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Vison condensation and spinon confinement in a kagome-lattice Z2 spin liquid:
A numerical study of a quantum dimer model
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Quantum spin liquids are exotic many-body states featured with long-range entanglement and fractional anyon
quasiparticles. Quantum phase transitions of spin liquids are particularly interesting problems related with novel
phenomena of anyon condensation and anyon confinement. Here we study a quantum dimer model, which
implements a transition between a Z2 spin liquid (Z2SL) and a valence bond solid (VBS) on the kagome lattice.
The transition is driven by the condensation of vison excitation of the Z2 spin liquid, which impacts on other
anyon excitations especially leading to the confinement of spinon excitations. By numerical exact diagonalization
of the dimer model, we directly measure the vison condensation using vison string operators, and explicitly check
a confining potential acting on spinon excitations in the VBS state. It is observed that topological degeneracy of
the spin-liquid state is lifted concomitantly with the vison condensation. The dimer ordering pattern of the VBS
state is identified by investigating dimer structure factor. Furthermore, we find an interesting state that exhibits
features of spin liquid and VBS simultaneously. We discuss the origin of the mixed behaviors and possible
scenarios expected in thermodynamic limit. This work complements the previous analytical studies on the dimer
model [Phys. Rev. B 87, 104408 (2013) and Phys. Rev. B 92, 205131 (2015)] by providing numerical evidences
on the vison condensation and the spinon confinement in the Z2SL-to-VBS transition.

DOI: 10.1103/PhysRevB.110.014426

I. INTRODUCTION

Quantum spin liquids are highly entangled quantum states
of localized spins featured with fractional anyonic quasi-
particles [1–14]. Depending on the entanglement structure,
quantum spin liquids support different types of anyon quasi-
particles. Z2 spin liquids, which are one of the most
extensively studied states in frustrated magnetism, realize
the Z2 lattice gauge theory with four different anyons: triv-
ial boson (1), bosonic spinon (e), bosonic vison (m), and
fermionic spinon (ψ = e × m) [5,6,15–62]. Although e anyon
and m anyon are self-bosons, they can sense each other via
the Aharonov-Bohm effect (or nontrivial mutual statistics).
Namely, they see each other as a π flux when e anyon moves
around m anyon and vice versa [18]. The mutual statistics
renders the bound state of e anyon and m anyon (ψ = e × m)
to be a self-fermion. Such nontrivial anyons are created in
pairs from the vacuum by physical processes as indicated
by the fusion rules, e × e = m × m = ψ × ψ = 1. All these
anyon properties of the Z2 spin liquid are collectively called
Z2 topological order [2,5,6]. Resonating valence bond (RVB)
state on the kagome lattice is a good example of the Z2 spin
liquid [17,30,40]. Specifically, quantum superposition of all
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possible dimer states (nearest-neighbor spin-singlets) on the
kagome lattice implements the Z2 topological order [22]. Re-
cently, such Z2 spin liquids have been experimentally realized
in quantum simulators of superconducting qubits and Rydberg
atom arrays [63–68].

Anyon quasiparticles not only define the underlying topo-
logical orders of quantum spin liquids, but also determine
possible continuous transitions to other phases. To be specific,
condensing vison excitations in the Z2 spin liquid (Z2SL)
results in a transition to a valence bond solid (VBS) state
[36,38,58–61].⎧⎨

⎩
Z2SL

1, e, m, ψ

⎫⎬
⎭ 〈m〉�=0−−−→

⎧⎨
⎩
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1

⎫⎬
⎭:

Spinons (e and ψ )
confined and
symmetries broken

In the Z2SL-to-VBS transition, spinon excitations are con-
fined due to their nontrivial braiding with the condensed
anyon, the vison. In fact, this kind of anyon condensation
transition is not limited to symmetry-breaking transitions to
long-range orders, but can be further generalized to cover
topological transitions between distinct quantum spin liquids
[69–71]. The Z2SL-to-VBS transition provides not only a
simplest setup of anyon condensation transition but also a
condensed matter analog of the quark confinement in high-
energy physics [72,73].

