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Exploring metamagnetism in triangular Ising networks: Insights from further-neighbor
interactions with a case study on ErGa2
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Recent attention to frustrated magnetism has revived interest in most fundamental models of the latter, such
as the classical triangular Ising lattice (I-3). Despite the long history, our understanding of the physics of I-3 is
still patchy, and even the mean-field magnetic phase diagram has been addressed only in specific cases. Here we
present a study considerably more exhaustive than those available in the literature, including arbitrary Heisenberg
interaction up to 4th nearest neighbors (NN) identifying all inequivalent magnetic patterns up to the 8th NN (1901
of those), and calculating the phase diagrams in the external magnetic field. We then connect these findings with
a real-life material, ErGa2, which our calculations show to be a very good approximation to the I-3, despite its
crystallographically 3D character. We calculate, from first principles, the exchange parameters, and show that
they reproduce well the observed magnetization steps. We also find a possibility of additional narrow steps,
which may be observed in future experiments.
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I. INTRODUCTION

There has been recent interest in 2-dimensional magnetic
systems as they are often candidates for nontrivial magnetic
states, such as spin liquids [1–4]. Considerable progress has
been achieved regarding insulating 2D kagome lattices dom-
inated by short-range interactions [5]. Magnetic anisotropy
in such systems is small, and the continuous degeneracy of
magnetic order plays an important role.

A relatively recent addition to this landscape is rare-
earth-based systems [6] with a strong uniaxial anisotropy,
dominating over a relatively weak exchange. Interesting
physics there comes from the fact that, on one hand, the Ising
model on a kagome lattice does not show a phase transition
(as opposed to the famous square lattice [7]), and, on the
other hand, when embedded in a good metal background
the rare-earth ions show a relatively weak but long-range
and potentially sign-changing exchange interaction (related
to the Rudermann-Kittel-Kasuya-Yosida, RKKY, interaction
[8–10]). This leads to these materials exhibiting a number of
metamagnetic transitions, that is, discrete steps in magnetiza-
tion as a function of magnetic field, ranging from two to as
many as nine steps.

In this case, the strong geometric frustration associated
with the kagome lattice is not necessary (albeit may be help-
ful). The simple triangular, not really frustrated in Heisenberg
or XY models, where the ground state is uniquely defined
as a 120◦ spin star, is frustrated in the sense of an infinitely
degenerate discontinuous ground state, in the classical Ising
model [11].
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The classical Ising model on the triangular lattice (I-3),
while simple in the nearest-neighbors (NN) only approx-
imation, becomes increasingly richer and more complex
when further interactions are added [12–15]. For instance,
in Refs. [12–15] some possible ground state orders were
identified, upon including up to the fifth nearest neighbors.
However, the studies so far have not been sufficiently ex-
haustive, even within a limited interaction range, nor has any
attempt been made to estimate how realistic the parameter
ranges that generate strong metamagnetism with a large num-
ber of magnetization steps are.

In this paper, we identify one such candidate, ErGa2

[the structure shown in Fig. 1(a)], a material known since
the 1970s [16,17] and having one strong magnetization step
[16–20], albeit some narrow steps below and above cannot
be confidently excluded. It is known, and we can confirm
the same computationally, to have an easy axis perpendicular
to the triangular Er plane, with a strong anisotropy [22,23],
with the large magnetic moment of 9.5 μB [16–20]. Our cal-
culations also show a strong NN ferromagnetic interaction
perpendicular to ab plane, making it a perfect implementation
of the classical I-3 model.

The paper is organized as follows. First, since we believe
that, despite a number of papers on long-range triangular
Ising the full phase diagram has not been established and its
complexity is not appreciated, in the first part, we study the
I-3 model with up to the 3rd nearest neighbors in a range
of parameters J2 and J3 (J1 in this part is set to 1), and in
some cases adding a rather small J4 in order to reveal new
phases otherwise degenerate with some others. The richest
phase diagram is observed when all interactions are antiferro-
magnetic (AF); this case is discussed in Sec. III. Subsequently,
a more realistic case, inspired by RKKY and by our calcu-
lations for ErGa2, where J1, J2 > 0 (antiferromagnetic) and
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FIG. 1. (a) Crystal structure of ErGa2. (b) Effective 2D triangular
lattice.

