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Skyrmion crystal formation and temperature–magnetic-field phase diagram of the frustrated
triangular lattice Heisenberg magnet with easy-axis magnetic anisotropy
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The nature of the skyrmion-crystal (SkX) formation and various multiple-q phases encompassing the SkX
phase are investigated by extensive Monte Carlo simulations on the frustrated J1-J3 triangular-lattice Heisenberg
model with the weak easy-axis magnetic anisotropy. Phase diagrams in the temperature T vs magnetic-field H
plane are constructed, leading to a rich variety of multiple-q phases. The anisotropy stabilizes the SkX state down
to T = 0 at intermediate fields, while in the lower-field range the SkX state becomes only metastable, and new
multiple-q states with a broken C3 symmetry are instead stabilized. Implications to experiments are discussed.

DOI: 10.1103/PhysRevB.110.014424

I. INTRODUCTION

Much attention has recently been paid to various types of
topologically protected nanoscale spin textures in magnets,
e.g., vortex, skyrmion and hedgehog, from both fundamental
interest in topology-related physics and possible applications
to spintronics. Skymion, a swirling noncoplanar spin texture
characterized by an integer topological charge whose con-
stituent spin directions wrap a sphere in spin space, has gotten
special attention. In magnetically ordered states, skyrmions
are often stabilized as a periodic array called the skyrmion
crystal (SkX). At an earlier stage, the SkX state was discussed
for noncentrosymmetric magnets as induced by the anti-
symmetric Dzyaloshinskii-Moriya (DM) interaction [1–5]. In
2012, it was theoretically proposed that the “symmetric” SkX
is also possible in certain class of frustrated centrosymmetric
magnets without the DM interaction, where the size of con-
stituent skyrmions can be varied continuously from very small
to infinitely large (corresponding to the continuum limit) by
tuning the extent of frustration [6]. An interesting character-
istic of frustration-induced symmetric skyrmions is that, due
to the underlying chiral degeneracy, both skyrmions and anti-
skyrmions of mutually opposite signs of topological charge, or
the scalar chirality, are equally possible, leading to the unique
and rich electromagnetic responses [6].

In Ref. [6], the SkX was identified in a simplified
model, i.e., the frustrated J1-J3 (J1-J2) isotropic Heisenberg
model on the triangular lattice as a triple-q state stabi-
lized by magnetic fields and thermal fluctuations. Subsequent
experiments successfully observed the SkX for centrosym-
metric triangular-lattice metallic magnets, e.g., Gd2PdSi3,
accompanied by the pronounced topological Hall effect [7].
Recent Monte Carlo (MC) simulations indicated that the SkX
could also be stabilized in the standard RKKY system with
only the bilinear interaction modeling weak-coupling metals,
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where the oscillating nature of the RKKY interaction bears
frustration [8,9].

Of course, real material possesses various perturbative in-
teractions not taken into account in a simplified model [6],
e.g., the three-dimensionality (interplane coupling), the mag-
netic anisotropy, quantum fluctuations, etc. In particular,
experiments have indicated that the SkX can be stabilized
even at zero temperature (T = 0), where the effect of certain
perturbative interactions, e.g., the magnetic anisotropy, was
argued to play a role [7,10]. A possible mechanism leading to
the T = 0 SkX state was theoretically discussed in the liter-
ature, including the biquadratic interaction arising from the
higher-order perturbation beyond the second order (strong-
coupling effect in itinerant metals) [11–13], quantum spin
fluctuations [14], etc. Among them, the magnetic anisotropy
prevails in real magnets, both classical and quantum, and
generally exists even at the spin-bilinear order.

On the basis of the ground-state phase diagram of the
frustrated J1-J2 triangular Heisenberg model obtained by
the simulated annealing, it was theoretically suggested that
the easy-axis magnetic anisotropy stabilized the SkX state
even at T = 0 [10]. While the effect of magnetic anisotropy
on the SkX formation was examined further by various
authors [14–21], most of them concentrated on the T =
0 properties, with few studies on the temperature (T ) vs
magnetic-field (H) phase diagram (see [15,16,20], how-
ever). Even concerning the T = 0 properties, the proposed
magnetic-anisotropy stabilization of the SkX state might de-
serve further careful examination, since the numerical method
employed, e.g., the simulated annealing, might capture the
metastable SkX state, while such a metastable, not truly stable
SkX state was indeed reported under certain annealing condi-
tions even experimentally [22,23].

