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Effect of collective spin excitations on electronic transport in topological spin textures
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We develop an efficient real-time simulation method for the spin-charge coupled system in the velocity gauge.
This method enables us to compute the real-time simulation for the two-dimensional system with a complex
spin texture. We focus on the effect of the collective excitation of the localized spins on the electronic transport
properties of the nontrivial topological state in real space. To investigate this effect, we calculate the linear optical
conductivity by calculating the real-time evolution of the Kondo lattice model on the triangular lattice, which
hosts an all-in/all-out (triple-Q) magnetic structure. In the linear conductivity spectra, we observe multiple peaks
below the band gap regime, attributed to the resonant contributions of collective modes similar to the skyrmionic
system, alongside broadband modifications resulting from off-resonant spin dynamics. This result shows that the
collective excitation, similar to the skyrmionic system, influences the optical response of the electron systems
based on symmetry analysis. We elucidate the interference between the contributions from the different spin
excitations to the optical conductivity in the multiple-spin texture, pointing out the mode-dependent electrical
activity. We show the complex interplay between the complex spin texture and the itinerant electrons in the
two-dimensional spin-charge coupled system.
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I. INTRODUCTION

Recent research intensively elucidated the effect of the
collective dynamics of a spontaneous order, such as mag-
netic order and excitonic order, on the optical responses of
electronic systems [1–7]. For instance, theoretical studies
simultaneously calculated the real-time evolution of the elec-
tron system and the order parameter [4–7]. More specifically,
the study of magnetic order [4] showed that the collective
excitation of the localized spins modulates the linear optical
conductivity and photocurrent response in an antiferromag-
netic chain. The results identified the features which are
absent within the independent particle approximation. It
is, however, not straightforward to apply the methodology
to more complex systems, such as two-dimensional systems
with a complex spin structure, due to their large computa-
tional cost. The realization of efficient real-time simulation
applicable to diverse cases is highly desirable since it is
anticipated that one can explore intriguing spin-charge cou-
pled dynamics, for example, by considering a magnetic order
whose real-space topological texture may significantly influ-
ence electronic properties [8–11].

The nontrivial topological state in real space appears
in noncoplanar magnetic structures such as frustrated mag-
nets and magnetic skyrmionic systems, where the complex
spin texture forms by spin-orbit coupling [12] and itinerant-

*Contact author: hattori-kohei053@g.ecc.u-tokyo.ac.jp
†Contact author: hikaru-watanabe@g.ecc.u-tokyo.ac.jp

electron-mediated interactions [13,14]. Through the exchange
interaction with localized spin systems with such nontrivial
spin textures, the electron system feels the fictitious magnetic
field and exhibits anomalous transverse transport. Theoreti-
cal studies [8,9,15–19] showed that the anomalous transverse
conduction occurs in the Kondo lattice model with nontrivial
spin structures. Importantly, such noncoplanar spin textures,
including the all-in/all-out (AIAO) structure (triple-Q struc-
ture) [20–22] and skyrmion crystal [13,14,23], allow for
collective modes richer than those in conventional ferro- and
antiferromagnets. Indeed, theoretical [24–26] and experimen-
tal studies [27–29] identified collective modes of the localized
spins in the skyrmionic system. These collective modes in-
clude breathing modes excited by out-of-plane magnetic fields
and clockwise and counterclockwise rotatory modes excited
by in-plane magnetic fields [24,25].

In this study, we elaborate on the effect of the collective ex-
citation of the AIAO spin texture on the anomalous transverse
transport of the electron system. We simulate the real-time
evolution of the Kondo lattice model on the triangular lattice
hosting an AIAO spin texture composed of four sites in the
unit cell. The dynamical property is clarified by computing
the real-time evolution of the electrons and localized spins si-
multaneously. The computational cost of the two-dimensional
spin-charge coupled system with the AIAO spin texture is
expensive because of the dimensionality and complex spin
structure. We resolve the difficulty by developing an efficient
real-time simulation based on the velocity-gauge formula-
tion and interpolation technique. The developed calculation
scheme allows us to demonstrate the intriguing interplay
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FIG. 1. (a) Kondo lattice model with AIAO order on a triangular
lattice with a four-sublattice unit cell. (b) Spin moments of each
sublattice. The spin texture is an AIAO state including a canted
component along the z axis.

between the complex spin texture and itinerant electrons in
a two-dimensional system.

The real-time simulation unambiguously shows that the
optical conductivity spectrum of the electron system exhibits
multiple peaks originating from rich collective dynamics of
localized spins. To classify which collective mode affects
linear optical conductivity, we analyze the spin excitations
using the symmetry-adapted bases. The symmetry analysis
indicates the similarity between the collective modes of the
AIAO spin system and those of the skyrmionic system. We
find that the rotatory modes of the localized spins affect the
optical responses of the electronic systems in two-dimensional
systems. Furthermore, the interference effect of the collective
modes, which is characteristic of a system hosting a complex
spin structure, results in an in-gap spectrum of the optical Hall
conductivity whose intensity significantly differs between the
modes. These findings may lead to an understanding of the
interplay between the complex spin texture and itinerant elec-
trons.

