of important interactions for
the B2 structure [49]. In the AF phase, to account for the
spin-dependent interactions between atoms, the spin-up and
-down Fe atoms were considered as distinct elements in the
descriptor. The DFT data set was constructed self-consistently
following the MLACS algorithm [50], in which a molecular-
dynamics trajectory is driven by a MLIP which is trained
regularly on configurations extracted from this dynamics. It
should be noted that the configurations are chosen randomly
and not based on an extrapolation criterion [51] to improve on
the measure defined in [50]. After each new addition to the
database, the thermostat and barostat of the MD run were set
to randomly generated temperature and pressure in the range
20–1200 K and −2 to 2 GPa, to ensure a stable MLIP in the
range of thermodynamic conditions considered in this work.
To improve the description of elastic properties, some strained
configurations were also included in the data set. Once enough
data are available, the potential is validated by splitting the
data set into testing and training sets, and the final MLIP were
fit using the energy, forces, and stress.

The resulting MLIP provides an accurate representation of
the potential energy surface provided by the DFT, as shown in
the good agreement for structural properties in Table II, and
the energy, forces, and stress correlation shown in Fig. 6.

2. Molecular dynamics

With the MLIP, we compute the effective anharmonic
Hamiltonian from 50 to 450 K in steps of 50 K. For each
temperature, we run two 100 ps MD simulations on 8 ×
8 × 8 supercells, with a time step of 1 fs using the LAMMPS

package [53]. The first MD run is performed in the NPT
(isothermal-isobaric) ensemble, and is used to compute the
average equilibrium volume, while the second one employs
this equilibrium volume in the NV T (canonical) ensemble.
Postprocessing is done using 900 uncorrelated configurations,
extracted from the MD trajectory after 25 ps of equilibration.

3. Temperature-dependent elastic constants

To describe the influence of the temperature on the elastic
constants, a common approximation is to neglect the explicit
effects of atomic vibrations and consider that the Ci j evolve
only through the thermal expansion as

Cαβγ δ (
, T ) = Cαβγ δ (
(T ), 0), (D1)

where 
(T ) is the volume. While this method often brings
a good description of the temperature evolution of the elastic

(a)

(b)

(c)

(d)

(e)

(f )

FIG. 6. Correlation plot between the MLIP and the DFT data
sets. Plots (a), (b), and (c) are for the AF phase, and (d), (e), and
(f) are for the FM phase.

constants, it is important to account for the explicit effects of
the temperature to be quantitative.

To go beyond this approximation, we can use the fact that
elastic constants are related to long-wavelength phonons and
can be extracted using the slope of the acoustic dispersion
close to the � point. Then, introducing the temperature evo-
lution of the phonons to extract the slope allows us to include
the effects of temperature on the elastic properties. The slope

FIG. 7. Theoretical prediction of C′
i js of FeRh in the FM and

AF phases. Markers are the direct prediction of the elastic constants
using the TDEP method, and full lines are a third-order polynomial
fit. Dashed lines present results when only considering thermal ex-
pansion in the temperature evolution of the elastic constants.
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of the acoustic dispersion can be directly extracted from the
interatomic force constants � as [54,55]

Cαβγ δ (
, T ) = − 1

2


∑
i j

�
αβ
i j (
, T )dγ

i jd
δ
i j, (D2)

where dγ
i j is the distance between the unit cells of atoms i and

j along the Cartesian direction γ .
To introduce finite-temperature renormalization of the in-

teratomic force constant, and consequently of the Cαβγ δ

tensor, we use the temperature-dependent effective potential
(TDEP) method. The method works by performing a least-
squares fit of the �(
, T ) tensor using a set of forces and
displacements extracted from an NV T molecular dynamics
run [38,39]. We used the implementation provided by the
TDEP package [56].

We compare the temperature dependence of both ap-
proaches in Fig. 7. While most of the Ci j changed very little
when introducing atomic vibrations in the description, the FM
C11 and the AF C44 are significantly reduced.
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