In this paper, we study the Z2SL-to-VBS transition fo-
cusing on numerical detection of vison condensation and
spinon confinement. As a concrete model for the transi-
tion, we consider the kagome-lattice quantum dimer model
(QDM) studied in Refs. [22,37,38]. Interestingly, the model
has three equivalent descriptions: (i) quantum dimer model

2469-9950/2024/110(1)/014426(12) 014426-1 Published by the American Physical Society

https://orcid.org/0000-0003-0910-5522
https://ror.org/041hz9568
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.014426&domain=pdf&date_stamp=2024-07-16
https://doi.org/10.1103/PhysRevB.87.104408
https://doi.org/10.1103/PhysRevB.92.205131
https://doi.org/10.1103/PhysRevB.110.014426
https://creativecommons.org/licenses/by/4.0/


KYUSUNG HWANG PHYSICAL REVIEW B 110, 014426 (2024)

TABLE I. Dimer motions and interactions in the quantum dimer model [Eq. (1)]. The first row illustrates the dimer motion graph for each
dimer covering. By the action of a Wp operator, dimers (red) move by one lattice spacing along the closed loop (light blue). The second row
indicates the dimer interaction energy (ED) for each dimer covering. Other cases related by symmetries are dropped for simplicity.

on the kagome lattice, (ii) Z2 gauge theory on a honeycomb
lattice, and (iii) transverse field Ising model on a triangular
lattice. Here we focus on the dimer model description. The
model is defined in the dimer Hilbert space with each dimer
state satisfying the so-called hardcore dimer constraint, i.e.,
every site of the lattice is covered by only a single dimer. The
Hamiltonian is given by

HQDM = −h
∑

p

Wp + K
∑

p

Vp, (1)

where the h term generates kinetic motions of dimers and
the K term represents interactions of dimers. Specifically, the
operator Wp moves dimers along closed loops around a local
hexagon plaquette p,

(2)

where |D〉 denotes a dimer covering on the 12-site David star
enclosing the hexagon p, and |D̄〉 means the conjugate dimer
covering that is obtained by shifting dimers of |D〉 along a
closed loop by one lattice spacing. Acting on each dimer
covering |D〉, the operator Vp assigns an interaction energy
ED,

(3)

The whole list of dimer coverings, dimer motion graphs, and
interaction energies is provided in Table I. The QDM with
no dimer interactions (K = 0) was initially introduced by
Misguich, Serban, and Pasquier as an exactly solved model
for a short-ranged RVB state [22]. Afterwards, Wan and Tch-
ernyshyov investigated the extended model in Eq. (1) as a
low-energy effective theory of the spin-1/2 kagome-lattice
Heisenberg antiferromagnet [37]. It was shown that the ef-
fective QDM well captures the low-energy spin-singlet dimer
fluctuations observed in the density matrix renormalization
group (DMRG) study by Yan, Huse, and White [27]. In a
previous paper, we also have studied the QDM and possible
VBS orders that may arise from the RVB state by using pro-
jective symmetry group (PSG) analyses on vison excitations
and Ginzburg-Landau theories [38]. Other forms of quantum
dimer models have been derived microscopically from the
spin-1/2 kagome-lattice Heisenberg model [41,43,44]. Such
models would be good choices if one wishes to more accu-
rately capture the low-energy sector of the spin model. Among

various QDMs, we consider the model in Eq. (1) due its
simplicity. In this setup, we can efficiently demonstrate the
anyon physics of vison condensation and spinon confinement.

Here we investigate the QDM in Eq. (1) by numerical exact
diagonalization (ED). Using the parametrization,

h = cos θ and K = sin θ, (4)

we find that the system has (i) the RVB state over a fairly
extended region containing θ = 0 and (ii) a 12-site pinwheel
VBS state around θ = π/2, separated by a continuous transi-
tion at θc � 0.06π (see Fig. 1). The RVB state and the VBS
state exhibit distinguished behaviors in our ED calculations on
finite-size clusters. We identify the nature of the RVB-to-VBS
transition by calculating topological degeneracy, dimer struc-
ture factor, vison condensation, and spinon confinement. We
measure the vison condensation and the spinon confinement
by employing two types of string operators that create a pair
of visons and a pair of spinons, respectively. For an intuitive
understanding of the underlying physics, the string operators
and the associated excitations are interpreted in dimer picture.

This study provides a complete understanding on the RVB-
to-VBS transition of the dimer model by demonstrating the
anyon physics of vison condensation and spinon confinement
that have been missing in previous studies. On the other hand,
we find that on negative θ the system simultaneously shows
behaviors of spin liquid and VBS. We discuss the origin of
the mixed behaviors and possible scenarios expected in ther-
modynamic limit.