This paper is organized as follows. In Sec. II, we explain
the details of the model and the computational scheme for
the real-time evolution of the spin-charge coupled system.
Section III discusses the symmetry classification of the spin
excitations and its coupling to the external stimuli. Then, we
elucidate the physical responses and corroborate the effects of
the spin-charge coupled dynamics in Sec. IV. We draw our
conclusions in Sec. V.

II. METHOD

A. Model

We work with a AIAO state in the Kondo lattice model on
a triangular lattice (Fig. 1). The tight-binding Hamiltonian is
expressed as

Ĥ = −
∑

〈i j〉σσ ′
thĉ†

iσ ĉ jσ ′ − J
∑
iσσ ′

ĉ†
iσ Si · σσσ ′ ĉiσ ′

− iλ
∑

〈i j〉σσ ′
ĉ†

iσ ei j · σσσ ′ ĉ jσ ′ − Kz

∑
i

(
Sz

i

)2
. (1)

ĉ†
iσ (ĉiσ ) is the creation (annihilation) operator of the electron

on site i with spin index σ (σ =↑,↓). The first term of the
Hamiltonian represents the hopping of the electrons between
the nearest-neighbor sites 〈i j〉 with amplitude th. The second

term represents the exchange interaction J between the spin
moment σ of the itinerant electron and the localized spin mo-
ment S. The third term represents the antisymmetric spin-orbit
coupling λ (ASOC), which acts as an effective magnetic field
parallel to the vector ei j between the nearest-neighbor sites
〈i j〉. The ASOC breaks the inversion symmetry and thereby
allows the system to exhibit cross correlation between the spin
and charge degrees of freedom. The last term represents the
easy anisotropy of the localized spin system Kz.

In the following calculations we use the parameters
th = 1, J = 3.0, λ = 0.3, Kz=0.1, αG = 0.01, and γ=0.01,
unless explicitly stated otherwise. The filling number n of the
electrons is set to 0.25 per unit cell to stabilize the AIAO state
in equilibrium [Fig. 1(b)] [15,30], where the system shows
insulating behavior. The AIAO spin texture is stabilized by
the higher-order interaction between the local spins, which
is included in the exchange coupling between the itinerant
electrons and the local spins [31]. Owing to the anisotropy of
the spin Hamiltonian, a finite magnetization appears along the
z axis. We also set the lattice constant a = 1 and elementary
charge e = 1.

We transform the Hamiltonian Ĥ in the real-space rep-
resentation into the momentum representation through the
Fourier transformation

ĉ†
aσ (k) =

∑
R

eik·(ra+R)ĉ†
a′σ , (2)

where the translation vectors R are defined as R =
n1(2, 0, 0) + n2(1,

√
3, 0) (n1, n2 ∈ Z) and the position ra′ of

the lattice site a′ is ra′ = ra + R. Since the AIAO state has a
unit cell 4 times larger than that in the paramagnetic state, the
index a for the sublattice in ĉ†

aσ (k) is taken as a = 1, 2, 3, 4
[Fig. 1(a)]. The Hamiltonian Ĥ in the momentum representa-
tion reads

Ĥ =
∑

k

∑
σσ ′

∑
ab

[H0(k)]σσ ′
ab ĉ†

aσ (k)ĉbσ ′ (k), (3)

where H0(k) is the electronic Hamiltonian at each k point.
When the electric field is incorporated under the velocity

gauge, the creation (annihilation) operator changes as ĉ†
iσ →

eiA(t )·rĉ†
iσ (ĉiσ → e−iA(t )·rĉiσ ), where A(t ) is the vector po-

tential of the electromagnetic field. In the velocity gauge, a
time-dependent Hamiltonian is

Ĥ(t ) =
∑

k

∑
σσ ′

∑
ab

[H(k, t )]σσ ′
ab ĉ†

aσ (k)ĉbσ ′ (k), (4)

where the time-dependent electronic Hamiltonian H(k, t ) at
each k point is expressed as

H(k, t ) = H0[k − A(t )], (5)

while the creation and annihilation operators are coincident
with the original operators in Eq. (3) without the dependence
on t . The light-matter coupling is given by the time-dependent
vector potential A(t ) in the velocity gauge, which indicates
the photoelectric field E(t ) = −∂t A(t ). Since the light-matter
coupling is taken into account with the electric dipole approx-
imation, the vector potential is spatially uniform and thus does
not break the translation symmetry. In Eq. (4), we assume that
the Wannier state of an electron is well localized at a given
site.
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B. Calculation scheme

In this study, we calculate the real-time evolution of the
spin-charge coupled system. To compute the real-time simula-
tion, we simultaneously solve the von Neumann equation and
the Landau-Lifshitz-Gilbert (LLG) equation.

