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Quantum tomography of magnons using Brillouin light scattering
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Quantum magnonics, an emerging field focusing on the study of magnons for quantum applications, requires
precise measurement methods capable of resolving single magnons. Existing techniques introduce additional
dissipation channels and are not apt for magnets in free space. Brillouin light scattering (BLS) is a well-
established technique for probing the magnetization known for its high sensitivity and temporal resolution.
The coupling between magnons and photons is controlled by a laser input, so it can be switched off when
a measurement is not needed. In this article, we theoretically investigate the efficacy of BLS for quantum
tomography of magnons. We model a finite optomagnonic waveguide, including the optical noise added by
the dielectric, to calculate the signal-to-noise ratio (SNR). We find that the SNR is typically low due to a small
magneto-optical coupling; nevertheless, it can be significantly enhanced by injecting a squeezed vacuum into
the waveguide. We reconstruct the density matrix of the magnons from the statistics of the output photons using
a maximum likelihood estimate. The classical component of a magnon state, defined as the regions of positive
Wigner function, can be reconstructed with a high accuracy while the nonclassical component necessitates either
a higher SNR or a larger data set. The latter requires more compact data structures and advanced algorithms
for postprocessing. The SNR is limited partially by the input laser power that can be increased by designing the
optomagnonic cavity with a heat sink.
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I. INTRODUCTION

Magnons, the quanta of spin waves, are promising can-
didates for nonsilicon based devices for wave or quantum
computing [1]. They couple to a variety of excitations such as
optical photons [2–8], microwaves [9–11], phonons [12,13],
and spin centers [14–17] making them versatile transducers.
In particular, magnonic systems based on Yttrium Iron Garnet
(YIG) [18] are interesting owing partly to their low dissipa-
tion, even in nanoscale samples [19,20]. Furthermore, since
the magnon frequency [10,11] and nonlinearities [20,21] are
externally tunable, they are candidates for scalable bosonic
qubits suitable for quantum error correction [22–25].

Using magnons for quantum applications requires the
ability to generate and measure nonclassical states of the
magnetization. The first states of this kind were recently ex-
perimentally demonstrated [26]. Theory proposals for state
generation in magnons includes both heralded measurement
techniques [27–29], and deterministic protocols [30,31]. Nev-
ertheless, quantum measurements of magnon states is less
explored. Classically, magnons can be probed using mi-
crowaves via ferromagnetic resonance experiments [32], NV
centers [15,16], electric currents via spin pumping [33–35],
and optical light via Brillouin light scattering (BLS) [36,37].
Microwave cavities can mediate a coupling between the
magnons and a superconducting transmon, which has been
demonstrated to perform magnon tomography [26,38–40].
Such a measurement would not be suitable for applications
which require a magnet to be in free space, such as magnetic
field sensing. Spin pumping into a spin-Hall material, such
as Pt, can be used for performing classical tomography of

magnons [35], however it is, in principle, not suitable for mea-
suring magnon coherence because of the dissipative nature of
spin-to-charge converters.

BLS is one of the most sensitive probes of the magneti-
zation with a high resolution of < µm and < ns [37], which
has allowed for detecting and mapping spin-wave eigen-
modes [41] and for investigating nonlinear processes [42]
in microdisks. BLS has also been recently used to probe
spin-wave time refraction in strips [43], and to observe
high-momentum magnons [44]. Unlike methods employing
microwaves or spin pumping, BLS does not lead to extra
dissipation because the coupling between the magnons and
the photons can be switched on and off using an external laser.
When compared to other methods, BLS might then be a useful
tool to also probe features of quantum states of magnons.

In this work, we theoretically propose and evaluate a
method for BLS-based tomography of magnon quantum
states. For simplicity and concreteness, we consider an op-
tomagnonic waveguide [5,8] made of a magnetic dielectric
as shown in Fig. 1, including the dielectric losses and added
noise. This geometry offers moreover an optimal overlap
between the photons and the magnons. The results are qualita-
tively general and hold for other geometries such as spheres,
except that a smaller overlap between the photon’s and the
magnon’s mode profiles leads to a decrease in the signal.

Input light propagating through the waveguide can inelasti-
cally scatter via magnons into the perpendicular polarization,
see Fig. 1, such that the output light of the waveguide has im-
prints of the magnon state. The homodyne data of the output
light can then be used to estimate the magnon’s density matrix
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FIG. 1. Envisioned setup consisting of a waveguide made of a
magnetic material. The red incoming line denotes a large coherent
optical input in the ey polarization. The green incoming lines denote
squeezed vacuum in the ex polarization while the outgoing line is
the output to be measured. A static magnetic field saturates the
magnetization along ey.

using a maximum likelihood estimate (MLE). Protocols based
on MLE were demonstrated for optical tomography with no
noise [45–48]. We generalize such protocols to include the
effect of output noise, and evaluate them for low signal-to-
noise ratio (SNR). The SNR is limited by a trade-off between
the strength of the magneto-optical coupling and optical dissi-
pation in the material, which typically go hand-in-hand [49].
To reduce the output noise, we consider a squeezed thermal
input in the polarization into which light is scattered. We
numerically characterize the fidelity of the tomography un-
der different signal-to-noise ratios for a classical (squeezed
coherent) state and a nonclassical (cat) state of the magneti-
zation. To this end, we numerically generate data to simulate
an experiment by analytically calculating the output optical
probability density for a given magnon state.