Under these circumstances, we study by extensive MC
simulations the SkX formation and the T -H phase diagram
of the frustrated J1-J3 Heisenberg model on the triangular
lattice with the easy-axis magnetic anisotropy, an anisotropic
extension of the isotropic model of Ref. [6]. We wish to clarify
how the T -H phase diagram of the isotropic model changes
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by the magnetic anisotropy, paying special attention to the
questions of whether the SkX state is truly stabilized at T = 0,
whether some new phases appear induced by the anisotropy
and, if any, the nature of these phases. We then find that
the SkX state is stabilized in intermediate fields at T = 0,
while its stability range is considerably reduced compared
with that obtained by the simulated annealing, and in the
region where the SkX phase turns out to be only metastable,
two new anisotropy-induced multiple-q phases with a broken
C3 symmetry emerge as stable phases.

II. MODEL AND METHOD

We consider the J1-J3 classical Heisenberg model on the
two-dimensional triangular lattice with the easy-axis uniaxial
anisotropy. The Hamiltonian is given by

H = −J1

∑

〈i, j〉1

(SixS jx + SiyS jy + γ SizS jz )

+ − J3

∑

〈i, j〉3

(SixS jx + SiyS jy + γ SizS jz ) − H
∑

i

Siz, (1)

where J1 > 0 is the ferromagnetic nearest-neighbor coupling,
J3 < 0 the antiferromagnetic third-neighbor coupling, Si =
(Six, Siy, Siz ) a three-component unit vector at site i, magnetic
field is applied along the easy axis with H the magnetic-field
intensity, and γ the uniaxial exchange anisotropy parame-
ter. We assume a rather weak easy-axis anisotropy and set
γ = 1.1, i.e., 10% anisotropy. Following Ref. [6], we set
J1/J3 = −1/3, and J1, T, and H are given in units of |J3|,
hereafter.

MC simulation based on the standard heat-bath method
combined with the over-relaxation method is performed. In
addition, fully equilibrated temperature-exchange simulations
are also made in the higher-T range. The lattice is a L × L
triangular lattice with L = 144, 180, 216, 288 with periodic
boundary conditions. Unit MC step consists of one heat bath
and L over-relaxation sweeps. Typically, each run contains
2 × 105 MC steps per spin (MCS) at each temperature, the
first half discarded for thermalization.

To reach a given (T ∗, H∗) state, together with the
field-cooling (FC) run, i.e., the gradual cooling simulated-
annealing run at fixed H∗, various other computation proto-
cols are tried by combining H and T sweeps in search for the
stable state. Since, at sufficiently low T = T0, a truly stable
state should have the lowest energy among several metastable
states generated by different protocols, it can be determined by
comparing their energies. One standard protocol might be the
zero-field cooling (ZFC) run to (T0, H∗), i.e., gradual cooling
in zero field (or weak fields of H � 1.5) to a low T = T0 (we
set here T0 = 0.1, 0.05) followed by the gradual increase of H
to H∗ at T = T0. Such ZFC runs are repeated 10 ∼ 20 times
in search for the lower-energy state by changing the random
numbers and the way of H application. If the ZFC protocol
yields a stable state with the lowest energy at (T0, H∗), a
gradual warming run from that state is also performed to
higher T = T ∗ at fixed H∗ (sometimes a further cooling run
is also made). Consistency is then checked by confirming
the obtained state to be compatible with that obtained by the
T -exchange simulations at moderately high T .

FIG. 1. The phase diagram of the model with J1/J3 = −1/3 and
γ = 1.1 in the temperature vs magnetic-field plane. The notations
(mq, nq), D and U are explained in the text.

III. RESULTS

The T -H phase diagram obtained in this way is shown
in Fig. 1. It contains ten distinct ordered phases. Although
it might look rather complicated, all the phases appearing in
the isotropic phase diagram [6] also appear here. The triple-q
SkX state, described as (3q, 3q) in Fig. 1, is stabilized down
to T = 0 in the intermediate field range, where m and n
(=1,2,3) in (mq, nq) represent the number of the dominant
(quasi-)Bragg peaks except for q = 0 in the transverse
(Sxy) and longitudinal (Sz) spin structure factors, S⊥(q) and
S‖(q) [24]. The SkX state is essentially of the same type as the
one of the isotropic model, as demonstrated in the real-space
spin and scalar-chirality configurations of Figs. 2(c) and 2(d).
The SkX state is characterized by the nonzero total scalar
chirality χtot > 0, leading to the topological Hall effect. The T
dependence of the specific heat and χtot at H = 3.5 are shown
in Figs. 2(a) and 2(b), the definitions of χtot and S(q) being