First, the time evolution of electrons can be described
by the single-particle density matrix (SPDM) ρσσ ′

ab (k, t ) =
〈ĉ†

bσ ′ (k)ĉaσ (k)〉t ≡ Tr[ĉ†
bσ ′ (k)ĉaσ (k)ρ̂(t )], where ρ̂(t ) is the

density matrix of the system at time t . The SPDM satisfies
the following equation, which is called the von Neumann
equation [32]:

∂ρ(k, t )

∂t
= −i[H(k, t ), ρ(k, t )] − γ [ρ(k, t ) − ρeq(k, t )].

(6)

The vector potential A(t ) for the light field does not break
the translation symmetry, which keeps the von Neumann
equation block diagonal with respect to the momentum k.
The k-local property, which is compatible with the parallel
computation, is advantageous for efficient simulation of the
real-time evolution of spin-charge coupled dynamics. On the
other hand, if one works on the length gauge under which the
light field is expressed by the scalar potential as the Hamilto-
nian −E(t ) · r, the translation-symmetry breaking leads to the
k derivative of the SPDM −E · ∂ρ(k,t )

∂k in the von Neumann
equation. This k-derivative term is unfavorable for parallel
computation of k-point grids.

Second, the time evolution of the localized spin system is
governed by the LLG equation

dSa

dt
= 1

1 + α2
G

[
Heff

a × Sa + αGSa × (
Sa × Heff

a

)]
, (7)

Heff
a = −J〈σa〉 − 2Kz

(
0, 0, Sz

a

)
. (8)

Here, Sa represents the localized spin moment at sublat-
tice site a, and Heff

a represents the effective magnetic field
coupled to Sa. In the LLG equation (7), 〈σa〉 is the sublattice-
dependent spin density of electrons calculated with SPDM
[see Eq. (13)]. Furthermore, we account for a relaxation
effect to obtain a physically reasonable response to light. Al-
though relaxation stems from electron-electron correlations,
electron-phonon interactions, and impurity scattering, we treat
it phenomenologically by using the relaxation time approx-
imation in the von Neumann equation γ [ρ(k, t ) − ρeq(k, t )]
in Eq. (6) and the Gilbert damping αG in Eq. (7). ρeq(k, t )
is the SPDM in equilibrium at temperature T = 0. ρeq(k, t )
represents an equilibrium property but shows dependence on
time t when the light field is incorporated under the velocity
gauge [33,34] (as discussed below). We solve the coupled
equations (6) and (7) using the fourth-order Runge-Kutta
method.

In the velocity gauge, the time-dependent Hamiltonian in-
dicates modification of the velocity operator. The correction
effectively gives rise to the shift in momentum k, and thus, the
momentum-resolved SPDM in equilibrium differs from that
at initial time t = 0 by the momentum shift. The momentum
shift explicitly reads

ρeq(k, t ) = ρ0
eq[k − A(t )], (9)

where ρ0
eq(k) is the SPDM of the initial Hamiltonian H0(k).

The SPDM of the equilibrium state ρ̃eq(k, t ) at time t is
calculated in the Bloch basis as follows:

[ρ̃eq(k, t )]mn = δmn	[μ − εn(k, t )]. (10)

We can compute the SPDM for the equilibrium state in the
orbital basis by using the unitary transformation

ρeq(k, t ) = U (k, t )ρ̃eq(k, t )U†(k, t ), (11)

where the unitary matrix U (k, t ) diagonalizes the
Hamiltonian H(k, t ) as U†(k, t )H(k, t )U (k, t ) = E (k, t )
and [E (k, t )]mn = δmnεn(k, t ). The Hamiltonian changes as
H(k, t ) = H0[k − A(t )] due to the electric field. Therefore,
we need to calculate the SPDM ρeq(k, t ) at every time step by
diagonalizing the Hamiltonian H(k, t ).

To avoid this large computational cost, we approximate
the time-dependent SPDM in equilibrium. We calculate the
SPDM ρeq(k, t ) by applying cubic interpolation of the mo-
mentum grid. We initially calculate the SPDM ρ0

eq(k) at t = 0
and obtain the interpolated function ρint

eq (k) by performing the
cubic interpolation of ρ0

eq(k) with respect to k. Then we can
approximate the SPDM ρeq(k, t ) at time t as

ρeq(k, t ) � ρint
eq [k − A(t )]. (12)

With this interpolation technique, we can calculate ρeq(k, t )
easily without diagonalization of the Hamiltonian H(k, t ) at
each time step.