In Sec. II, we discuss and evaluate an MLE-based method
of estimating the magnon’s density matrix using the statistics
of the output photons for a general SNR and input squeezing.
In Sec. III, we evaluate the SNR for realistic material param-
eters. In Sec. IV, we analyze our system in Fig. 1 to find
the output light by solving the electromagnetic Hamiltonian
which includes BLS and optical damping within the magnet.
We conclude in Sec. V.

II. RECONSTRUCTION OF A MAGNON STATE

In an optomagnonic waveguide, see Fig. 1, a large ey po-
larized input pulse facilitates the exchange of quanta from
magnons to ex-polarized photons. The ex-polarized output is
affected by external noise and by impurity noise within the
magnet. In this section, we discuss the tomographic recon-
struction of a magnon state from a noisy output optical signal
for a general SNR and input squeezing.

The general procedure is described in Sec. II A. The fidelity
of reconstruction is discussed for a pure Gaussian state in
Sec. II B and a cat state in Sec. II C. To understand the re-
construction fidelity, we discuss the output optical probability
distribution explicitly in Sec. II D.

A. Evaluation procedure

The output photons are a mixture of optical noise and
magnons, such that the output annihilation operator âout is

Magnon BLS

Output Homodyne Output Histogram

Max. Likelihood

Noise Local Oscillator

FIG. 2. Schematic representation of the magnon tomography.
The input light is scattered via magnons, acquiring a noisy signal
which encodes the magnon state. A homodyne measurement on the
output photons is performed by mixing it with a local oscillator with
an amplitude αLO, providing amplification, and phase φ, setting the
phase of the quadrature to be measured, âφ as defined in Eq. (2). A
set of data corresponding to the measured values of âφ for a given
φ is acquired by subtracting the photocurrents Î1 and Î2. Such a set
is then used in the maximum likelihood procedure explained in the
text, giving an estimate of the magnon state. Data and probability
histogram depicted in the figure are illustrative.

given by

âout = cos θη̂out + sin θm̂, (1)

where η̂out is the noisy output if there were no coupling to
magnons, and m̂ is the annihilation operator of magnons. The
angle θ is a sample-dependent quantity of magneto-optical
origin, whose formula we discuss in detail in Sec. III, which
gives the SNR tan θ . As discussed there, we expect θ ∼ 0.2
for an optimally coupled optomagnonic cavity with no heat
sink. For evaluating the reconstruction procedure, we consider
three cases, θ/π ∈ {0.02, 0.25, 0.45}, in increasing order of
SNR tan θ ∈ {0.06, 1, 6.3}. For completeness, we discuss the
case of higher θ assuming future advancements in cavity and
material design as well as lower θ that can occur due to
experimental imperfections.

The homodyne data consists of measurements of the
quadratures of the output âout,

âφ = âoute
−iφ + â†

oute
iφ, (2)

by varying φ uniformly in the range [0, π ]. The phase φ is
set by a local oscillator mixed with the output signal via a
beam splitter, see Fig. 2. A set of experimental measurements
can be written as {(ai, φi )} for i ∈ {1, . . . , N} where N is the
number of measured samples, φi is the chosen φ for the ith
measurement, and ai is the measured value therein. Since
âout includes contributions due to the magnons, the output
homodyne data can be used to reconstruct the magnon state
as we now discuss.

For a given φ, the random variable âφ follows a probability
density pa(a, φ). We can write pa in terms of the magnon’s
density matrix ρ̂m as

pa(a, φ) = Tr[ρ̂mP̂(a, φ)], (3)
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where the operator P̂ is

P̂(a, φ) = 1

cos θ
pη

(
a − sin θm̂φ

cos θ
, φ

)
. (4)

We show the detailed derivation of Eq. (3) in Sec. II D. Here
pη(η, φ) is the probability density of the noise quadrature η̂φ ,
where both m̂φ and η̂φ are defined analogous to âφ . Under
equilibrium conditions, pη would correspond to the vacuum
fluctuations as photon frequencies are much higher than ambi-
ent temperatures. However, we can significantly decrease the
noise by injecting squeezed vacuum, cf. Fig. 1, such that

pη(η, φ) = 1√
2πσs

exp

[−η2

2σ 2
s

]
, (5)

where σ 2
s � 1 is the variance of the squeezed noise quadra-

ture. As φ is tuned externally for each data point, the
squeezing can be adjusted such that the quadrature η̂φ is
squeezed. We show in Sec. IV that σs ≈ e−rin where rin is the
squeezing parameter of the input, when the output is slightly
off-resonance with the cavity [see Eq. (57)]. This implies
that the squeezing is not significantly affected by the optical
impurities in the magnet.