FIG. 2. The temperature and size dependence of (a) the specific
heat, and of (b) the total scalar chirality, at H = 3.5. The data of the
FC runs and of the temperature-exchange runs (Tex) are shown. The
typical real-space configurations of (c) the transverse components of
the spin, and of (d) the scalar chirality, in the SkX state at H = 3.5
and T = 0.0001 are shown for a common part of the L = 180 lattice.
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FIG. 3. The spin structure factors (a) S⊥(q) and (b) S‖(q), and the
projected spin (c) (Sx, Sy) and (d) (Sx, Sz) components in the (1q, 2q)
phase at H = 3 and T = 0.0001. (e)–(h): The corresponding plots
in the (2q, 2q) phase at H = 1.5 and T = 0.0001. The lattice size is
L = 180.

given in the Supplemental Material (SM) [25]. In the higher-T
region, the so-called Z phase, the random domain state of
the SkX, and the anti-SkX [6], also appears as the collinear
triple-q (D, 3q) state [D means disordered, i.e., the absence of
sharp (quasi-)Bragg peak in S(q)]; see Fig. S7 [25].

The single-q spiral states also appear both in zero (or
sufficiently weak) field and in higher fields. The first type, the
(1q, 1q) state, is a vertical spiral (VS) induced by the easy-axis
anisotropy, exhibiting a 90◦ rotation from the conical spiral
(CS) stabilized in the isotropic model [6]. In zero field, this VS
state in the T → 0 limit is vertically coplanar, but it becomes
weakly noncoplanar in nonzero fields, the latter corresponding
to the “M state” of Ref. [10]. By contrast, the high-field
single-q state, the (1q, U) state [U means uniform, i.e., only
the q = 0 peak in S‖(q)], is essentially the same CS as that
of the isotropic model [6]. In the high-field region, there also
appears the double-q state, the (2q, 1q) state, essentially the
same as that of the isotropic model [6]. Further details of these
states are given in the SM [25].

Between the SkX phase at intermediate H and the VS
phase at low enough H , there appear two new phases absent in
the isotropic model, i.e., the (1q, 2q) and the (2q, 2q) phases,
which persist even in the T → 0 limit. The associated S⊥(q)
and S‖(q) are respectively given in Figs. 3(a), 3(b), 3(e), and
3(f). Note that “1q” (“2q”) here means S(q) possesses three
(quasi-)Bragg peaks, but the C3 symmetry is broken result-
ing in one (two) pair of higher-intensity peaks [24]. In both
phases, χtot vanishes, meaning the absence of the topological
Hall effect.

An important caveat might be in order here: If one makes
FC simulated-annealing runs in the field range 2.0 � H � 3.6
to low T , one ends up with the triple-q SkX state even if one
makes a very slow cooling. By contrast, if one makes a ZFC
run to (T0, H∗) with H∗ in the relevant range, one generally
ends up with the C3-symmetry broken state. The energy (e)
comparison indicates that, for the field 1.35 � H � 2.6 the
(2q, 2q) state reached by the ZFC run is stable [e is lower
than e of the SkX state reached by the FC run by ∼0.54%
and by ∼0.27% at H = 2 and 2.5, respectively, well beyond
the typical error bar of order 0.001%]; for 2.6 � H � 3.2 the
(1q, 2q) state is stable [e is lower than e of the SkX state
by ∼0.12% at H = 3]; but for 3.2 � H � 4.1 the (3q, 3q)
SkX state is stable [e is lower than e of the (2q, 2q)/(1q, 2q)
states by ∼0.08% and by ∼0.12% at H = 3.5 and 4, respec-

FIG. 4. The temperature dependence of (a) the specific heat for
various sizes, and of (b) the intensities of the three (quasi-)Bragg
peaks of S⊥(q) and S‖(q) for L = 288, at H = 2. The data are taken
by the gradual warming run from the T = T0 state as explained in
the text, while in (a) the data of the temperature-exchange run (Tex)
are also added. The projected vector-chirality (c) (κx, κy) components
in the (1q, 2q) phase at H = 3 and T = 0.0001, and (d) (κx, κz)
components in the (2q, 2q) phase at H = 1.5 and T = 0.0001. The
projected (e) spin (Sx, Sz) and (f) vector-chirality (κx, κz) components
in the (2q, 1q) phase at H = 4.5 and T = 0.0001.

tively]. In fact, the energy difference between the (2q, 2q)
and (1q, 2q) states is rather small of order of the error bar,
although we have observed a clear phase transition between
these two states with varying T ; see Figs. 4(b) and S2(b) [25].