The rest of this paper is structured in the following way. In
Sec. II, the quantum dimer model is constructed in a slightly
different fashion from previous studies but more efficiently.
We discuss expected phases in the dimer model. The RVB
spin liquid and anyon excitations are described along with
anyon string operators. Also, VBS orders proposed by the
previous Ginzburg-Landau theories are introduced together
with the expected dimer structure factor. In Sec. III, the results
of numerical exact diagonalization are presented, where we
confirm the vison condensation in the RVB-to-VBS transition
by using vison string operators and also identify the dimer
ordering pattern of the VBS state via the calculated dimer
structure factor. In Sec. IV, we discuss numerical evidences
on spinon confinement. In Sec. V, we discuss the negative-
θ region where the system shows behaviors of spin liquid
and VBS simultaneously. We point out the origin of the
mixed behaviors and suggest possible scenarios in thermody-
namic limit. Lastly, we summarize this study and conclude in
Sec. VI.
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FIG. 1. ED results of the dimer model on the 36-site cluster. (a) Energy spectrum as a function of the parameter θ . Different colors
distinguish the four distinct topological sectors. Brown, (L1,L2) = (−1, −1). Yellow, (L1,L2) = (1, 1), (−1, 1), (1, −1). The latter three
sectors have an identical energy spectrum. The two arrows mark the topological degeneracy lift where the threefold degenerate states (yellow)
move upward crossing the lowest vison excitation energy level (brown). (b) Second derivative of the ground-state energy −∂2Egs/∂θ2. The
peak indicates the phase boundary between the RVB state and the VBS state (θc � 0.06π ). (c) Expectation value of the Z2-flux operator 〈Wp〉.
(d) Expectation value of the vison string operator −〈Vλ〉. The inset depicts the vison string operator (Vλ) used in the calculations.

II. DIMER MODEL

We recast the quantum dimer model in terms of site vari-
ables on the kagome lattice. Specifically, a qubit is assigned
to each site of the kagome lattice. We note that each site
is shared by up-pointing and down-pointing triangles on the
kagome lattice. In other words, each site can be covered by
either a dimer in the up-pointing triangle or a dimer in the
down-pointing triangle. We represent the dimer covering of
each local site by the qubit states |X = ±1〉. For instance,
if the site is covered by a dimer in the “down” triangle, this
dimer covering is represented by the qubit state |X = +1〉.
If the site is covered by a dimer in the “up” triangle, this
dimer covering is represented by the qubit state |X = −1〉.
The dimer-qubit mapping is illustrated in the following figure:

(5)

By applying the mapping to hardcore dimer states, one can
find that each local triangle has only four distinct qubit states
as follows:

. (6)

It is important to note that the qubit states of up and down
triangles satisfy the condition,

Qi jk = XiXjXk =
{+1 (up triangle)
−1 (down triangle)

}
, (7)

where i, j, k denote the three sites of a given triangle. The
above condition defines the qubit Hilbert space, which cor-
responds to the dimer Hilbert space, and is called hardcore
dimer constraint in the QDM and Gauss law constraint in
the Z2 gauge theory description [37,38]. Hence, we shall call

the Q operator “Z2-charge” operator. If the hardcore dimer
constraint in Eq. (7) is violated at some local triangles, some
sites of the triangles become doubly occupied or unoccupied
by dimers, resulting in spinon excitations as will be discussed
later.

In the qubit representation [74], the QDM takes the Hamil-
tonian in the following form:

H = −h
∑

p

Wp + K
∑

〈〈〈i j〉〉〉
XiXj . (8)

The h term is now represented by the hexagon plaquette oper-
ator,

Wp =
∏
i∈p

Zi, (9)

that is, the product of Pauli-Z operators belonging to the
hexagon plaquette p. Following the Z2 gauge theory descrip-
tion [37,38], we shall often call the W operator “Z2-flux”
operator. The K term is simply given by third-nearest-
neighbor interactions of Pauli-X operators. See Fig. 2 for a
visualization of the model. Notice that Z2-charge operators