Next, we explain a calculation method for physical re-
sponses. At each time step, we evaluate the physical quantity
〈Ô(t )〉 as

〈Ô(t )〉 = 1

N

∑
k

Tr[ρ(k, t )O(k, t )] (13)

by using the SPDM. The current density operator is written as

ĵ(t ) = 1

nsub

∑
k

∑
ab

∑
σσ ′

∂[H(k, t )]σσ ′
ab

∂k
ĉ†

aσ (k)ĉbσ ′ (k)

≡ 1

nsub

∑
k

∑
ab

∑
σσ ′

[ j(k, t )]σσ ′
ab ĉ†

aσ (k)ĉbσ ′ (k), (14)

where nsub represents the number of sublattices in a unit cell.
Then, the linear response function is obtained as follows. We
apply an external field with a Gaussian profile described as

F(t ) = F0√
2πσ 2

exp

(
− (t − t0)2

2σ 2

)
. (15)

Since we take the velocity gauge for which E(t ) = − ∂A(t )
∂t

holds, the Gaussian electric field E(t ) is incorporated by the
vector potential A(t ) given by

A(t ) = E0

2

[
erf

(
− t0√

2σ

)
− erf

(
t − t0√

2σ

)]
, (16)

with erf (·) being the error function. In this scheme, we can
calculate the linear response function χOF (ω) of the phys-
ical quantity O(t ) to the external field F (t ) by the Fourier
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TABLE I. Eigenvalues of symmetry-adapted bases of localized spins under a symmetry operation in magnetic point group G. The
subscript−in the ψα column represents the clockwise (CW) rotation, and the index+represents the counterclockwise (CCW) rotation. In
the 3z and θ2x columns, +1 means the basis does not change sign, while −1 means that the sign of the operation flips. ξ− = exp(2π i/3)
denotes the eigenvalue of the CW mode, and ξ+ = exp(−2π i/3) is that of the CCW mode. Each basis function ψα is explicitly written in the
last column.

ψα 3z θ2x Basis function

A1z
1 +1 +1 Sz

4

A3z
1 +1 +1 1√

3

(
Sz

1 + Sz
2 + Sz

3

)
A3xy

1 +1 +1 1√
3

[(√
3

2 Sx
1 − 1

2 Sy
1

) + (−√
3

2 Sx
2 − 1

2 Sy
2

) + Sy
3

]
A3xy

2 +1 −1 1√
3

[(− 1
2 Sx

1 −
√

3
2 Sy

1

) + (− 1
2 Sx

2 +
√

3
2 Sy

2

) + Sx
3

]
E 1xy

± ξ± −1 1√
2

(
Sx

4 ± iSy
4

)
E 3z

± ξ± +1 1√
2

[(− 1√
6
Sz

1 − 1√
6
Sz

2 + 2√
6
Sz

3

) ± i
(− 1√

2
Sz

1 + 1√
2
Sz

2

)]
E 3xy

± ξ± +1 1√
2

[
1√
3

{(−√
3

2 Sx
1 − 1

2 Sy
1

) + (√
3

2 Sx
2 − 1

2 Sy
2

) + Sy
3

} ± i√
3

{(− 1
2 Sx

1 +
√

3
2 Sy

1

) + (− 1
2 Sx

2 −
√

3
2 Sy

2

) + Sx
3

}]
E 3xy′

± ξ± −1 1√
2

[
1√
3

(
Sx

1 + Sx
2 + Sx

3

) ± i√
3

(
Sy

1 + Sy
2 + Sy

3

)]

transformation

χOF (ω) = �O(ω)

F (ω)

= 1

F0
e

σ2ω2

2 eiωt0

∫ ∞

0
O(t )e−iωt dt, (17)

where �O(ω) is the Fourier component of �O(t ) = O(t ) −
O(0) and F (ω) is the Fourier component of the external
field F (t ) = F0√

2πσ 2
exp(− (t−t0 )2

2σ 2 ). In this calculation, we use

the component of the external field F0 = 1.0×10−5, t0 = 0.2,
and σ = 0.03. Based on this scheme, we calculate the linear
response functions for the light field, which will be shown in
the next section.

We set the k mesh of the Brillouin zone to 512×512 for
the real-time simulation and to 1600×1600 for the cubic in-
terpolation of the SPDM in equilibrium. In this calculation,
we implement parallel computation of the k mesh using the
message-passing interface.

III. SYMMETRY ANALYSIS

In this section, we present the symmetry analysis of the
localized spin system. First, we classify the collective modes
of the localized spins. Second, we analyze the collective spin
dynamics that are linearly coupled to the external field based
on the symmetry analysis.

A. Symmetry-adapted basis of localized spins

In this section, we analyze the collective modes of the lo-
calized spins in the framework of the magnetic representation
and decompose them into three modes: the azimuthal symmet-
ric (AS) mode, clockwise (CW) mode, and counterclockwise
(CCW) mode.

The system belongs to the magnetic point group G = 32′
and has the following symmetry:

G = {
1, 3z, 3−1

z , θ2x, θ2u, θ2v

}
. (18)

Here, 1, θ, 3a, and 2a are the identity operator, time-reversal
operator, threefold rotation around the a axis, and twofold
rotation around the a axis, respectively. The u and v axes are
generated by the actions 3z and 3−1

z on the x axis, respectively.
The representation � is obtained for the basis spanned by

the degrees of freedom of localized spin vectors Sμ
a . The

dimension of � is 12 due to the sublattice (a = 1, 2, 3, 4)
and spins (μ = x, y, z). The representation is decomposed into
irreducible representations as

� = 3A1 ⊕ A2 ⊕ 4E .