Our observation then indicates that the easy-axis
anisotropy stabilizes the triple-q SkX state even at T = 0 at
intermediate H (3.2 � H � 4.1), where its stability range
is considerably reduced compared with that obtained by the
simulated annealing, and the truly stable state in the lower-H
region turns out to be the (1q, 2q) state for 2.6 � H � 3.2,
and the (2q, 2q) states for 1.35 � H � 2.6. To the author’s
knowledge, these two states, the (1q, 2q) and (2q, 2q) states,
are unnoticed so far. The observed strong hysteretic effect
might give the reason why these states were not reported in
the T = 0 phase diagram constructed by, e.g., the simulated
annealing [10].

Let us further look into the nature of these new phases. Al-
though the (1q, 2q) state is a vertical coplanar state as shown
in Figs. 3(c) and 3(d) [26], it is not a simple VS (1q, 1q) state.
In fact, as can be seen from the vector-chirality (κx, κy) projec-
tion shown in Fig. 4(c), where κ is the vector chirality defined
on each upward triangle by κ = (2/3

√
3)

∑
<i j> Si × S j (the

summation taken over three clockwise bonds on each triangle)
changing sign under the spatial inversion, κ mostly exhibits
parallel alignment in the direction perpendicular to the copla-
nar spin plane, but some κ exhibits antiparallel alignment in
the opposite direction, indicating that the spins rotate mostly
in a certain (say, clockwise) direction, but occasionally rotate
in an opposite (say, counter-clockwise) direction. Closer in-
spection reveals that such a counter-rotation occurs when the
spins stay in the vicinity of the H direction to gain the Zeeman
energy.

By contrast, the (2q, 2q) state is a noncoplanar state as
shown in Figs. 3(g) and 3(h). As can be seen from the (κx, κz)
projection of Fig. 4(d), κ is dominated by the horizontal (per-
pendicular to the field) component, which suggests that the
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associated noncoplanar spin configuration is basically “ver-
tical.” If one compares this with the corresponding plot for
another double-q state, i.e., the (2q, 1q) state in high fields,
κ in the latter rather lacks in the horizontal component [see
Fig. 4(f)], consistently with the meronlike “conical” character
of its spin state [see Fig. 4(e)]. Hence, the two double-q states,
the (2q, 2q) and (2q, 1q) states, are different kinds of states,
i.e., “vertical” vs “conical”.

In the higher-T range, phases absent in the isotropic model
also appear, including the collinear single-q (D, 1q) and the
collinear double-q (D, 2q) phases. In Fig. 1, the collinear
single-q phase appears in two distinct regions, i.e., at inter-
mediate fields and at zero and weaker fields, each represented
by (D, 1q) and (D, 1q), which are not connected in the phase
diagram. Indeed, in the (D, 1q) state, S‖(q) possesses three
pairs of (quasi-)Bragg peaks, among which single pair ±q∗

1
exceeds the other two ±q∗

2 and ±q∗
3 by factor of 2 ∼ 3 in their

intensities (refer to Figs. 4(b), S2(b) and S6 [25]), while, in the
(D, 1q)’ state, S‖(q) possesses only one pair of (quasi-)Bragg
peaks.

The richness of the phase diagram suggests that even a
simple cut of the phase diagram could yield many phases and
phase transitions among them. We demonstrate such richness
by showing the T dependence of physical quantities at a
representative field H = 2. The data are taken by the gradual
warming runs from the T = T0 state prepared by the ZFC run
explained above. On increasing T from T0, one encounters the
(2q, 2q), (1q, 2q), (D, 2q), (D, 1q), and (D, 3q) states before
finally reaching the paramagnetic state. We show in Fig. 4 the
T dependences of (a) the specific heat and of (b) the intensities
of the three relevant (quasi-)Bragg peaks q∗

i (i = 1, 2, 3) of
the spin structure factor which are ordered according to their
intensities [27]. Similar data for H = 2.5 are also given in
Fig. S2 of the SM [25]. As can be seen from the figures, the
system indeed exhibits a rich phase structure.