FIG. 2. Qubit representation of the dimer model. The two terms
of Eq. (8) and the Gauss law constraint in Eq. (7) are visualized in
the figure.
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FIG. 3. Illustrations of Z2-flux operator and anyon string operators. (a) Z2-flux operator (Wp) acting on dimer/qubit states. The operator
switches the qubit state of the hexagon plaquette p (Xi = +1 � Xi = −1 for i ∈ p), reproducing the dimer resonance motions of the original
QDM. (b) Vison string operator (Vλ). The string operator measures the dimer parity at up triangles (gray) touched by the string λ. The string
operator changes the quantum number of Wp and the energy only at the ends of the string. (c) Spinon string operator (Sl ). The string operator
moves dimers along the triangles (gray) touched by the string l , resulting in the violation of the hardcore dimer constraint in the two triangles
located at the ends of the string.

commute with Z2-flux operators and the Hamiltonian,

[Qi jk,Wp] = [Qi jk, H] = 0. (10)

In Fig. 3(a), we illustrate effects of a Z2-flux operator on
dimer/qubit states. The operator Wp switches the qubit state of
the hexagon plaquette p (Xi = +1 � Xi = −1 for i ∈ p), re-
producing the dimer resonance motions of the original QDM.
One can also check the interaction energy of the K term from
the examples given in the figure.

Dimer occupation can be quantified by using qubit vari-
ables. We denote the dimer occupation at a link i j by (i)
di j = 0 for the absence of a dimer and (ii) di j = 1 for the
presence of a dimer. We find that the dimer occupation can
be represented by qubit variables in the following fashion:

di j = 1
4 (1 + XiXj − XiXk − XjXk ). (11)

Note that k is the nearest-neighbor site of i, j (i.e., i, j, k form
a local triangle). One may check this relationship using the
examples in Eq. (6).

On the other hand, qubit operators (X and Z) can be also
understood in the dimer basis. By using Eq. (11), we obtain
the relationship

XkQi jk = XiXj = (−1)dik+d jk , (12)

which reveals that Xk operator measures the dimer parity over
the two links, ik and jk, in a local triangle i jk. By contrast,
Z operator switches the qubit state between |X = +1〉 and
|X = −1〉, which is equivalent to moving a dimer from down
triangle to up triangle or vice versa [Fig. 3(a)].

The dimer model is exactly solved in two special cases:
(i) when K = 0 and (ii) when h = 0. In the former case
(K = 0), a resonating valence bond spin-liquid state appears
as the exact ground state of the system. In the latter case
(h = 0), different types of valence bond solid states emerge
depending on the sign of K .

A. RVB spin liquid and anyon excitations

When K = 0, the ground-state wave function is given by

|RVB〉 = N
∏

p

1 + Wp

2
|�〉, (13)

where |�〉 is an arbitrary state satisfying Eq. (7) and N is a
constant for normalization. In the dimer language, the state is
an equal-weight superposition of all possible hardcore dimer
states, i.e., a short-ranged resonating valence bond spin liquid
[22]. One can check that this state is equivalent to the Z2

toric code state on the dual honeycomb lattice [45]. We also
remark that robustness of the kagome-lattice RVB state under
perturbations generating spinon/vison excitations has been
investigated using the numerical methods of tensor network
states [45].

The spin-liquid state is characterized by the quantum num-
ber Wp = +1 at every plaquette. Visons are elementary ex-
citations of the state carrying the quantum number Wp = −1
at some local plaquettes, and they are created in pairs by the
string operator

Vλ =
∏
i∈λ

Xi = (−1)Dλ . (14)

Here λ is an open string passing through kagome sites and
ending at hexagon plaquettes as shown in Fig. 3(b). The string
operator measures the dimer parity at up triangles touched by
the string λ,

Dλ =
up triangles∑
i∈λ or j∈λ

di j . (15)

The string operator anticommutes with the Z2-flux operators
at the ends of the string,

VλWp =
{−WpVλ (p ∈ ∂λ)

WpVλ (otherwise)

}
. (16)

The string operator changes the quantum number of Wp and
the energy only at the ends of the string. Each end point carries
the excitation energy �E = 2h and the Z2 flux Wp = −1.
Such point-like particles appearing at the ends of string op-
erators are the vison excitations (m anyons). Although the
visons are immobile (completely static) at K = 0, in general
they become mobile by nonzero K .