J1, J2 < 0 (ferromagnetic), is presented. Next, we present our
first-principles calculations of J1−4 in ErGa2 and compared
the phase diagram in the regime corresponding to the calcu-
lated values (as well as “around” them, to account for possible
inaccuracy in DFT calculations).

II. GENERAL MODEL

The model magnetic Hamiltonian of up to fourth nearest
neighbor (4NN) in the presence of an external magnetic field
is as follows:

H =
∑

〈i j〉1

J1mz
i m

z
j +

∑

〈i j〉2

J2mz
i m

z
j

+
∑

〈i j〉3

J3mz
i m

z
j +

∑

〈i j〉4

J4mz
i m

z
j − h

∑

i

mi, (1)

where m are the normalized moments (m = S/|S|, |m| = 1),
Ji are the exchange parameters of the ith NN (i = 1–4) de-
fined in Fig. 1(b), and h = HextM is the Zeeman energy in
the external field Hext||z. In particular, in the later discussed
case of ErGa2, this approach is justified by the fact that the
calculated Er magnetic moments depend very little on the
assumed magnetic pattern.

Since finding a new ground state is generally not a trivial
task, particularly when more further neighbors are included,
in our study, we adopted a similar approach to Ref. [24] for
energy comparison across a predetermined set of possible
magnetic patterns. To construct this set, however, instead of
a semi-intuitive approach as in the previous studies, we have
developed a protocol for a systematic search to identify all
inequivalent orderings for any supercell up to a given size.
In what we report below, the maximum length of the lattice
vectors used to construct the cell is limited to the 8th-NN
distance (16.744 Å in ErGa2). The algorithm yielded 1910 in-
equivalent spin Hamiltonians [i.e., excluding patterns having
the same Hamiltonian Eq. (1) with nonzero J1−4]. In addition,
we also included one particular pattern outside of our cutoff
that has been suggested in the earlier study by Tanaka [12].
Then, the phase diagrams were obtained by identifying the
configuration with the lowest energy for every parameter set
(i.e., h and Ji ).

Figure 2 selectively displays states explicitly discussed in
this paper. For a comprehensive compilation of magnetic pat-
terns identified as ground states or closely approaching ground
state energies, please refer to the Supplemental Material [21].
Each state is labeled with a number preceded by the “#” sign
as defined in both Fig. 2 and the Supplemental Material.

In our first-principles-based analysis, we calculated the
total energies for seven different magnetic orderings, #1, #2,

#3, #4, #5, #9, and #12, as shown in Fig. 2. The data were
then fitted to Eq. (1) to extract exchange parameters JDFT

1−4 .
The total energy for each configuration was calculated using
the Vienna ab initio Simulation Package (VASP) [25] within
the projector augmented wave (PAW) method [26,27]. The
Perdew-Burke-Ernzerhof (PBE) [28] generalized gradient ap-
proximation was employed to describe exchange-correlation
effects. The on-site Coulomb interactions are taken into ac-
count using LDA+U [29] to improve the description of the
interactions between the localized f electrons of Er. A large
U − J = 8 was used. The experimental lattice parameters
a = 4.1861 and c = 4.0187 Å taken from Ref. [17] were used
in all the calculations.

Due to the small energy scale associated with the exchange
interactions, additional care was taken to ensure proper energy
convergence concerning the k-point mesh. For the out-of-
plane components, since we assume all the layers to be
equivalent, a sufficiently large kz = 13 is used for all calcu-
lations. On the other hand, numerical errors can arise from
the comparison between different in-plane cell shapes. To
mitigate the inconsistencies in the corresponding k-space in-
tegration, the ferromagnetic state was evaluated for all cell
shapes involved (i.e., #1, #2, #5, #9, and #12), and the k-point
mesh was increased progressively until the energy differ-
ence between any given state and the FM state converged
to 10−4 eV.