In view of the complicated appearance of the phase di-
agram, we now try to give a rough and intuitive picture of
the complicated phase diagram, together with an intuitive rea-
son why the easy-axis anisotropy energetically stabilizes the
SkX phase at intermediate fields. Depending on the relative
strength of the easy-axis anisotropy and the magnetic field,
the phase diagram might be divided into three regimes, i.e., (i)
the high-field regime where the field exceeds the anisotropy,
(ii) the low-field regime where the anisotropy exceeds the
field, and (iii) the medium-filed region where both compete.
In the region (i) involving the double-q (2q, 1q) and the CS
(1q,U) states, the spin states tend to be “conical” induced by
the field, while in the region (ii) involving the VS (1q, 1q), the
double-q (2q, 2q), and the single-q (1q, 2q) states, the spin
states tend to be “vertical” induced by the anisotropy. Since
the conical and vertical states compete with each other, the
states in between tend to be virtually “spherical,” setting the
stage for stabilization of the SkX state.

IV. SUMMARY AND DISCUSSION

In summary, by means of extensive MC simulations on
the frustrated J1-J3 triangular-lattice Heisenberg model with
the easy-axis exchange anisotropy, we have constructed the
T -H phase diagram containing a rich variety of multiple-q
phases. The easy-axis anisotropy stabilizes the triple-q SkX
state down to T = 0 at intermediate fields. As the field gets
weaker, the SkX state becomes only metastable, and new
multiple-q states with a broken C3 symmetry, the (2q, 2q) and
(1q, 2q) states, are instead stabilized. In the high-T regime, in
addition to the collinear triple-q phase (Z phase), the collinear
single-q and double-q states absent in the isotropic model are
stabilized by the easy-axis anisotropy.

Finally, we discuss experimental implications of the
present result. Concerning the stability of the SkX and the
multiple-q states encompassing it, while the weak easy-axis
magnetic anisotropy enhances the SkX formation even at
T = 0, it often accompanies a strong hysteretic effect asso-
ciated with the C3 breaking. Thus, in order to experimentally
clarify the SkX-related phase structure, one needs to exam-
ine carefully the possible dependence of the state on the
T -cooling/H-application protocols. Especially when different
final states are to be obtained by different protocols to a
common (T, H), one should determine which state is truly
stable. Since the direct comparison of the energies as we
did in the present analysis would be difficult experimentally,
the long-time off-equilibrium measurements toward equilib-
rium might eventually be required. Experimental distinction
among (1q, 2q), (2q, 2q), and (3q, 3q) from S(q) measure-
ments might sometimes be not easy due to the domain
problem, whereas the absence of the topological Hall effect
in the former two could be used as a signature to distinguish
them from the SkX state.

Of course, features of the phase diagram might well depend
on the type and the strength of the anisotropy, e.g., the γ
value, as well as on other perturbative interactions not taken
into account in the present model, e.g., the dipolar interaction,
quantum fluctuations, higher-order exchange interactions, etc.
For example, since the energy difference between the two new
C3-broken states, the (2q, 2q) and (1q, 2q) states, is rather
small, a small change in γ and/or other perturbative effects
might affect their relative stability. While further theoretical
and experimental studies are desirable to fully clarify the ef-
fects of these perturbative interactions, the present work might
hopefully serve as a useful starting reference.
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present model so that any spin configuration generated by ar-
bitrary global spin rotation around the magnetic-field (Sz) axis
is equally possible. In Figs. 3(c) and 3(d), just for illustration,
we take a special choice that the coplanar spin place coincides
with the (Sx, Sz) plane. The same convention is employed also
in Fig. 4(c).

[27] The (2q, 2q) ↔ (1q, 2q) transition temperature is estimated to
be Tc � 0.23 from Figs. 4(a) and 4(b). Even within the (2q, 2q)
phase, however, some steplike “structure” or “weak anomaly”
exists in Fig. 4(b) just below Tc, while the basic (2q, 2q) charac-
ter of S(q) remains the same. We regard such “structure” only as
a secondary one associated with, e.g., the possible incommen-
surability effect or the domain formation, although we cannot
completely rule out the possibility that another phase with the
same (2q, 2q) ordering pattern intervenes between the (2q, 2q)
and (1q, 2q) phases just below Tc.
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