When either θ → π/2 (infinite SNR) or σs → 0 (no noise),
we get P̂ → δ(sin θm̂φ − a), implying that the probability of
measuring âφ to be a is exactly the probability of measuring
m̂φ to be a/ sin θ . In this case, the magnon probability density
can be directly reconstructed using the optical probability
density, unless θ is too small. In general, we can interpret
Eq. (3) as follows: the probability of measuring âφ to be a
gives an estimate of m̂φ being close to a/ sin θ with an error
of σs cos θ , as expected from Eq. (1).

Equation (3) can, in principle, be inverted exactly to find ρ̂m

in terms of the probability density of the observed optical data.
However, it is known from classical estimation theory [50]
that an exact inversion amplifies noise exponentially, making
its numerical implementation infeasible. We then resort to a
statistical procedure using the maximum likelihood principle,
i.e., given a set of data, say (ai, φi ) for i ∈ {1, . . . , N}, we want
to find a magnon’s density matrix ρ̂m that maximizes the prob-
ability of observing this data set, i.e., maximize

∏
pa(ai, φi ).

We show in Appendix A that the optimal density matrix can
be found via the recursion relation,

ρ̂k+1 = Ẑ (ρ̂k )ρ̂k + ρ̂kẐ (ρ̂k )

2
, (6)

starting from an arbitrary initial guess ρ̂0, where

Ẑ (ρ̂) = 1

N

N∑
i=1

P̂(ai, φi )

Tr[ρ̂P̂(ai, φi )]
. (7)

Note that if the initial guess is a valid density matrix, i.e., ρ̂0 =
ρ̂

†
0 , ρ̂0 � 0, and Tr[ρ̂0] = 1, each ρ̂k is also a valid density

matrix. The convergence is guaranteed by the Banach’s fixed
point theorem.

To evaluate the fidelity of reconstruction for a given
magnon target state |
tar〉, we simulate an experimental data
set by generating N = 104 optical data points as follows. We
analytically derive pa(a, φ) corresponding to a given magnon
signal amplitude θ and magnon state |
tar〉 using Eq. (3).
We choose a φ ∈ [0, π ) uniformly and sample a using the

Target Low SNR

Med SNR High SNR

FIG. 3. The Wigner functions of the target state |
gau〉, and the
reconstructed outputs for θ = 0.02π (Low SNR), θ = π/4 (Med
SNR), and θ = 0.45π (High SNR), without the enhancement due
to the squeezing of optical input. The x and y axes correspond to the
real and imaginary values of 〈m̂〉. The fidelities of reconstruction in
the increasing order of SNR are 0.21, 0.92, and 0.96.

probability distribution pa(a, φ). The generated data is then
processed using MLE, Eq. (6), to find the prediction, giving a
workflow

|
tar〉 → {(ai, φi )}104

i=1 → ρ̂pred. (8)

We then plot the Wigner functions of the target and the
predicted states along with calculating the fidelity F =√〈
tar | ρ̂pred | 
tar〉. The number of simulated data points N
is chosen to be small for computational reasons.

B. Gaussian state

First, we evaluate the reconstruction of a squeezed coherent
state defined as

|
gau〉 = D̂(αg)Ŝ(rg, ψg)|0〉, (9)

where the operators D̂(αg) and Ŝ(rg, ψg) are, respectively the
displacement and the squeezing operator of the magnons (see
Appendix B for the definitions). Magnon squeezing can be
generated by anisotropies [29,51] and displacements can be
generated by a microwave excitation. We choose an arbitrary
set of parameters αg = 1.8 − 2.4i, erg = 1.5, and ψg = 2.7.

In Fig. 3, we discuss the results when there is no in-
put optical squeezing, i.e., σs = 1 in Eq. (5). The Wigner
functions of the target state and the reconstructed outputs
for three cases of θ are shown. As expected, the high SNR
case gives a high fidelity of reconstruction. Perhaps slightly
surprisingly, the SNR = 1 case also gives nearly the same
fidelity, although it underestimates the degree of squeezing.
For the low SNR case, the prediction severely overestimates
the number of magnons. This can be qualitatively understood
as follows. For θ 	 1, there is a very small probability of
observing a photon. So, each observed photon is taken by
the algorithm as a strong indication of the presence of a high
number of magnons, essentially amplifying the noise. The
predicted 〈m̂〉 = 1.5 − 1.9i is smaller in magnitude than the
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Target Low SNR

Med SNR High SNR

FIG. 4. Similar plot as in Fig. 3 but with squeezed input with the
standard deviation in the squeezed quadrature being σ−1

s = 5 times
smaller than its vacuum value. The fidelities of reconstruction in
increasing order are 0.67, 0.96, 0.97.

target displacement αg, although they both have almost the
same angle with an error of less than 2 ◦ (note that the number
of magnons is much larger than |〈m̂〉|2). Thus, even for a
very low SNR, the magnon phase can be predicted with a
high accuracy which is useful for measuring weak magnetic
fields [52].