III. GENERAL DISCUSSION

Case 1: J1, J2, J3, and J4 > 0

In the first part, we consider the most frustrated case where
all the magnetic moments are antiferromagnetically coupled
to each other (i.e., all Ji > 0) with the 4NN only added to
lift the observed degeneracies. Figure 3(a) shows the phase
diagram for J3 = 0 which corresponds to the 2NN case. There
are four major stable phases in the given parameter space. For
J2 > 0, only #1 exists without an external field, h, and the rest
are induced by h. The ground state at the low field is stripe
AF and borders with #2 or #3 depending on the strength of
J2. Along the boundaries separating #1 and #2, #1 and #3,
as well as #3 and #4, there are also subtle traces of multiple
degenerate states, where a few very tiny points corresponding
to phases such as #10 or #17 can be discerned.

To investigate the behavior of the possible degeneracies,
we added a small finite J3 = 0.02 as shown in Fig. 3(b). As
a result, several very thin straight lines emerge. One in the
low-field region (H � 3) corresponds to phase #7, which lies
between phases #1 and #2, indicating a triple degeneracy. This
degeneracy can be verified analytically by equating the energy
of the degenerate states. In this case, the magnetic energies for
the degenerate states in the 2NN approximation are

E1 = −1 − J2, (2)

E2 = −1 + 3J2 − 1
3 h, (3)

and

E7 = −1 − 1.4J2 − 1
5 h. (4)

By imposing the condition, E1 = E2 = E7, one finds the com-
mon solution H = 12J2. It is worth noting that at zero field,
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FIG. 2. Possible magnetic ground states and their corresponding magnetization per site under study. Blue and red colors indicate opposite
spins. This graph shows only the states explicitly discussed in the text. For a more comprehensive list, please refer to the Supplemental
Material [21].

there is a different type of antiferromagnetic (AF) ground
state, phase #12. There are also two long parallel lines corre-
sponding to phases #27 and #24 that develop between phases
#1 and #3, with phase #37 still degenerate at the #1–#27
boundary. A point of triple degeneracy (#1, #2, and #3) now
develops into a new phase (#56) and is surrounded by six
different phases, as shown in the inset.

In the high-field region (H � 6), although the presence
of J3 partially removes the degeneracies between #3 and #4,
which, in turn, leads to the emergence of #10, the colored dots
that correspond to #17 and #50 (#25) remain degenerate at
the #4 and #10 (#3 and #10) border. This shows a sextuple
degeneracy in the 2NN approximation. By following the same
procedure mentioned earlier, one finds the condition for the
sextuple degeneracy to be h = 6 + 6J2, where #3, #4, #10,
#17, #25, and #50 are degenerate.

The state #17 corresponds to the total magnetization M =
7/9 and has been observed and discussed in Ref. [14] as its
formation requires introducing J4. Additionally, around H ∼
6, a very tiny region (#19) bordering with #2, #3, and #10
starts to emerge.

Adding an even longer range, and an even smaller inter-
action J4 = 0.015, forces nearly all the J3-induced phases
to disappear except that the tiny region of #19 remains
unaffected [see Fig. 3(c)]. In the low-field regime, the disap-
pearance of #7 and #56 is mainly due to the slight expansion
of the #2 phase, while #12 at small J2 around zero field is
directly replaced with #42. The rest are replaced with new
phases #44 and #45 (#16 and #17) between #1 and #3 (#3
and #4). It is interesting to note that at precisely H = 0 the
states #21 and #42, despite having different magnetizations—
M = 0 and 1/9, respectively—exhibit identical exchange
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FIG. 3. [(a)–(d)] show the phase diagrams for different weak
J3 and J4 and (e) M-H curve for (J3, J4) = (0.05, 0.015) at several
different J2 as specified in the legend.

Hamiltonians up to the 4th NN. As a result, these states are
always degenerate at zero field.