Spinons are another elementary excitations in the RVB spin
liquid, excited by violating the hardcore dimer constraint or
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FIG. 4. Three types of VBS orders and the dimer structure factors. (a) 12-site VBS state. (b) 36-site VBS state. (c) 6-site VBS state. In each
case, characteristic dimer structures are highlighted by gray shade. The bottom plots display the dimer structure factors obtained by Eq. (23)
only with the dimer-dimer correlator 〈di jdkl〉 (we drop the other term since 〈di j〉〈dkl〉 = 〈di jdkl〉 in pure dimer states). The hexagons denote
repeated Brillouin zones in momentum space. The central one corresponds to the first Brillouin zone.

the Gauss law constraint in Eq. (7). They are created in pairs
by the string operator

Sl =
∏
i∈l

Zi, (17)

where l is an open string lying on links of the kagome lattice
as shown in Fig. 3(c). The string operator moves dimers along
the triangles touched by the string, resulting in the violation
of the hardcore dimer constraint in the two triangles located at
the ends of the string. The string operator anticommutes with
the Z2-charge operators at the ends of the string,

SlQi jk =
{−Qi jkSl (i jk : at the ends of l )

Qi jkSl (otherwise)

}
. (18)

The Z2-charge excitations created at the ends of the string
correspond to spinons (e anyons).

Notice that the vison operator (Vλ) and the spinon operator
(Sl ) anticommute if there is an intersection between the two
string operators. This implies that there is mutual statistics
between vison and spinon; specifically, the wave function
undergoes an overall sign change (|	〉 → eiπ |	〉) if a spinon
moves around a vison or vice versa.

B. VBS orders

When h = 0, the Hamiltonian is diagonal in the basis of X
operators or in the dimer basis. By examining the energetics
of dimer states, the ground state can be identified for the two
cases, K > 0 and K < 0 [38]. When K > 0, the 12-site VBS
state with the characteristic pinwheel dimer structure appears
as the ground state with the energy Egs = −N |K| (N is the
number of kagome sites); see Fig. 4(a). In the opposite case

of K < 0, the ground-state manifold has the energy Egs =
−N |K|/3 with substantial degeneracy consisting of various
states such as 36-site VBS and 6-site VBS. The 36-site VBS
is composed of the characteristic pinwheel and hexagon dimer
structures [Fig. 4(b)]. The 6-site VBS is featured with the
arrangement of parallel dimers and zigzag dimers [Fig. 4(c)].
For the three types of VBS orders, the predicted dimer struc-
ture factors are presented together in Fig. 4.

The three types of VBS orders have been studied by the
author in a previous paper using Ginzburg-Landau theories
[38]. In this paper, we investigate the RVB spin liquid, the
VBS orders, and their transitions by numerical exact diago-
nalization.

III. EXACT DIAGONALIZATION

The dimer model is solved by exact diagonalization (ED)
on finite-size clusters. We consider a 36-site cluster and three
different 72-site clusters with periodic boundary conditions
shown in Fig. 5. For efficient ED calculations, we reduce
the size of the Hilbert space by utilizing conserved quantities
of the system. With periodic boundary conditions, we may
define noncontractible loop operators that commute with the
Hamiltonian. As illustrated in Fig. 6, for the 36-site cluster
there are three different noncontractible loop operators,

L1 =
∏
i∈
1

Xi, L2 =
∏
i∈
2

Xi, L3 =
∏
i∈
3

Xi. (19)

In fact, among L1,2,3 only two are independent due to the
identity,

L1L2L3 =
∏

i jk∈C
Qi jk, (20)
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36 72A

72B
72C

FIG. 5. Clusters for the exact diagonalization.

that is, the product of the loop operators is identical to the
product of Q operators inside the closed path (C) formed by
the three noncontractible loops (
1,2,3). Since the loop oper-
ators commute with the Hamiltonian ([Ln,Wp]=[Ln, H]=0),
the Hilbert space is partitionized into four distinct topologi-
cal sectors labeled by the eigenvalues of the loop operators,
L1 = ±1 and L2 = ±1. In the case of the 36-site cluster, each
topological sector has the dimension

236

223×22
= 211, (21)

where 223 comes from the hardcore dimer constraints [Eq. (7)]
with periodic boundary conditions and 22 counts the four
topological sectors. For 72-site clusters, each topological sec-
tor has the dimension

272

247×22
= 223. (22)

FIG. 6. Noncontractable loop operators (L1,2,3) of the 36-site
cluster.

We run our ED calculations in each of the four topological
sectors for a given cluster.