There are three symmetry-adapted bases for the irreducible
representation A1, one for A2, and eight for E .

We further classify the symmetry-adapted modes by using
threefold rotations. We define the AS mode as the mode with
an eigenvalue of 1 under symmetry operation 3z, the CW
mode as that with ξ− = exp(2π i/3), and the CCW mode as
that with ξ+ = exp(−2π i/3). The symmetry-adapted basis
function is given by a linear combination of the localized spins
Sμ

a as

ψα =
∑
aμ

cμ
a (α)Sμ

a , (19)

where cμ
a (α) is the coefficient of the symmetry-adapted basis

ψα .
The dynamics of the localized spin system can be described

by the symmetry-adapted basis listed in Table I. We display a
sketch of the symmetry-adapted basis functions {ψα} in Fig. 2.
The AS bases, A1z

1 , A3z
1 , A3xy

1 , and A3xy
2 , are invariant under

the out-of-plane rotation and thus are totally symmetric in the
azimuthal plane. The modes for clockwise rotation include
E1xy

− , E3z
− , E3xy

− , and E3xy′
− , while the CCW mode comprises

E1xy
+ , E3z

+ , E3xy
+ , and E3xy′

+ . Thus, CW and CCW modes have
the nontrivial transformation property under the out-of-plane
rotation. Note that the CCW basis with ξ+ = exp(−2π i/3)
is the complex conjugate of the CCW counterpart with ξ− =
exp(2π i/3). For example, E1xy

+ is the complex conjugate of
E1xy

− . These collective modes are similar to those of the
skyrmionic system [24,25].

In the following sections, we calculate the component of
the symmetry-adapted basis of the localized spin dynamics
ψ̃α (t ) as

ψ̃α (t ) =
∑
aμ

[
cμ

a (α)
]∗

Sμ
a (t ), (20)

where we project the localized spins Sμ
a (t ) into the symmetry-

adapted basis ψα .
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FIG. 2. Sketch of the symmetry-adapted basis of localized spins tabulated in Table II. The spin moments are colored-coded as in Fig. 1.

B. Selection rule for optical excitation of spin dynamics

In this section, we analyze the symmetry-adapted bases of
the localized spins that are linearly coupled to the external
field based on the symmetry. The circularly polarized external
field is defined as

F±(t ) = 1√
2

(1,±i, 0) exp(−iωt ),

where the minus sign (−) represents the CW mode and the
plus sign (+) represents the CCW mode. Like in Table I, the
external fields are classified in terms of irreducible representa-
tions and eigenvalues for operation 3z. The results are shown
in Table II. For instance, the eigenvalue of the clockwise
rotatory field F−(t ) is ξ− for operation 3z, equal to that of
the CW mode.

The symmetry indicates that we can excite the CW mode
by the clockwise rotatory field F−(t ) and the CCW mode by
the counterclockwise rotatory field F+(t ). The linearly po-
larized field Fx contains the clockwise and counterclockwise
rotation fields and can excite both the CW and CCW modes.
On the other hand, the eigenvalue of the magnetic field Bz is 1
for 3z, which is the same as that of the AS mode. Thus, we can
excite the AS mode by the magnetic field Bz along the z axis.
In the following, we mainly delve into the linear responses to
in-plane electric fields, and the AS modes play minor roles.

IV. LINEAR RESPONSE FUNCTIONS

In this section, we present the results of the real-time
simulation of the spin-charge coupled system. First, we cal-
culate the magnetic susceptibility of the symmetry-adapted
bases of the localized spin system in Sec. IV A. Second,

TABLE II. Eigenvalues of the external field of localized spins
under the symmetry operator of magnetic point group G. The
symmetry-adapted bases listed in the last column are linearly coupled
to the external field in the row.

3z θ2x Basis function

E± ξ± −1 E 1xy
± , E 3z

± , E 3xy
± , E 3xy′

±
B± ξ± +1 E 1xy

± , E 3z
± , E 3xy

± , E 3xy′
±

Bz +1 +1 A1z
1 , A3z

1 , A3xy
1 , A3xy

2

we calculate the linear optical conductivity of the electron
system in Sec. IV B. Third, we calculate the electromagnetic
susceptibility of the localized spin system in Sec. IV C. We
also quantitatively evaluate the electromagnetic susceptibility
of the collective modes.