When J3 increases further to 0.06, as shown in Fig. 3(d), a
small region of state #5 at a very large J2 begins to emerge.
The states #7, #24, #27, and #10 reappear along with a new
phase #25 and the states #45 and #16, promoted by the small
J4 interaction, are replaced. Two small regions, #19 that is
insensitive to the small J4 as well as #42 that is induced by J4,
begin to expand significantly as the J3 increases. Interestingly,
the long narrow belt-shaped area between #3 and #4 consists
of three parallel thin lines running across nearly the entire
range of J2. These thin lines, resulting from the lifting of de-
generacy by weak interactions with farther neighbors, appear
in the the M-H plots as three successive short steps illustrated
in Fig. 3(e), which depicts the field-dependent magnetization
for J2 = 0 and three nonzero J2 values. The shape of these
short steps in the high-field region, resulting from the further-
neighbor interactions, does not vary with J2 when J2 � 0.1
and persists throughout nearly the entire range.

Similar patterns can also be observed in the smaller field
regions (H ∼ 3) as indicated by the orange and purple lines
(J2 = 0.1 and 0.3) as a consequence of J3 lifting the degen-
eracy between #1 and #2, or #1 and #3. These trends suggest
some delicate competition between J3 and J4 as each might

FIG. 4. (a), (c), and (d) show the phase diagrams for different
weak J3 and J4 and (b) M-H curve for (J3, J4) = (0.05, 0.015) at
several different values of J2.

favor particular orderings and many of the states are very close
in energy. These short steps are likely to exist in a system
with weak further neighbors, but could easily get washed out
in an experiment due to defects in the sample. In the later
discussion, we will only consider a small fixed J4 = 0.015
simply to lift the obvious degeneracies.

As J3 increases to 0.1, as shown in Fig. 4(a), the phases
induced by further NN interactions, namely #5, #7, #10, #19,
and #42, continue to expand. Moreover, phase #12 resurfaces,
and many new states emerge, particularly within three smaller
regions (marked as a-1, a-2, and a-3) as illustrated in magni-
fied views. Three long parallel stripes between #1 and #3 are
shortened from both ends. This shrinkage can be attributed
to the expansion of #5 (#7) in the large (small) J2 region.
Concurrently, the emergence of new phases #35 and #56 in
the a-2 region further contributes to this phenomenon.

The region between phases #1 and #2 mainly consists of
phases #12, #42, and #7. In the more focused region, labeled
as a-1, which is characterized by a low field and small J2, there
also exist two other intermediate states, #29 and #46.

On the other hand, along the #3–#4 boundary, three parallel
stripes remain. The middle stripe, corresponding to phase #10,
is strongly favored by J3 and expands with increasing J3, while
the other two states, #25 and #17, as well as the trace of
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#50, which is still degenerate at the #4 boundary, appear to
be unaffected by a moderate increase of J3.

Interestingly, in the a-3 region, near the point where all
three major stable phases #2, #3, and #4 are previously degen-
erate in the absence of farther NN interaction, more phases
are formed. Within this small parameter space and these small
field windows, there are 10 developed phases with possibly
more phases degenerate at the boundaries.

Figure 4(b) shows the M-H curves for three different values
of J2 and J3/J4 = 0.1/0.015. The field dependency is rather
sensitive to J2. While all three curves have rather complicated
transition steps, the richest transition behavior happens when
the magnitude of J2 is roughly comparable to J3 = 0.1, as
those complicated phases reside within a-1 and a-3 and are
likely to be involved in the competition. As discussed earlier,
this is a result of the frustration between different neighbors,
which in turn leads to a rich phase diagram in the M-H space,
which can contain as many as 10 transition steps.

