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Framework for polarized magnetic neutron scattering from nanoparticle assemblies
with vortex-type spin textures
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Within the framework of the recently introduced multinanoparticle power-series expansion method for the po-
larized small-angle neutron scattering (SANS) cross section, we present analytical expressions for the polarized
SANS observables arising from dilute nanoparticle assemblies with antisymmetric vortex-type spin structures.
We establish connections between the magnetic correlation coefficients and the magnetic field-dependent vortex-
axes distribution function, which is related to the random orientations of the magnetocrystalline anisotropy axes
of the nanoparticles. Our analytical results are validated through a comparative analysis with micromagnetic
simulations. This framework contributes to a comprehensive understanding of polarized magnetic neutron
scattering from spherical nanoparticle systems exhibiting vortex-type spin structures.
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I. INTRODUCTION

Magnetic nanoparticles, which are within the scope of im-
mense interdisciplinary research, offer versatile applications,
e.g., in materials science, nanotechnology, and biomedicine
[1–7]. They open up new possibilities in the nanoscopic realm
and drive technological advances and breakthrough discover-
ies. But still, at the current stage of research, it is an immense
challenge to characterize their internal spin structure, which is
generally expected to be nonuniform (e.g., [8–16]).

Magnetic small-angle neutron scattering (SANS) is pos-
sibly the only technique to probe the spatial variation of
spin structures on a scale of ∼1–100 nm and in the bulk
of the material [17,18]. Recent advances in the understand-
ing of magnetic SANS from complex nanoparticle systems
have been achieved by the marriage of micromagnetic theory
and the magnetic neutron scattering formalism, through both
computer simulations and analytical calculations [19–27].
Although computer simulations offer considerable potency
in predicting neutron scattering observables for intricate
nanoparticle assemblies, their drawback lies in their time-
intensive nature, vast parameter space, and the inherent
challenge of interpreting results. This complexity hinders the
derivation of overarching conclusions and poses a substantial
obstacle in formulating generalized statements.

To address these challenges, Adams et al. [28] introduced
the multinanoparticle power-series expansion (MNPSE)
method to study the neutron scattering signatures from
spherical nanoparticle assemblies featuring diverse types of
magnetic surface anisotropy. Here, we use the MNPSE ap-
proach to predict the main features of nanoparticle assemblies
with inherent vortex-type spin textures such as those seen
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in the neutron scattering observables. Vortex-type structures
are ubiquitous in magnetism research and are encountered
in many systems, such as in type-II superconductors [29],
GdCo2 micropillars [30], Nd-Fe-B magnets [31], iron oxide
nanoparticles [32–34], and nanoflowers [35], or the very re-
cently discovered topological vortex rings in a chiral magnetic
nanocylinder [36]. Our results, which replace the conventional
analytical formulation for the superspin model, enable the
straightforward prediction of the spin-flip SANS cross section
Isf (q) and the corresponding spin-flip pair-distance distribu-
tion function psf (r) arising from spatially antisymmetric spin
structures, such as nanovortices, through easily applicable
analytical expressions.

The paper is organized as follows: We start out by ana-
lyzing the main features of the first-order MNPSE method
for the spin-flip SANS cross section and the pair-distance
distribution function (Sec. II). This approach is valid for an
arbitrary linear magnetization distribution. Subsequently, for
the particular case of a linear vortex, we derive analytical
expressions for the two- and one-dimensional SANS observ-
ables (Sec. III). The analytical expressions are compared to
the results of micromagnetic computations. Section IV sum-
marizes the main findings of this study. We refer to the
Supplemental Material [37] for details regarding the analytical
derivations and the micromagnetic SANS simulations (see
also Refs. [38–40] therein).