A. Magnetic susceptibility

In this section, we show the magnetic susceptibility of the
symmetry-adapted bases of the localized spins to corrobo-
rate the collective spin excitations in light of the frequency
dependence. We calculate the magnetic susceptibility χαμ(ω)
written in the symmetry-adapted basis as

�ψ̃α (ω) = χαμ(ω)Bμ(ω), (21)

where we defined the Fourier component of �ψ̃α (t ) =
ψ̃α (t ) − ψ̃α (0), representing the modulation of localized spins
in the symmetry-adapted representation. The response func-
tion χαμ(ω) is obtained by taking the Gaussian magnetic field
F(t ) = B(t ) [Eq. (15)], which is coupled to the localized
spins. The perturbation is expressed by the Hamiltonian

Hext(t ) = −
∑

a

B(t ) · Sa. (22)

The perturbation takes place without breaking the translation
symmetry, and the time evolution can be traced in parallel
between different momenta as in the case of the uniform
vector potential [Eq. (6)].

We plot the magnetic susceptibilities of the symmetry-
adapted bases belonging to the different symmetries in
Fig. 3. In Fig. 3(a), the magnetic susceptibility χαz with α =
A1z

1 , A3z
1 , A3xy

1 , A3xy
2 (AS modes) is shown. Consistent with the

symmetry analysis in Sec. III B, the out-of-plane magnetic
field is coupled to the AS modes but makes no contribution
to the CW and CCW modes. On the other hand, the CW
and CCW modes respond to the in-plane magnetic fields as
observed in the plots for χαx in Figs. 3(b) and 3(c).

As a result, the spectrum of magnetic susceptibility is de-
termined by three types of collective modes and consists of
four peaks, that is, one for the AS modes, two for the CW
mode, and one for the CCW mode. The number of collective
modes is consistent with the analysis of the magnon spec-
trum [30], and the lowest-energy (ω � 0.09) peak comes from
the magnon band whose gap energy at k = 0 is due to the
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FIG. 3. (a) Linear magnetic susceptibility of the AS mode to the
out-of-plane magnetic field. (b) Linear magnetic susceptibility of the
CW mode to the magnetic field along the x axis. (c) Linear magnetic
susceptibility of the CCW mode to the in-plane magnetic field.

magnetic anisotropy Kz in Eq. (1). We note that only the k = 0
spin excitation is present since the system is perturbed by the
uniform light field parametrized by E(t ).

B. Optical conductivity

In this section, we investigate the linear optical conductiv-
ity. The linear optical conductivity is written as

jμ(ω) = σμν (ω)Eν (ω), (23)

FIG. 4. (a) Linear optical conductivity of the system. The blue
solid line and the green dashed line indicate the longitudinal optical
conductivity with and without updating the spin configurations, re-
spectively. The orange solid line and the purple dashed line indicate
the transverse optical conductivity with and without updating the
spin configurations, respectively. The black dashed line indicates
the band gap frequency. (b) Longitudinal optical conductivity at log
scale. The blue solid line and the orange dashed line indicate the
calculation with and without updating the spin configurations.

where μ, ν = x, y since the electronic Hamiltonian is built
into the two-dimensional system. jμ(ω) is the Fourier com-
ponent of the electric current in Eq. (14).

We plot the frequency dependence of the linear optical
conductivity σμν (ω) in Fig. 4. The optical gap is at ω � 0.55
[vertical dashed line in Fig. 4(a)], indicating the insulating
state of the adopted model. In Fig. 4(a), we show the lon-
gitudinal optical conductivity σxx and the transverse optical
conductivity σyx. The solid lines (“With LLG”) represent
the optical conductivity incorporating the effect of the local-
ized spin dynamics following the LLG equation, while the
dashed lines (“Without LLG”) represent the optical conduc-
tivity without the effect. In Fig. 4(b), we show the longitudinal
optical conductivity σxx with and without the LLG simulation
in log scale.

There are two consequences of spin dynamics on the op-
tical conductivity. First, Re σ (ω) with the LLG simulation
shows three resonance peaks in the in-gap regime, which
are absent in the independent particle approximation. Due
to the increased degrees of freedom of the local spins, more
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optical conductivity peaks are observed in the in-gap regime
than in Refs. [4,6]. The peaks at ω � 0.09, 0.25 correspond
to CW modes, as inferred from the magnetic susceptibility
[Fig. 3(b)], and the peak at ω � 0.16 is for CCW modes [see
Fig. 3(c)]. The peak height for ω � 0.16 is much smaller than
that at ω � 0.09, 0.25. The prominent difference can be un-
derstood from the electromagnetic susceptibility corroborated
in Sec. IV C.

Second, the spin dynamics leads to the modification of
the optical conductivity in the spectrum above the band gap
as well as the in-gap optical excitations. This modification
is also carried by the collective spin dynamics, while the
localized spins are driven by the electronic spin excitations
responding to the irradiating light. It is noteworthy that the
in-gap and above-gap optical excitations are in a trade-off re-
lationship due to the sum rule

∫
Re σμν (ω)dω = const. In the

spin-charge coupled system with the AIAO spin texture, the
collective modes belonging to the different symmetries affect
the optical conductivity. Therefore, we can selectively excite
the collective modes which influence electronic transport.