The phase diagrams for J3 = 0.3 and 0.5 are shown in
Figs. 4(c) and 4(d), respectively. A few trends emerging at
larger J3 can be summarized as follows. Between J3 = 0.1
and 0.3, the changes are rather dramatic. As J3 continues
to increase, phases #2, #5, #6, #10, #12, #19, #42, and #56
are promoted, primarily in the small J2 region (except for
the phase #10). Meanwhile, the states in the region where
J2 > 0.3, particularly #1, #3, and the phases in between, are
replaced by a new set of states.

The AF phase #1 in the low-field region is now completely
replaced by #12 for small J2 and replaced by a less common
AF phase #14 for large J2. The latter phase (#14) has been
discussed analytically in the early study by Tanaka [12] (the
only state outside of our cell structure search, because it is
unusually elongated in one direction).

The shrinking of #3 and the replacement of stripe phases
can be attributed to the expansion of #5 and #10 as well as
the emergence of new phases such as #11, #26, and #33.
While there are still small regions of new phases like #40
and #28 that emerge, most of the small intermediate states
are suppressed [i.e., in the regions such as a-1, a-2, and a-3
defined in Fig. 4(a)]. This trend becomes more obvious as J3

increases further.
Between J3 = 0.3 and 0.5 [Figs. 4(c) and 4(d)], the states

for J2 � 0.4 stay roughly the same, despite some mild bound-
ary shifts. For larger J2, the emergence of #8 in the lower field
region (1 < H < 3) replaces both #26 and #56 and causes
both #5 and #40 to shrink. In the higher field region, state #28
expands rapidly and absorbs all the small states that lie within
the small region between #2, #6, and #11.

One can see that in Fig. 4(d), the small fragmented regions
between the boundaries have nearly all been suppressed, and
larger domains are starting to form. This suggests that the
system is considerably less frustrated within this range of
parameters.

Case 2: J1, J2 > 0 and J3, J4 < 0

Inspired by our DFT calculations for the ErGa2 systems,
reported in the next section, this second scenario is expected
to mimic the longer-range RKKY-type exchange couplings,
where the sign oscillates with distance. We then consider up

to the fourth NN where both J3 and J4 < 0 (FM). This setup
is also more consistent with our DFT data, where the model
provides an excellent fitting quality.

In this case, we attempt to explore the behavior in the
parameter space around the exchange coupling parameters
that are extracted from our first-principles calculations. The
phase diagrams are summarized in Fig. 5, where the top row
(a)–(c) and bottom row (e)–(h) correspond to J3 = −0.1 and
−0.3, respectively, and for each J3 several selected J4 values
are considered.

We first isolate the effect of J3 by comparing Figs. 5(a) and
5(e) and Fig. 3(a). We find that J3 alone does not introduce any
new phases but shifts the phase boundaries in favor, strongly,
of phases #1, #3, and #4. Due to the ferromagnetic nature of
J3, which reduces the frustration in the system, the multiple
degeneracies along the #3 and #4 boundary no longer persist.
In Fig. 5, both top and bottom rows (i.e., J3 = −0.1 and −0.3)
exhibit similar trends, in the sense that with increasing J4

new phases are developing in the region of small J2 and low
magnetic field, as well as along the #3 and #4 boundary. This
again shows some competition between J3 and J4 and one
expects rich phase diagrams when J4 and J3 are comparable.

The configurations in the top row [i.e., Figs. 5(a)–5(c)] are
particularly of interest since a small J3 is more likely in a
real system. When J4 = −0.075 (that is, comparable to J3),
see Fig. 5(b), new phases (#7, #12, and #56) begin to emerge
between #1 and #2, similar to those shown in Fig. 3(b), but
with the boundaries slightly pushed down due to the effect
of a positive J3. This thin stripe #7 (containing #56), again,
indicates the possibility of having an additional short step in
the M-H curve for small J2 [see Fig. 5(d)]. Another phase #20,
which corresponds to M = 1/2, begins to develop in a small
triangle region that borders #2, #3, and #4. On the other hand,
with a slightly larger J4 = −0.125, both #7 and #12 expand
and a new phase #10 appears along #3–#4 border. In this case,
one can see four transitions (five phases) in the M-H curve
as shown in Fig. 5(d). It is worth noting that, coincidentally,
while all three curves contain the same magnetization steps,
for M = 0 and 0.5, the orderings for J2 > 0.1 are in fact in
different phases (#12 and #20, respectively).