Now, we consider the case with squeezed input with a real-
istically achievable parameter σ−1

s = 5 [53–55], that should
improve the reconstruction fidelities. As we see in Fig. 4,
even for the low SNR case, we get the correct 〈m̂〉 although
not the squeezing parameters. Medium and high SNR cases
are indistinguishable. Here, the reason for nonunity fidelity is
the choice of a smaller Hilbert space cutoff for computational
reasons. Note that the cutoff is not given by the magnon state
but rather by a faithful representation of the operator P̂ [see
Eqs. (4)] which approximates a δ function for tan θ/σs � 1.

C. Cat state

The second state we consider is a cat state,

|
cat〉 = N |αc〉 + eiψc |−αc〉√
2

, (10)

where N is a normalization constant, and | ± αc〉 =
D̂(±αc)|0〉. Magnon cat states can be generated using
heralding protocols assisted by microwaves or optical pho-
tons [28,29], as well as deterministically [30,31]. We ar-
bitrarily choose αc = 2.7 + 1.3 j and ψc = −1.7. For later
comparison, we define a 50:50 classical mixture of coherent
states which can be thought of as the classical component of
|
cat〉,

ρ̂cl = |αc〉〈αc| + |−αc〉〈−αc|
2

. (11)

In Fig. 5, we discuss the case with no optical squeezing,
σs = 1 in Eq. (5). The high SNR case gives a moderate fidelity
of reconstruction, while maintaining the salient features of
a cat state, in particular the interference fringes. Here, the

Target Low SNR

Med SNR High SNR

FIG. 5. Wigner functions for a target cat state |
cat〉 for different
SNRs similar to Fig. 3. The fidelities of reconstruction in increasing
order are 0.16, 0.67, and 0.85. For the case of medium SNR, the
reconstruction has a 0.95 fidelity with the classical mixture ρ̂cl. In
the high SNR case, the fidelity is limited by the small number of
samples considered here.

fidelity is limited by the number of data points, N = 104 in
our case. The low SNR case gives the identity matrix again
amplifying the noise to a level that no magnon information is
retrievable.

The medium SNR case predicts the closest classical ap-
proximation to the cat state, i.e., ρ̂cl as defined in Eq. (11).
This can be explained by comparing the output probability
distributions for the cat state |
cat〉 and the classical mixture
ρ̂cl [see the discussion below Eq. (25)]. We find that these
output statistics are approximately the same when tan θ/σs <

|αc|. Very subtle statistical differences can be detected with a
larger data set, although that will increase the computational
time. Thus, more efficient computational algorithms can fur-
ther improve the reconstruction fidelity.

In Fig. 6, we discuss the case with input optical squeezing.
The low SNR case now predicts the correct peaks of the
distribution. However, it misses the coherence and predicts
a larger noise than present in the state. This is tantamount
to the amplification of noise as observed before with much
less severity. With increasing SNR, the prediction becomes
better. In particular, we notice that at a medium SNR, the
tomographic reconstruction already captures the interference
fringes which are absent in Fig. 5. The fidelity improves as
the number of data points are increased (not shown here for
brevity), showing again that quantum information typically
requires observing more subtle changes in the probability
distribution.

D. Analytical probability distributions

Here, we discuss the output optical probability distribution
for the two cases considered in Secs. II B and II C. We find
the effect of noise and dissipation on the optical data, and
in particular, show analytically that quantum coherence in a
cat state is lost even when the information about the peak
amplitudes is preserved, as found in Figs. 5 and 6. The salient
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Target Low SNR

Med SNR High SNR

FIG. 6. Similar plot as in Fig. 5 but with squeezed input with pa-
rameter σ−1

s = 5. The fidelities of reconstruction in increasing order
are 0.46, 0.79, 0.88. For the case of low SNR, the reconstruction has
a 0.66 fidelity with the classical mixture ρ̂cl.

features of deriving the output optical probability distribution,
pa, are written here with intermediate steps in Appendix B.

For a given φ, the magnon quadratures m̂φ = m̂e−iφ +
m̂†eiφ have a probability distribution pm(m, φ) defined as the
unique distribution that satisfies,

〈 f̂ (m̂φ )〉 =
∫

da f (m)pm(m, φ), (12)

for any function f . For a given magnon density matrix ρ̂m, we
can calculate the magnon probability distribution formally by
setting f (m) = δ(m − m0),

pm(m0, φ) = Tr[ρ̂mδ̂(m̂φ − m0)]. (13)

Because of the singular nature of the above equation, we
discuss a more practical method to calculate pm below.