C. Electromagnetic susceptibility

Our focus is on the richer collective spin excitations origi-
nating from the AIAO state and on their impact on the electric
response, and thus, let us undertake more detailed investi-
gations of the in-gap optical excitations by considering the
electromagnetic susceptibility. The electromagnetic suscepti-
bility καμ(ω) of the symmetry-adapted form of the localized
spin excitation ψα is written as

�ψ̃α (ω) = καμ(ω)Eμ(ω). (24)

We plot the spectrum of the electromagnetic susceptibility καx

with the electric field E ‖ x̂ in Fig. 5. Owing to the selection
rule tabulated in Table II, only the CW and CCW modes
contribute to the electromagnetic susceptibility καx. Then, we
show the electromagnetic susceptibility relevant to the CW
modes [Fig. 5(a)] and CCW modes [Fig. 5(b)]. The electro-
magnetic susceptibility of the CCW mode is much smaller
than that of the CW mode.

The in-gap peaks of the optical conductivity are caused by
resonant excitation of collective spin dynamics, and thus, peak
amplitude implies the electrical activity of each collective
excitation. For instance, the electrical activity of the CCW
mode is small, as observed in the electromagnetic suscep-
tibility plotted in Fig. 5(b), leading to the negligibly small
peak in the optical conductivity spectrum [Fig. 4(b)]. More
specifically, the mechanism of electric-active collective spins
dynamics is as follows: first, the electric field coupled to
the electron system stimulates the magnetization response of
electrons’ spins through the spin-orbit coupling [third term
in Eq. (1)]. Then, the perturbed spin moment of electrons
induces the dynamics of the localized spins as a consequence
of the exchange interaction between them [second term in
Eq. (1)]. The resultant coupling between the electric field
and the localized spins indicates the electromagnetic response
denoted by Eq. (24).

FIG. 5. Linear electromagnetic susceptibility καx . The
symmetry-adapted basis ψα is taken from (a) the CW modes
and (b) the CCW modes.

The mechanism can be formulated by decomposing the
electromagnetic susceptibility into two parts as

καx(ω) =
∑

β

χS
αβ (ω)κσ

βx(ω) (25)

≡
∑

β

καβx(ω). (26)

κσ
βx(ω) is the bare electromagnetic susceptibility, indicating

the correlation between the electric field is∑
μ

cμ
a (α)�

〈
σμ

a

〉
(ω) = κσ

αν (ω)Eν (ω), (27)

where we define the Fourier component of �〈σμ
a 〉(t ) =

〈σμ
a 〉(t ) − 〈σμ

a 〉(0), representing the modulation of itinerant
spins in the symmetry-adapted representation. This suscepti-
bility does not include the dynamical effects of the localized
spins, so we calculate κσ

αx(ω) by the real-time simulation
without updating the local spin moments.

We also define χS
αβ (ω), which is the magnetic susceptibil-

ity denoting the correlation between the symmetry-adapted
modes (ψα , ψβ). Based on the symmetry, χS

αβ (ω) is finite
when the symmetry-adapted bases α and β belong to the
same mode. The response function χS

αβ (ω) is obtained by
taking the Gaussian magnetic field, which is proportional to
the symmetry-adapted basis ψβ . The perturbation is expressed
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FIG. 6. (a) The decomposition of the electromagnetic suscepti-
bility of the collective mode ψα = E 1xy

− . (b) The decomposition of

the electromagnetic susceptibility of the collective mode ψα = E 3xy′
+ .

by the Hamiltonian

Hβ
ext (t ) = −J

∑
aμ

B0√
2πσ 2

exp

(
− (t − t0)2

2σ 2

)
cμ

a (β )Sμ
a , (28)

where B0 is the amplitude of the Gaussian magnetic field.
Combining χS

αβ (ω) and κσ
βx(ω), we can calculate the

decomposed component καβx(ω). As a result, the electro-
magnetic susceptibility καμ(ω) of the collective mode ψα is
determined by the interference of καβμ(ω) with respect to the
mediating modes labeled by β.

Taking the CW E1xy
− and CCW E3xy′

+ modes for ψα in
Eq. (26), we plot the decomposed electromagnetic suscepti-
bility in Fig. 6. In the case of ψα = E1xy

− , for example, the
localized spin response to the electric field is mediated by
the fluctuations denoted by

∑
μ cμ

a (β )〈σμ
a 〉, which are sym-

metry adapted to the CW modes (E1xy
− , E3z

− , E3xy
− , and E3xy′

− ).
Similarly, the electromagnetic susceptibility of the collective
mode E3xy′

+ is mediated by those with the same symmetry as
the CCW modes of localized spins.