In the bottom row [i.e., Figs. 5(e)–5(h)], a larger J3 further
stabilizes #1, #3, and #4, and this case, at the expense of #2, as
shown in Fig. 5(e), and it would require a larger J4 to introduce
new phases, as shown in Figs. 5(g) and 5(h). For J4 = −0.35,
phases #12, #20, and #56 favored by J4 expand into the pos-
itive J2 region. For J2 < 0.1, the pattern of involved phases
closely resembling that of Fig. 5(c) reappears.

IV. A CASE STUDY: ErGa2

To gain more insight, we look into a realistic system ErGa2

using first-principles calculations. We find that the interplanar
interactions are dominated by the ferromagnetic NN coupling
along c, which allows us to reduce the 3D Hamiltonian to an
effective 2D Ising model. The calculated parameters of this
model (which implicitly combine intraplanar and interplanar
interactions) are shown in Table I.

Figure 6(a) presents a comparison between the experimen-
tal M-H curves measured at 1.5 K [18] and those derived using
our parameters, JDFT

i , extracted from the DFT calculations in
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FIG. 5. Phase diagrams and magnetization vs applied field.

Table I. The agreement is very good, apart from an overall
overestimation of ∼30%, as is common in DFT calculation.
Particularly, the qualitative behaviors are accurately captured,
as both feature two distinct, well-defined steps of M = 0.5 and
1 that correspond to phases #3 and #4, respectively, and the ra-
tio between the two transition fields H2/H1 ∼ 3, as discussed
in Ref. [18], is also well reproduced.

It is worth noting that, owing to the strong easy-axis
anisotropy on the Er sites, one would anticipate the transitions
at H1, and H2 to be abrupt. The observed finite widths may
be due to sample quality, for instance, inhomogeneity. How-
ever, another interesting possibility is that crossover regions
between ≈ 0.6 and ≈ 1 T, and between ≈ 2 and ≈ 1 T, hide
inside unresolved narrow steps.

Indeed by observing the pattern in Fig. 5(b) and exploring
parameters near our DFT results, we managed to unveil two
additional steps—one corresponds to #7 and the other to #2
located within a very narrow range of field around H1—simply
by slightly reducing the NN J3 (J4) from −0.17 (0.075) to
−0.09 (0.055) as listed in Table I and labeled Jset1

i .

TABLE I. First to fourth NN interactions and their distances
d. JDFT

i (i = 1–4) are obtained by fitting into DFT calculations.
Jset1

i and Jset2
i are tuned manually around the DFT parameters to

explore the possible hidden steps. All values are divided by JDFT
1 =

0.285 meV.

iNN distance (Å) JDFT
i /|JDFT

1 | Jset1
i /|JDFT

1 | Jset2
i /|JDFT

1 |
1 4.186 1 1 1
2 7.250 0.055 0.055 0.140
3 8.372 −0.173 −0.09 −0.019
4 11.075 −0.075 −0.057 −0.025

With a slightly larger deviation from the JDFT
i parameter

set, we were also able to find another set of parameters Jset2
i

that produces an additional short intermediate state between
the #3 to #4 transition. Although the transition fields no longer
coincide as closely, the qualitative trend remains the same
(i.e., H2 ∼ 3H1). Based on this analysis, we believe that in
a more accurate experiment with better samples, it might be
possible to resolve two or more additional steps. It is also
important to note that the RKKY interaction, in reality, is
long-range oscillating and can potentially produce even more
states.