We define pa and pη as the probability distributions of âout

and η̂out, respectively. Now, we want to find pa(a, φ) in terms
of the magnon’s density matrix. Since the random variables η̂

and m̂ are independent, one can write for any function g,

〈ĝ(m̂φ, η̂φ )〉 =
∫

dmdn g(m, n)pm(m, φ)pη(η, φ). (14)

Inserting the relation âφ = cos θη̂φ + sin θm̂φ [see Eq. (1)]
into Eq. (12) and then comparing with Eq. (14) for g(m, η) =
f (cos θη + sin θm), we obtain the following relation between
the probability distributions:

pa(a, φ) =
∫

da′ pη(cos θa − sin θa′, φ)

× pm(sin θa + cos θa′, φ). (15)

Inserting the relation Eq. (13) into the above, we find the
dependence of pa on ρ̂m as written in Eq. (3).

We can now obtain the output probability statistics for the
magnon states |
gau〉 and |
cat〉. We first calculate the magnon
probability distribution by

pm(m, φ) =
∫

dβ

2π
〈
|eiβ(m−m̂φ )|
〉. (16)

To derive this, we set f (m) = eiβm for an arbitrary β in
Eq. (12) to find the Fourier transform of pm(m, φ) and then,
invert the Fourier transform.

A similar formula can be used for the noise. Consider the
case when the variances of two independent quadratures η̂ψ

and η̂ψ+π/2 are σs and σb respectively, for a chosen ψ . Then,
the noise probability distribution is [see Eq. (B18)]

pη(η, φ) = 1√
2πσφ

exp

[
−η2

2σ 2
φ

]
, (17)

where the variance is

σ 2
φ = σ 2

b sin2 (φ − ψ ) + σ 2
s cos2 (φ − ψ ). (18)

We see that σψ = σs and σψ+π/2 = σb giving the expected
variances in the quadratures η̂ψ and η̂ψ+π/2. For a general
quadrature η̂φ , the variance is a convex combination of σ 2

s and
σ 2

b .
The parameter φ refers to the phase of the local oscillator

used for the required optical homodyne, see Fig. 2, and thus,
is externally chosen for each measurement. For a given data
point, one can always choose ψ = φ to get the least amount
of noise, effectively yielding

pη(η, φ) = 1√
2πσs

exp

[−η2

2σ 2
s

]
. (19)

With the calculation of pm and pη, one can perform the
integral in Eq. (15) to find the output photon statistics. For the
Gaussian state introduced above,

|
gau〉 = D̂(αg)Ŝ(rg, ψg)|0〉, (20)

we get a Gaussian

pa,gau(a, φ) = 1√
2πσgau(φ)

exp

[
− (a − μgau(φ))2

σ 2
gau(φ)

]
. (21)

The mean of the probability distribution is μgau(φ) =
2 sin θRe[αge−iφ], as expected from Eq. (1). The variance is
given by a weighted average of the noise variance, σ 2

s , and the
magnon variance given in terms of rg and ψg,

σ 2
gau(φ) = cos2 θσ 2

s + sin2 θ
(
e−2rg cos2(φ − ψg)

+ e2rg sin2(φ − ψg)
)
. (22)

For θ = π/2, corresponding to no noise, pa,gau gives the prob-
ability distribution of the magnons. For θ = 0, we simply get
squeezed vacuum noise.

For the semiclassical state ρ̂cl introduced above as a 50:50
mixture of the coherent states | ± αc〉, the photon’s output
probability distribution reads

pa,cl(a, φ) = cosh(2azR)√
2πσcat

exp

[
−

(
a2 + σ 4

catz
2
R

2σ 2
cat

)]
, (23)

where σ 2
cat = sin2 θ + cos2 θσ 2

s and zR + izI =
2αce−iφ sin θ/σ 2

cat. Similar considerations as above holds
for θ = 0 and θ = π/2. Compare this to the case of the cat
state defined above as

|
cat〉 = N |αc〉 + eiψc |−αc〉√
2

, (24)
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z = −l/2 z = l/2

L̂σ,in

L̂σ,out

l̂σ,out

l̂σ,in
r̂σ,in

r̂σ,out

R̂σ,out

R̂σ,in

FIG. 7. Schematic representation of the various boundary terms
used in the main text. The external inputs for a given polarization σ

are X̂σ,in, with X = L or R, while the outputs are given by in → out.
Inside the magnet, the boundary waves are denoted by lower case
letters. The total length of the magnet is l .

where pa,cat (a, φ) = N 2 pa,cl(a, φ)I (a, φ) with the interfer-
ence term being

I = 1 + exp

(
−2|αc|2

1 + tan2 θ/σ 2
s

)
cos (azI (φ) − ψc)

cosh(azR(φ))
. (25)

The presence of the interference term corresponds to the co-
herence between the two components of the cat state. The
second term in I has an exponential in |αc|2 that diminishes
the interference term. If tan θ/σs < |αc|, we get pa,cat (a, φ) ≈
pa,cl(a, φ) and information about the phase of the cat state
ψc is lost. This is evidence of the fact that, in general, the
magnon’s coherence information is lost unless the SNR is high
or in the presence of high input squeezing. This explains why
the MLE procedure converged to a classical density matrix
above, except when tan θ/σs � 1. While the latter condition
is necessary to observe the coherence fringes, it is not suf-
ficient. If both θ, σs 	 1 but θ/σs � 1, we get a very small
optical signal that leads to numerical inaccuracies. The latter
can be seen directly from pa,gau and pa,cl.