Figure 1 displays the ED results on the 36-site cluster.
We identify two phases, the RVB spin liquid and the 12-site
VBS, separated by a continuous transition at θc � 0.06π as
indicated by the second derivative of the ground-state energy,
−∂2Egs/∂θ2 [Fig. 1(b)]. It is observed that the Z2-flux expec-
tation value 〈Wp〉 remains pretty large in the RVB spin liquid
whereas it is substantially suppressed in the 12-site VBS
[Fig. 1(c)]. The transition is also verified through the energy
spectrum. Around the point θ = 0, the system shows four-
fold ground-state degeneracy below the two-vison excitation
gap, �E = 4h, which is exactly the topological degeneracy
expected for the Z2 spin liquid. Across the transition point
θc � 0.06π , the ground-state degeneracy is fully lifted and the
lowest energy levels of vison excitations come down close to
the ground state; see the right arrow in Fig. 1(a).

The nature of the two phases and their transition are further
clarified via the investigation of vison condensation and dimer
structure factor.

A. Vison condensation

We measure vison condensation by calculating the expecta-
tion value of vison string operator 〈Vλ〉 as shown in Fig. 1(d).
The RVB spin liquid phase has relatively small values of 〈Vλ〉
whereas the VBS phase is characterized by substantially large
values (〈Vλ〉 ≈ −1), which confirms that the VBS phase is
indeed a vison-condensed state.

B. Dimer structure factor

Structure factors are useful quantities in identifying
symmetry-broken long-range orders and also quantum spin
liquids [47–55]. We determine the dimer ordering pattern of
the VBS phase by investigating the dimer structure factor
(DSF),

D(k) = 1

Nd

∑
i j,kl

eik·(ri j−rkl )(〈di jdkl〉 − 〈di j〉〈dkl〉), (23)

where i j and kl denote nearest-neighbor bonds (dimers),
ri j and rkl are their position vectors, and k is momentum (Nd

is the number of dimers). The calculated dimer structure factor
is displayed in Fig. 7. The RVB spin liquid exhibits broad
features in the DSF due to the absence of dimer ordering
[Fig. 7(b)]. As the system enters the VBS phase across the
transition point (θc � 0.06π ), sharp peak structures are devel-
oped in the DSF [Figs. 7(c) and 7(d)]. By comparing Fig. 7(d)
with Fig. 4, we identify that the 12-site VBS emerges via the
vison condensation transition [75].

IV. SPINON CONFINEMENT

In general, anyon condensation gives rise to novel phenom-
ena on other anyons called confinement effects. If an anyon
has nontrivial braiding with the condensed anyon, then the
(uncondensed) anyon becomes confined, i.e., the anyon can-
not be isolated/observed as a single particle in the low-energy
physics of the condensed phase [69–71]. In our system, the
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FIG. 7. Dimer structure factor D(k) obtained with the 36-site cluster at (a) θ = −0.4π , (b) θ = 0, (c) θ = 0.06π , and (d) θ = 0.3π . In
each plot, D(k) is presented as a color map on momentum space. The white hexagons denote repeated Brillouin zones with the central one
being the first Brillouin zone. See Fig. 8 for the strength of D(k) at several peak positions.

vison condensation generates such confinement effects on the
two spinons (e and ψ anyons).

The spinon confinement can be understood in several
ways. In the perspective of anyon theory, bosonic spinon and
fermionic spinon become identical particles (e = e × m = ψ)
under the vison condensation (〈m〉 �= 0) since we can freely
take visons out of the vacuum. However, e and ψ anyons
have different topological spins due to the nontrivial braiding
between e and m anyons; the e anyon is a self-boson but the
ψ anyon is a self-fermion. For the condensed phase to have
a self-consistent anyon theory, e and ψ anyons should not
appear as deconfined anyons in the low-energy physics of the
condensed phase, i.e., e and ψ anyons are confined by the
condensation of the m anyon.

At the level of a microscopic model, the confinement ef-
fects can be understood by using vison and spinon string
operators. Nontrivial braiding between vison and spinon is
encoded in the string operators, Vλ and Sl . When there is
a crossing point between the two string operators, the two
operators have the anticommutation relation, VλSl = −SlVλ

(since the two operators are defined by the conjugate vari-
ables, X and Z), which implies the existence of nontrivial
braiding between vison and spinon. Dimer interpretations of
the string operators offer an intuitive picture about spinon

FIG. 8. Strength of the dimer structure factor D(k) at k points
where peak structures appear. The inset depicts the peak positions
over the repeated Brillouin zones. Red (blue) indicates the largest
peak of DSF appearing on positive (negative) θ .

confinement. First, we note that vison condensation sets a spe-
cific dimer pattern in the system. The spinon string operator
creates a pair of spinons by moving dimers between adjacent
up and down triangles along the string, obviously leading to
an energy cost proportional to the length of the string [Eq. (17)
and Fig. 3(c)]. Therefore, spinons are confined due to the
linearly increasing energy cost (confining potential).