II. LINEAR MNPSE METHOD

This approach is based on the following expansion for the
magnetization vector field:
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FIG. 1. “Phase diagram” for the azimuthally averaged spin-flip SANS cross section Isf (q) [Eq. (2)] and for the spin-flip pair-distance
distribution function psf (r) [Eq. (3)] within the limits of the first-order magnetization model. The left panel shows the analytical results,
while the right panel features the corresponding results of the micromagnetic simulations. The ratio ι of the zero-order coefficient I0

sf and the
first-order coefficient I1

sf determines the appearance of vortex-type spin structures. Field (B0 = μ0H0) variations in the simulations correspond
to ι variations in the analytical part (zero field: ι → ∞; saturation: ι → 0). (a) Color-coded plot of the normalized Isf (q) as a function of
ι = I1

sf/I0
sf and qR. The black solid line in (a) describes the shift of the maximum in Isf (q) towards qmax

∼= 2.50/R [white dashed line, compare
(e)]. (b) Normalized psf (r) as a function of ι and r/R. The black solid line in (b) describes the shift of the zero in psf (r) towards rz

∼= 1.07R
[white dashed line, compare (f)]. (c) Normalized Isf (qR) and (d) normalized psf (r/R) for different ι [see the inset in (d)]; the inset in (c) displays
Isf (q)/Imax

sf for 4 < qR < 10. The colored horizontal lines in (a) and (b) correspond, respectively, to the curves in (c) and (d).

where r′ = [x′, y′, z′] denotes the position vector in the local
particle frame. The model consists of 12 expansion coeffi-
cients per particle, i.e., three zero-order coefficients mi

0 and
nine first-order coefficients m jk

1 . For a dilute assembly of
spherical nanoparticles, the MNPSE formalism yields the
following expression for the azimuthally averaged spin-flip
SANS cross section [28,37]:

Isf (q) = I0
sf f (qR)2 + I1

sf f ′(qR)2, (2)

where R is the particle radius, and the field-dependent co-
efficients I0

sf and I1
sf represent complicated averages of the

magnetization coefficients mi
0 and m jk

1 over the particle as-
sembly and over the detector plane. The corresponding basis
functions are given by (u = qR)

f (u) = sin u − u cos u

u3
,

f ′(u) = df

du
= (u2 − 3) sin u + 3u cos u

u4
.

Here, f (u) is the form-factor function of the unit sphere
[18], and f ′(u) is the related first-order derivative. By in-
verse Fourier transformation, we find from Eq. (2) the related

pair-distance distribution function [37]:

psf (r) = I0
sf

πr2

6R3

[
1 − 3r

4R
+ r3

16R3

]
+ I1

sf
πr2

10R3

[
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4R
+ 5r3
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− r5

32R5

]
. (3)

While the zero-order contribution (I0
sf ) arises from symmetric

(parallel, positive) correlations only, the first-order contri-
bution (I1

sf ) contains antisymmetric (antiparallel, negative)
correlations. By comparison to micromagnetic simulations
using Mumax3 [41,42]—including isotropic exchange, a ran-
dom cubic anisotropy [43], the Zeeman interaction, and
the demagnetizing field—we find that this linear approach
[Eqs. (2) and (3)] already captures the main features of vortex-
type spin textures seen in the SANS observables.

The results that are embodied by Eqs. (2) and (3) are sum-
marized in Fig. 1. Prominent features regarding vortex-type
spin structures are the decreased spin-flip scattering inten-
sity Isf (q) at momentum transfer q = 0 [see Figs. 1(a), 1(c),
1(e), and 1(g)] and the damped oscillatory behavior of the
pair-distance distribution function psf (r) exhibiting negative
(antiparallel) correlations related to a vortex [see Figs. 1(b),
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1(d), 1(f), and 1(h); compare to [23,31,44]]. In the limiting
case of ι = I1

sf/I0
sf → ∞ (modeling the remanent state) our

linear theory predicts a maximum of Isf (q) at qmax
∼= 2.50/R

[maximum of [ f ′(u)]2]. This prediction is in excellent agree-
ment with the result from our micromagnetic simulations,
where we find qmax(B0 = 0 T) ∼= 2.50/R [see Fig. 1(g)]. Fur-
thermore, the relevant zero of psf (r) is predicted as the result
of the following cubic equation that is derived from Eq. (3):

ν3 + 4ν2 +
(

2 − 10

3ι

)
ν −

(
8 + 40

3ι

)
= 0, (4)

where ν = r/R. For ι → ∞, Eq. (4) predicts the zero at
rz

∼= 1.07R, whereas in our micromagnetic simulations we
find rz(B0 = 0 T) ∼= 1.03R [see Fig. 1(h)].