III. CHARACTERIZATION OF SNR

The magnon signal amplitude θ defined in Eq. (1) is a cen-
tral quantity to the evaluation of the amount of magnon signal
in the output field âout. As mentioned above, a large coherent
ey polarized pulse of duration Tpul causes a coupling between
the magnons and ex-polarized photons. For an optomagnonic
waveguide, see Fig. 1, θ is given by

θ =
√

γGh̄

2Ms

cA2
travTpul

Vmag

�F + �C

2

�lτ

|1 − ρ2�2e2ikout l | . (26)

This formula is derived in Sec. III, while here we discuss
its physical meaning and achievable values in a YIG waveg-
uide. Here, γG is the gyromagnetic ratio, Ms is the saturation
magnetization, Atrav is the input light amplitude inside the
magnet [in the notation of Fig. 7, Atrav = |〈l̂y,out〉|], and Vmag

is the volume of the magnet. The second term describes the
magneto-optical activity, with �F being the Faraday rotation
per unit length and �C being the Cotton-Mouton ellipticity per
unit length. The optical dissipation is included as � = e−αabsl/2

where αabs is the optical absorption coefficient per unit length
and l is the length of the magnet. ρ and τ are the reflec-

tivity and transmittivity at the air-magnet interface that can
be controlled by a coating or a secondary waveguide. Due
to time-reversal symmetry, they must satisfy μrefτ

2 + ρ2 = 1
where μref is the refractive index of the magnet. The wave
vector of the output light kout = kin + ωm/v is given in terms
of the input optical wave-vector kin, the magnon frequency
ωm, and the speed of light inside the magnet v = c/μref .

The light amplitude inside the magnet must be limited to
avoid excessive heating. The traveling power inside the mag-
net is Ptrav = A2

trav h̄ωinv, and hence the stored optical energy is
Estored = Ptravl/v. The dissipated power is Pdiss = αabsvEstored,
giving the rate of change of the magnet’s temperature

Ṫ = Pdiss

CV μdenVmag
, (27)

where CV is the specific heat and μden is the mass density of
the magnet. To avoid significant heating, we choose an optical
amplitude Atrav such that the temperature increase during the
pulse is sufficiently small kBṪ < 0.1h̄ωm/Tpul. This ensures a
magnon number increase of <0.1. Note that we assumed that
all of the optically dissipated power goes into the magnons,
which is an overestimation as the heat can sink into the
phonons and also leak away from the system.

This gives

cA2
travTpul

Vmag
= 0.1

ωmμrefCV μden

kBαabsωinl
. (28)

Inserting this into the expression for θ , we see that the de-
pendencies on Tpul and Vmag drops out. This implies that we
can decrease the pulse width Tpul down to as small of a
value as feasible by pumping up the input power, making the
measurements extremely fast. Similarly, the volume depen-
dence cancels off because the single photon coupling scaling
of ∝ 1/

√
Vmag is compensated by the maximum input power

scaling of ∝ √
Vmag.

The reflection at the boundary, ρ, can be tuned by design.
If both the resonance conditions are satisfied, i.e. the input
frequency ωin and output frequency ωin + ωm are multiples of
πv/l , then θ is maximized at ρ ≈ � for both ρ, � ≈ 1. This
is akin to impedance matching maximizing the output signal.
One can always adjust ωin by a small amount to ensure that
the input resonance condition is satisfied, i.e., kinl/π is an
integer. This will typically make the output photons nonres-
onant, so one should make sure that the linewidth is larger
than the degree of off-resonance, i.e., 1 − ρ2�2 > 2ωml/v
[see Eq. (26)]. Concretely, we get the following dependence
on the reflectivity ρ:

θ ∝
√

1 − ρ2

|1 − ρ2�2e2iωml/v| , (29)

using μrefτ
2 = 1 − ρ2 as mentioned above. The maximum θ

is achieved at

ρ2 = 1 −
√

1 + �4 − 2�2 cos(2ωml/v)

�2
. (30)

For large absorption, specifically 2�2 cos(2ωml/v) < 1, the
right-hand side becomes negative implying that θ is max-
imized at ρ = 0, i.e., no reflection. In our case, typically
1 − � 	 ωml/v 	 1 giving an estimate 1 − ρ ∼ ωml/v. In
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this off-resonance limit, we get

θoff ∼ 1

8
√

5

√
γGh̄CV μdenc

kBMs

�F + �C√
αabsωin

. (31)

We see that the dependence on the magnet’s length l also
drops off. While the interaction time increases with the
length of the magnet, the output photons become more
off-resonance.