We confirm the spinon confinement in our numerical calcu-
lations. Figure 9 displays the energy cost of creating a spinon
pair as a function of distance. In these calculations, a pair of
spinons are inserted to the system by switching two Z2-charge
eigenvalues in the original Gauss law constraint [Eq. (7)],

Qi jk = +1 � Qi jk = −1 at r1 and r2. (24)

FIG. 9. Interaction energy of the inserted two spinons. [(a)–(c)]
The minimum excitation energy, V (r2 − r1), of the two-spinon state
as a function of the separation length, r2 − r1. (d) Energy profile
of the lowest two-spinon state for various separations (r2 − r1 =
1, 2, 3, 4). For comparison, the ground-state energy (with no spinon)
is plotted together (black). The inset depicts the locations of the
spinon pair. One spinon is fixed at r1 = 0 and the other spinon
is moved over different locations (r2 = 1, 2, 3, 4). The results are
obtained with the 36-site cluster.
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FIG. 10. ED results on the 72-site clusters. (Left) 72A cluster. (Middle) 72B cluster. (Right) 72C cluster. Each column shows the lowest-
energy levels (Egs) of the four topological sectors (L1 = ±1,L2 = ±1), the ground-state energy second derivative (−∂2Egs/∂θ2), the Z2-flux
expectation value (〈Wp〉), and the vison condensation (−〈Vλ〉) calculated with the vison string operator depicted in the inset. In the case of the
72C cluster, there is a level crossing transition at θ � −0.18π (marked by dashed line).

We fix a Z2 charge at r1 = 0 and change the location of
the other Z2 charge from r2 = 1 to r2 = 4 [see the inset of
Fig. 9(d)]. For each spinon-pair configuration, we obtain the
lowest-energy level, Egs(r2 − r1), as shown in Fig. 9(d). Then,
we calculate the spinon-pair excitation energy with respect to
the ground state with no spinon,

V (r2 − r1) = Egs(r2 − r1) − Egs (no spinon). (25)

In the RVB phase, the excitation energy is almost constant
regardless of the separation [Fig. 9(b)]. In stark contrast, in
the VBS phase, the excitation energy increases proportional
to the separation length [Fig. 9(c)]. As the system enters deep
inside of the VBS phase, the excitation energy more rapidly
increases upon separating two spinons further. This result
clearly demonstrates the phenomena of spinon confinement
in the VBS phase.

V. DISCUSSION

We identified the anyon physics of vison condensation and
spinon confinement occurring in the RVB-to-VBS transition
of the dimer model. Until this point, we have focused on
positive θ in the parameter space. We now turn our attention to
negative θ and discuss some unexpected behaviors observed
in this dimer model.

A. Mixed behaviors in negative θ

When the K term (dimer interaction) becomes dominating
over the h term (dimer motion), we generally expect a transi-
tion from the RVB state to a VBS state. This is what happens
on the positive side of θ as already discussed in previous
sections. However, the expectation seems betrayed on the
negative side of θ . In the parameter region of θ � −0.15π ,
features of RVB and VBS states are simultaneously observed
as we summarize below.
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FIG. 11. Dimer structure factor obtained with the 72A cluster at (a) θ = −0.45π , (b) θ = −0.35π , (c) θ = −0.25π , and (d) θ = −0.15π .
In each plot, D(k) is presented as a color map on momentum space. The white hexagons denote repeated Brillouin zones with the central one
being the first Brillouin zone.

(i) RVB features. We do not see any clear sign of transition
on negative θ in Fig. 1(b). Moreover, the Z2 flux is substan-
tially large over the entire region of negative θ as shown in
Fig. 1(c). Broad features are observed in the dimer structure
factor [Fig. 7(a)].

(ii) VBS features. Topological degeneracy of the RVB
state is lifted near θ � −0.15π ; marked by the left arrow in
Fig. 1(a). The vison condensation has non-negligible strengths
over the entire region of negative θ as shown in Fig. 1(d).
Also, peak structures are observed in the dimer structure factor
[Figs. 7(a) and 8].