Beyond these limits for the momentum transfer qmax and
the “zero” correlation length rz we find two specific transi-
tion points for ι in the two-dimensional (2D) maps shown
in Figs. 1(a) and 1(b). In Fig. 1(b) we observe for ι > 1 the
occurrence of negative correlations [negative values of psf (r)],
and in Fig. 1(a) we see that the scattering intensity at the origin
of reciprocal space, Isf (q = 0)/Imax

sf , is constant for ι < 5 and
decreases for ι > 5. The micromagnetic simulation results
reveal an analogous behavior [compare Figs. 1(e) and 1(f)].

III. MNPSE METHOD: THE CASE OF A LINEAR VORTEX

In the formulation of the linear MNPSE method, the pa-
rameters I0

sf and I1
sf [in Eqs. (2) and (3)] are arbitrary functions

of the 12 magnetization expansion coefficients in Eq. (1). In
the following, we aim to adapt the linear MNPSE method
to include physically motivated parameters (replacing I0

sf and
I1
sf ). This approach allows us to obtain a scattering model

that is more closely related to the underlying micromagnetic
Hamiltonian in the sense that it contains information on the
vortex helicity, on the orientation distribution of the vortex
axes, and on the transformation behavior of the energies in
the Hamiltonian under space inversion.

We consider a dilute assembly of noninteracting spherical
nanoparticles that are rigidly embedded in a homogeneous and
nonmagnetic matrix. Each particle is assumed to have a ran-
dom orientation of its (cubic or uniaxial) magnetic anisotropy
axis with respect to the externally applied magnetic field
H0 ‖ ez, which defines the laboratory frame of reference. In
addition to magnetic anisotropy and the Zeeman interaction,
we consider an isotropic exchange energy and, most impor-
tantly, the magnetodipolar interaction (see the Supplemental
Material [37]). When the spin structure of such a spherical
nanoparticle is computed starting from saturation, we always
find—using the material parameters of iron—a vortex-type
texture at low fields and for particle sizes larger than about
20 nm [23,44]. It is the dipolar interaction that is responsible
for the vortex formation.

Based on these simulation results, and with the aim to
obtain an approximate expression for the spin-flip SANS cross
section of an ensemble of vortex-carrying randomly oriented
nanoparticles, we introduce a magnetization model with a uni-
form (constant) part of magnitude m0 and a linear vortex term
of magnitude m1. More specifically, the basic magnetization

vector field is written as

M′(r′) = m0e′
z + m1v(r′), (5)

where e′
z = [0, 0, 1] is the unit vector in the z′ direc-

tion, v(r′) = [−y′, x′, 0] is the linear vortex field, and r′ =
[x′, y′, z′] is the position vector with reference to the local
vortex frame. Compared to Eq. (1), the number of expansion
coefficients in Eq. (5) has been reduced to two. A positive
m1 indicates a counterclockwise (CCW) or right-handed sense
of rotation, while a negative m1 corresponds to a clockwise
(CW) or left-handed sense of rotation. We note that for a mi-
cromagnetic Hamiltonian that contains the isotropic exchange
interaction, magnetic anisotropy, the Zeeman, and magne-
todipolar interaction, there exists no preference for CCW or
CW vortex rotation senses in the particles. CCW and CW
vortices appear with equal probability so that the chiral func-
tion averages to zero (see below). However, by including
the Dzyaloshinskii-Moriya interaction (DMI), which breaks
space-inversion symmetry, chirality selection takes place and
leads to a nonzero chiral function [45].