The parameter θ depends on the optical and magneto-
optical parameters of the material which, in turn, depend
on the frequency of light propagating in the material and
the temperature. As a material, we consider YIG, and con-
sider operation at two wavelengths, visible (λ1 = 550 nm)
and infrared (λ2 = 1.5 µm) at cryogenic temperatures. For
YIG, the wavelength λ1 is close to the electronic band gap
giving a very high MO activity at the cost of high opti-
cal absorption. In the infrared, YIG is nearly transparent
with a measurable MO activity. As MO activity is caused
by energy level transitions, its temperature dependence is
weak [49,56,57], so we assume �

cryo
F,C = �RT

F,C , given by
�F,λ1 = 3000 ◦cm−1 [49], �F,λ2 = 200 ◦cm−1 [56,57], and
�C 	 �F [49]. However, the optical absorption has a strong
temperature dependence [58], typically decreasing by 2–3
orders of magnitude from room temperature to cryogenic
conditions. Thus, we take as an estimate for the absorption
at cryogenic temperatures α

cryo
abs = 10−2αRT

abs, where the room
temperature values are [58] α

RT,λ1
abs = 200 cm−1 and α

RT,λ2
abs <

0.03 cm−1.
For YIG, CV = 590 Jkg−1 K−1 and μden = 5 gcm−3. Be-

sides the optical frequency and the material parameters, the
only remaining free parameter is the length of the magnet.
We consider magnets with lengths l ∈ (1, 1000)µm [20,59]
corresponding to reflection coefficients 1 − ρ ∈ (10−4, 10−1).
Varying the length, we get |S| ∈ (0.18, 0.25) for infrared and
|S| ≈ 0.02 for visible input. These values imply that the in-
frared light is much more efficient for magnon tomography
than the visible light, for YIG. To increase the signal further,
one needs to increase the optical power and sink the heat
away from the magnet, e.g., using a material with a high
thermal conductivity. Another way would be to design the
cavity such that both the input and the output photons are in
resonance, e.g., by polarization-sensitive mirrors at the edges
of the waveguide.

IV. LOSSY OPTOMAGNONIC WAVEGUIDE

In this section, we model a single-mode optical waveguide
(along ez) composed of a magnetic insulator, such as YIG, as
illustrated in Fig. 1. We determine the output light in terms
of the inputs to the waveguide in order to have access to the
underlying magnon state, deriving the expression for magnon
signal amplitude θ given in Eq. (26). The notation used in this
section is summarized in Table I.

We consider a static applied magnetic field along ey that
saturates the magnetization. In this configuration, called the
Voigt configuration, the magnetization is perpendicular to the
photon propagation direction, which maximizes the BLS cross
section [6]. In the absence of the magnetization, the two
linearly polarized propagating modes (with electric fields po-

TABLE I. Definitions of important symbols used in the text.

Symbol Definition

v Speed of light in the magnet
ωin, kin Optical input frequency and wave vector kin = ωin/v

αabs Optical absorption per unit length in the magnet
� Amplitude decay in one trip e−αabsl/2

ρ(τ ) Reflectivity(transmittivity) at waveguide boundary
�F Faraday rotation per unit length
�C Cotton-Mouton ellipticity per unit length
ωm, km Magnon frequency and corresponding optical

wavevector km = ωm/v

S, θ Complex magnon signal amplitude, θ = |S|
âσ (z) Photonic field annihilation operator with polarization σ

at position z
η̂tot (t ) The effective optical noise inside the magnet
σs(σb) Standard deviation in the squeezed (nonsqueezed)

quadrature in the output noise

larized along ex and ey) are decoupled, nevertheless inelastic
BLS by magnons can transfer photons from one polarization
to the other. Due to a large ey-polarized input, the magnons
and ex-polarized light are coupled, such that the output con-
tains information about the magnons’ state.

The photons within the magnetic material experience de-
cay due to optical absorption, as well as additional noise inside
the material and from the thermal input from outside. This
noise competes with the magnon signal generated by BLS. To
mitigate the external noise, we can inject squeezed vacuum in
the ex polarization, see Fig. 1. Only ex polarization requires
squeezing because the noise in ey polarization is too small
compared to the large coherent input. The rigorous derivation
of the results can be found in Appendices C and D, while in
this section, we discuss the salient features of our results.

A. Propagation inside an optomagnonic waveguide

Here, we discuss the propogation of light inside the op-
tomagnonic waveguide, including the effects of BLS. We
consider only the uniform magnetic excitations, i.e., Kittel
magnons, as justified shortly below. Formally, we promote the
magnetization field to an operator, and describe the magnetic
excitations around the saturation direction as a bosonic exci-
tation via the Holstein-Primakoff transformation,

M̂z − iM̂x ≈ 2MZPFm̂, (32)

where we ignore terms of higher order in m̂, and the zero point
fluctuations are given by

MZPF =
√

γGh̄Ms

2Vmag
, (33)

with γG being the absolute value of the gyromagnetic ratio,
Ms the saturation magnetization, and Vmag the volume of
the magnet. Within this approximation, the magnon Hamil-
tonian is Ĥmag = h̄ωmm̂†m̂ [32], where ωm is the resonance
frequency set by the external magnetic field strength and the
shape anisotropy. For magnetic fields of <200 mT, the an-
gular frequencies of magnons remain <2π × 10 GHz. Given
that optical frequencies typically extend into the hundreds of
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terahertz, the photon frequencies remain nearly unaltered in
BLS, and the same holds also for the magnitude of photon
momentum. Due to momentum conservation, our geometry
enforces a constraint on magnon momentum, allowing it to be
either zero or twice the magnitude of photon momentum. As
the analysis is analogous for both scenarios, we consider only
the case of zero momentum magnons as stated above. Finally,
we ignore magnon’s dissipation and thermal noise, which is
valid if the optical pulses are much shorter than the magnon’s
lifetime. As discussed in Sec. II, this restriction does not affect
the output signal.