In addition to the above features, the spinon excitation
energy becomes negative when θ � −0.15π [Figs. 9(a) and
9(d)], suggesting that the nature of the RVB state is changing
across θ � −0.15π .

B. Results on 72-site clusters

To better understand the mixed behaviors shown in the
36-site cluster, we perform ED calculations on larger clusters
of 72 sites. Overall, we find similar behaviors in the 72-site
clusters as summarized in Fig. 10. In the 72C cluster, a level
crossing transition occurs at θ � −0.18π (third column of
Fig. 10). We find that VBS features become slightly more
prominent than RVB features in negative θ of 72-site clusters
(Figs. 11 and 12). To be specific, suppressed Z2-flux val-
ues [Fig. 12(a)] and enhanced DSF peak strengths [Figs. 11
and 12(d)] are observed in 72-site clusters compared to the
36-site cluster. Nonetheless, the Z2-flux values are still non-
negligible (〈Wp〉 � 0.4) in negative θ and there is no clear
sign of transition in the 72A and 72B clusters. It is unclear
even on 72-site clusters what is the true nature of the state in
negative θ .

C. Three possibilities

The mixed behaviors in negative θ are attributed to the
dimer interactions, which allow extensive ground-state degen-
eracy when K < 0. As illustrated in Fig. 1(a), lots of states
come down to the ground state as we approach the θ = −0.5π

point (in sharp contrast to the energy spectrum at θ = 0.5π ).
Considering the extensive degeneracy at θ = −0.5π , we may
think of three possibilities about the phase appearing on neg-
ative θ in thermodynamic limit.

(i) VBS order. Out of the extensively degenerate ground-
state manifold at θ = −0.5π , a VBS state can be selected

by the so-called quantum order-by-disorder effect. Perturba-
tive quantum dimer resonance motions lift the degeneracy by
generating a kind of zero-point energy in the ground-state
manifold.

(ii) Spin liquid. Dimer resonance motions can mix the
degenerate dimer states, yielding some kind of RVB state.
But this state is expected to be somewhat different from the
RVB state near θ = 0 due to the difference in the participating
dimer states.

(iii) Mixture of VBS order and spin liquid. Based on our
numerical results, another plausible state is a spin liquid with
broken lattice symmetries. This state can be viewed as some
mixture of VBS and spin-liquid states, which may exhibit both
features of VBS and spin liquid as we have seen in our results.

The last possibility is particularly interesting since such a
spin-liquid state with partial symmetry breaking is quite rare
and usually not expected to occur in dimer models. Clarifying

FIG. 12. Comparison of all the ED results obtained with the
36, 72A, 72B, and 72C clusters. (a) The Z2-flux expectation value
(〈Wp〉). (b) The vison condensation (−〈Vλ〉). [(c),(d)] Strength of
the dimer structure factor D(k) at several peak positions. Identical
results are obtained for the 72A and 72B clusters, hence the 72A
cluster results are overlayed by the 72B cluster results in each plot.
In the panel (c), 72-site clusters show abrupt changes in D(k) around
θ = 0.46π , which are caused by ground-state degeneracies. The
dashed line marks the level crossing point (θ � −0.18π ) observed
in the 72C cluster.
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the true nature of the system requires additional large-scale
numerical simulations. We note that large-scale simulations
of quantum dimer models have been performed in several
studies by using quantum Monte Carlo (QMC) techniques
[42,44,58,62]. We hope to elucidate the mixed behaviors
shown in negative θ via QMC or DMRG simulations in future.

VI. CONCLUSIONS

In this paper, we studied a quantum dimer model that
implements a transition from a RVB-type Z2 spin liquid
to a valence bond solid on the kagome lattice. The RVB
state supports two types of anyon excitations, vison and
spinon, whereas the VBS state has a crystalline order of
dimers but no anyon excitation. By using numerical exact
diagonalization methods, we identified the RVB-to-VBS tran-
sition mechanism, which is represented by the two anyon

phenomena, vison condensation and spinon confinement. We
further clarified the dimer ordering pattern of the VBS state
by investigating dimer structure factor. On the other hand,
we found mixed behaviors of spin liquid and VBS states in
a certain parameter region of the dimer model, suggesting a
possibility of a new phase different from conventional phases
of dimer models. For the clarification of this matter, it is
necessary to perform large-scale numerical computations. We
leave this nontrivial problem for future study.
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