Equation (5) models a linear vortex in the local vortex
frame. We introduce a zy rotation matrix R(α, β ) that trans-
forms the local magnetization M′ into the laboratory frame
of reference, where α and β denote the (global) polar and
azimuthal angles, respectively. The resulting global magne-
tization vector field is then obtained as

M(r; α, β ) = R(α, β ) · M′(RT (α, β ) · r). (6)

Using Eq. (6) in the MNPSE method [37], we define the
ensemble-averaged (dilute) SANS cross sections as

〈
d�sf,χ

d	

〉
= 1

2

∫ 4π

0

[
d�CCW

sf,χ

d	
+ d�CW

sf,χ

d	

]
ψ (α, β )dϒ, (7)

where dϒ = sin αdαdβ is the solid-angle differential, and
d�CCW

sf,χ

d	
(q; α, β ) and

d�CW
sf,χ

d	
(q; α, β ) are the SANS cross sec-

tions referring to two nanoparticles with the same orientation
(α, β ), but opposite senses of vortex rotation (mCCW

1 =
−mCW

1 ). The function ψ (α, β ) is a field-dependent probability
distribution that models the orientation of both the CCW and
CW vortex rotation axes (no distinction between the different
polarities); its origin is related to the distribution of the net
magnetization vectors of the nanoparticles. For simplicity, we
assume a uniform distribution ψu on the spherical surface,
which is limited by a field-dependent conical opening an-
gle 0◦ � αc � 90◦. The azimuthally symmetric distribution is
then given by (see [37] for details)

ψu(α, β ) = �(1 − α/αc)

2π (1 − cos αc)
, (8)

where �(ξ ) is the Heaviside function. In the fully saturated
case (B0 → ∞) it follows that αc → 0, and αc increases with
decreasing applied magnetic field. By inserting Eqs. (5)–
(8) into the formalism of the MNPSE method, we obtain
the following final expressions for the randomly averaged
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FIG. 2. Illustration of the 2D (normalized) spin-flip SANS cross section and chiral function computed from Eqs. (9) and (10) reflecting
the saturation and remanence cases (particle size: D = 2R = 40 nm) (linear color scale). Parts (a), (b) and (g), (h) show snapshots of the
underlying real-space spin structures. The left panel shows the analytical results, while the right panel features the results of the micromagnetic
simulations. The incoming neutron beam (‖ ex) is perpendicular to the applied magnetic field H0 ‖ ez (B0 = μ0H0). The maximum of the
spots in (d) and (j) is found at qy,max

∼= 2.50/R. Parts (e), (f) and (k), (l) display the respective chiral functions in the remanent state for
counterclockwise (CCW) and clockwise (CW) vortex rotations. Note that the specific values for αc = 27◦ and for the ratio m1/m0 = 0.7 in
(d) are based on a fit of the analytical function [Eq. (9)] to the 2D simulation data shown in (j). The value of αc = 27◦ corresponds to an applied
field of ∼0 mT.

2D spin-flip SANS cross section and chiral function [37]:〈
d�sf

d	

〉
(q, θ ) = W

8
[m0 f (qR)]2 × [12 − (cos2 αc + cos αc)[3 cos2(2θ ) + 2 cos(2θ ) + 3] + 4 cos(2θ )]

+ W

2
[Rm1 f ′(qR)]2 × [3 − (2 cos2 αc + 2 cos αc − 1) cos(2θ )], (9)〈

d�CCW,CW
χ

d	

〉
(q, θ ) = ±W [Rm0|m1| f (qR) f ′(qR) cos θ ] × [4 + cos2 αc + cos αc − 3(cos2 αc + cos αc) cos2 θ ], (10)

where W is a scaling constant. In Eq. (10) we have separated
the chiral function into CCW (“+” sign) and CW (“−” sign)
contributions. For the here-considered micromagnetic energy
contributions [37] (with no chirality selection taking place), it
then follows that