As for the electromagnetic susceptibility of the CW mode,
the interference of the mediating spin fluctuations results in a
sizable electromagnetic susceptibility for ψα = E1xy

− . On the
other hand, while each καβx makes a significant contribution,
destructive interference is observed in the case of the CCW
mode, giving rise to a much smaller electromagnetic suscep-

tibility in total. These results imply that the CCW modes
are less electrically active when compared to the CW modes
and hence offer negligible optical conductivity [peak around
ω � 0.16 in Fig. 4(b)]. The constructive and destructive inter-
ference effects are features unique to the system hosting the
complex spin texture, and their identification has been accom-
plished with the developed efficient computational method for
the real-time evolution of the spin-charge coupled system.

V. SUMMARY

In this study, we developed an efficient real-time simu-
lation of the spin-charge coupled system and applied this
method to a two-dimensional system with a complex spin
texture. We investigated how the collective excitation of the
localized spins influences the optical response of the elec-
tronic system. First, we identified the symmetry-adapted bases
of the localized spins and further classified them with cir-
cular polarization. This allowed us to clarify the reaction
of the collective modes of the localized spins to external
stimuli. Next, we calculated the linear response functions
of the spin-charge coupled system. The magnetic suscepti-
bility is conveniently decomposed by the symmetry-adapted
bases and is determined by the resonant dynamics of the
localized spins when the frequency of magnetic fields is
in the in-gap regime. The observed collective modes have
features similar to those of the skyrmionic system, imply-
ing the AIAO state is the minimum unit of the magnetic
skyrmion.

The impact of the real-time simulation was demonstrated
by the calculations of the linear optical conductivity, including
the effect of the localized spins dynamics. The electrical ac-
tivity of the collective spin motion results in the modification
of the spectrum of optical conductivity such as in-gap peak
structures. The collective modes differ in their influence on
the optical conductivity; the rotatory modes of the localized
spins affect the optical conductivity, but the AS mode of the
localized spins does not affect the optical conductivity in the
two-dimensional system. Finally, we discussed electromag-
netic susceptibility, paying special attention to spin dynamics
induced by light whose frequency is below the band gap.
The electromagnetic susceptibilities of the CW and CCW
modes were elucidated by decomposition into the bare elec-
tromagnetic susceptibility and magnetic susceptibility. As a
result, the interference effect plays a key role in determin-
ing the contrasting electrical activity of the CW and CCW
modes.

To conclude, we systematically investigated the spin-
charge coupling by real-time simulations of the system with
the AIAO magnetic order, which is considered the minimal
unit of a magnetic skyrmion. The diverse collective excita-
tions arising from the magnetic structure lead to multiple
peak structures in the optical conductivity spectrum and ex-
hibit different electrical activities due to interference effects
between spin fluctuations. The essential ingredient is the op-
tically active collective spin dynamics in the gapped system.
Therefore, searching for a real material should be in the realm
of inversion symmetry broken semiconductors or insulators
with optically active magnons, such as GaV4S8 [35,36] and
Cu2OSeO3 [37,38].
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Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J.
Zang, and H. M. Rønnow, Phys. Rev. Lett. 113, 107203 (2014).

014425-9

https://doi.org/10.1103/PhysRevB.103.L241111
https://doi.org/10.1103/PhysRevB.94.035117
https://doi.org/10.1073/pnas.2122313119
https://doi.org/10.1103/PhysRevB.109.064407
https://doi.org/10.1103/PhysRevB.101.195118
https://doi.org/10.1103/PhysRevLett.127.127402
https://doi.org/10.1038/s41524-021-00641-2
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevLett.101.156402
https://doi.org/10.1088/0031-8949/2012/T146/014020
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.aau0968
https://doi.org/10.1038/s41467-019-13675-4
https://doi.org/10.1143/JPSJ.79.083711
https://doi.org/10.1103/PhysRevB.92.115417
https://doi.org/10.1103/PhysRevB.104.174432
https://doi.org/10.1038/s41467-019-13968-8
https://doi.org/10.1103/PhysRevLett.116.256601
https://doi.org/10.1038/s41467-023-43853-4
https://doi.org/10.1038/s41567-023-02017-3
https://doi.org/10.1038/s41467-018-05756-7
https://doi.org/10.1038/s41565-020-0684-7
https://doi.org/10.1103/PhysRevLett.108.017601
https://doi.org/10.1103/PhysRevB.95.094414
https://doi.org/10.1103/PhysRevB.93.174429
https://doi.org/10.1038/s41467-019-14095-0
https://doi.org/10.1103/PhysRevLett.109.037603
https://doi.org/10.1038/ncomms3391
https://doi.org/10.7566/JPSJ.82.123709
https://doi.org/10.1103/PhysRevB.95.224424
https://doi.org/10.1364/JOSAB.448602
https://doi.org/10.1103/PhysRevB.96.035431
https://doi.org/10.1103/PhysRevB.106.035204
https://doi.org/10.1103/PhysRevLett.122.107203
https://doi.org/10.1038/nmat4402
https://doi.org/10.1126/science.1214143
https://doi.org/10.1103/PhysRevLett.113.107203