Second, the experimental data also reveal narrow yet dis-
tinct hysteresis loops during both transitions. To understand
the possible origin of hysteresis, we discuss the issue from

FIG. 6. The comparison of field-dependent magnetization be-
tween (a) DFT and experimental data taken from Ref. [18], and
(b) DFT and two additional sets of manually tuned parameters. The
exact field strengths are estimated based on experimental moment
M = 9.5 μB.
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two different aspects. If the intermediate states #7 and #2 exist
as we predicted, then direct (2nd order) transition from #1 to
#7 or #2 to #3 is prohibited, as the symmetries of these states
are incompatible. This manifests itself in that these transitions
require simultaneous multiple spin-flips, and nucleation of
finite-size domains of a new phase; i.e., they are the 1st kind
and potentially hysteretic.

On the contrary, the transition between #1 and #3, as well
as between #3 and #4, can be achieved by sequentially flipping
the spin one by one. In this case, one can easily establish the
order of the transitions by the critical field necessary to flip
one spin, with the field needed to flip all affected spins.

For instance, for the #1 to #3 transition, one can simply es-
timate the energy cost of flipping one spin in the entire lattice
under the field H ′

1, which has the analytic energy expression

E1+1flip − E1 = 4J1 + 4J2 − 12J3 + 8J4 − 2H ′
1 (5)

and for the full transition at H1 we have

E3 − E1 = 4J1 + 4J2 + 8J4 − 2H1. (6)

Similarly, for the #3 to #4 transition, we have the following
for the energy cost of flipping one spin in #3 under H ′

2,

H3+1flip − H3 = 12J1 + 12J2 − 12J3 + 24J4 − 2H ′
2, (7)

and the energy for the full transition,

H4 − H3 = 12J1 + 12J2 + 24J4 − 2H2. (8)

Interestingly, the difference between Eqs. (5) and (6), as well
as between Eqs. (7) and (8), depends only on J3. Using our
DFT parameter JDFT

3 , we find that flipping one single spin
in both cases requires a larger field than triggering the full
transitions (i.e., H ′

1 > H1 and H ′
2 > H2), and as a result, both

transitions are predicted to be hysteretic.

V. CONCLUSIONS

In conclusion, we have studied the effect of further neigh-
bors on metamagnetic transitions in the classical Ising model
on the triangular lattice. We determine the phase diagrams
for two scenarios through a comprehensive examination of
magnetic energy comparisons of all possible magnetic states
allowed within a supercell no longer than 8th NN, as well
as including one additional longer-ranged order discussed in
the earlier literature. We have considered two qualitatively
different sets of exchange Hamiltonians: one where all ex-
change interactions are antiferromagnetic which hosts the
richest phase diagram with high frustrations and multiple
near-degenerate phases. We discussed how these degenera-
cies are lifted by further-neighbor interactions, and lead to
exceptionally rich phase diagrams with up to 56 phases. The
second case, motivated by our DFT calculations for ErGa2,
is introduced to mimic the Ruderman-Kittel-Kasuya-Yosida
(RKKY) type of interaction where the sign of interactions
varies with distance. Furthermore, we present a case study
on a real-world system ErGa2. By incorporating our first-
principles-based exchange parameters into the I-3 model, we
were able to reproduce the experimentally observed magne-
tization steps. With the help of the analysis for the second
scenario, we also predict the possibility of additional steps that
could be revealed in better samples.

ACKNOWLEDGMENTS

We are grateful to P. Nikolic and G. Schwertfeger for
useful discussions. I.I.M. acknowledges support from the U.S.
Department of Energy through Grant No. DE-SC0021089 at
the beginning of this project and from the Office of Naval
Research through Grant No. N00014-23-1-2480 at a later
stage.

[1] L. Balents, Nature (London) 464, 199 (2010).
[2] L. Santos, M. A. Baranov, J. I. Cirac, H.-U. Everts, H.

Fehrmann, and M. Lewenstein, Phys. Rev. Lett. 93, 030601
(2004).

[3] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature (London) 492, 406
(2012).

[4] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C.
Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, Science 309,
1697 (2005).

[5] M. R. Norman, Rev. Mod. Phys. 88, 041002 (2016).
[6] K. Zhao, H. Deng, H. Chen, K. A. Ross, V. Petříček, G.
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