〈
d�χ

d	

〉
= 1

2

[〈
d�CCW

χ

d	

〉
+

〈
d�CW

χ

d	

〉]
= 0. (11)

Figure 2 displays Eqs. (9) and (10). At saturation [Figs. 2(a)
and 2(c) and Figs. 2(g) and 2(i)], with αc = 0◦ and m1/m0 =
0, the spin-flip SANS cross section exhibits the well-known
sin2 θ cos2 θ angular anisotropy. At remanence [Figs. 2(b) and
2(d) and Figs. 2(h) and 2(j)], with αc = 27◦ and m1/m0 = 0.7,
we observe for the spin-flip signal an anisotropy that strongly
differs from the saturated case, with maxima for θ = 90◦.
This observation strongly suggests that the magnetization
Fourier components are anisotropic, i.e., M̃x,y,z = M̃x,y,z(q, θ )
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[compare to Eq. (4) in [37]]. Consequently, to not lose this
information, the experimental data analysis should be con-
centrated on 2D spin-flip data rather than on the azimuthally
averaged 1D data. In micromagnetic simulations of spherical
nanoparticles, very similar scattering patterns were observed
[27,46].

Averaging Eq. (9) over the angle θ , i.e., (2π )−1∫ 2π

0 (· · · )dθ , yields the 1D quantity [37]

〈Isf〉(q) = 3W

16
[m0 f (qR)]2(8 − 3 cos2 αc − 3 cos αc)

+ 8
3W

16
[m1R f ′(qR)]2. (12)

By comparison to Eq. (2) we note that the new parameters m0,
m1, and αc in Eqs. (9) and (10) are related to the coefficient
ratio I1

sf/I0
sf as follows:

ι = I1
sf

I0
sf

= 8m2
1R2

m2
0(8 − 3 cos2 αc − 3 cos αc)

, (13)

which emphasizes the importance of the vortex-axes distribu-
tion function. The angle αc may be obtained from the analysis
of (preferentially 2D) experimental spin-flip SANS data [com-
pare to Figs. 2(d) and 2(j) and the video clip in [37]].

The here-presented linear vortex model is applicable in
cases in which the vortex exhibits a single modulation over
the particle radius (with a maximum spin-rotation angle from
about 0◦ to 90◦ from the center to the surface). For the
case of skyrmions, which are expected to form in larger
nanoparticles with broken spatial inversion symmetry, a larger
rotation angle (by about 180◦) may occur so that higher-order
terms should be taken into account in the MNPSE expansion.
Moreover, as mentioned earlier, we expect the formation of

dipolar-energy-driven vortex structures in nanoparticles with
a size (diameter) that is significantly larger than the respective
single-domain limit [23].

IV. CONCLUSION

In this paper, we have demonstrated that the linear MNPSE
approach captures the main effects in the spin-flip SANS
cross section and pair-distance distribution function stemming
from dilute assemblies of spherical nanoparticles exhibiting
vortex-type spin textures. A crucial insight is that the linear
functionality represents the most important contribution to
the magnetic neutron scattering cross section. Based on the
specific case of a linear vortex model, we have derived analyt-
ical expressions for the 2D and 1D spin-flip and chiral cross
sections of an ensemble of randomly oriented vortex-carrying
nanoparticles. The maximum of the spin-flip scattering in-
tensity and the zero of the pair-distance distribution function
appear, respectively, at momentum transfer qmax

∼= 2.50/R
and position rz

∼= 1.07R, where R denotes the radius of the
spherical nanoparticles. The analytical predictions, which en-
able, e.g., the determination of the field-dependent conical
opening angle αc of the vortex-axes distribution from exper-
imental data, are in very good agreement with the results of
micromagnetic simulations. The chiral SANS cross section is
sensitive to the vortex rotation sense, but in a many-particle
system with no chirality selection, it averages to zero (as
expected). A candidate for chirality selection is the DMI in-
teraction that breaks space-inversion symmetry.
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