The photon’s electric field is given by Ê = Ê + Ê†
where

Ê (r) =
∑

σ

∫ ∞

−∞

dk√
2π

eikzE (x, y)eσ âσ (k), (34)

with r = (x, y, z). We integrate over the wave vector k and sum
over the polarization σ ∈ {x, y}. The field operators satisfy
[âσ (k), â†

σ ′ (k′)] = δσσ ′δ(k − k′), and the electric field inten-
sity is normalized by

ε0εr

∫
dxdy|E (x, y)|2 = h̄|k|v

2
, (35)

where ε0 is the permittivity of free space, εr is the relative
permittivity of the magnet, and v = c/μref is the speed of
light in the magnet with μref being the refractive index of
the magnet. The above normalization ensures that the optical
Hamiltonian becomes that of field harmonic oscillators,

Ĥopt =
∑

σ

h̄v

∫
dk|k|â†

σ (k)âσ (k). (36)

The scattering of light by magnons is modeled by the
Hamiltonian [6],

Ĥint = c
√

εrε0

ωopt

∫
dV

[
i
�F

Ms
M̂ · (Ê† × Ê )

+�C

M2
s

(M̂ · Ê†
)(M̂ · Ê )

]
, (37)

where �F is the Faraday rotation per unit length and �C is the
Cotton-Mouton ellipticity per unit length.

We separate the photons into forward (+) and backward
(−) propagating waves, âσ±(z), defined as partial Fourier
transforms over positive and negative wave vectors respec-
tively,

âσ±(z) =
∫ ∞

0

dk√
2π

e±ikzâσ (±k). (38)

The propagation of the electromagnetic waves outside the
magnet is that of a free wave. Therefore, the annihilation
operators satisfy âσ±(z, t ) = âσ±(z ∓ ct, 0) for both z and
z ∓ ct either > l/2 or < −l/2. Inside the magnet, we have,

(∂t ± v∂z )âσ±(z, t ) = −i
∑
σ ′

M̂σσ ′ (t )âσ ′±(z, t )

− γ

2
âσ±(z, t ) − √

γ η̂σ±(z, t ). (39)

Here, the operator M̂σσ ′ (t ) = Gσ ′σ m̂(t ) + G∗
σσ ′m̂†(t ) de-

scribes the inelastic magnon Brillouin light scattering with
Gσσ ′ being the scattering amplitudes. The noise source is

assumed to be a local white source [η̂σ±(z, t ), η̂†
σ ′±(z′, t ′)] =

δσσ ′δ(z − z′)δ(t − t ′), and the dissipation rate γ = vαabs is
given in terms of the optical absorption coefficient αabs. The
scattering amplitudes depend on the direction of the saturation
magnetization. For the configuration shown in Fig. 1, Gxx =
Gyy = 0, and

Gyx = ic√
εr

MZPF

Ms

�F + �C

2
, (40)

The amplitude Gxy is given by replacing �F → −�F in
Eq. (40).

B. Input-output relations

The inputs and outputs to the waveguide are graphically
presented in Fig. 7. Here, we derive the output operators in
terms of the input operators. The left and right inputs are,
respectively, written as (for ε → 0+),

L̂σ,in(t ) ≡ âσ+

(−l

2
− ε, t

)
,

R̂σ,in(t ) ≡ âσ−

(
l

2
+ ε, t

)
. (41)

The outputs L̂σ,out (t ) and R̂σ,out (t ) are defined by the re-
placements âσ± → âσ∓. The boundary amplitudes inside the
magnet are indicated with the lower-case letters and found by
the replacements ε → −ε, L̂ → l̂ , and R̂ → r̂.

The boundary conditions can be found by employing
time-reversal symmetry and enforcing canonical commutation
relations. On the left boundary,(

l̂σ,out

L̂σ,out

)
=

(
μrefτ ρ

−ρ τ

)(
L̂σ,in

l̂σ,in

)
, (42)

where the reflectivity ρ and transmittivity τ satisfy μrefτ
2 +

ρ2 = 1. A similar boundary condition holds at the right
interface. Here, we have ignored a small rotation of the po-
larization upon reflection due to the magnetization, i.e., the
magneto-optical Kerr effect [60].

We assume a classical input from the left that is linearly
polarized along ey, such that we can replace

L̂y,in →
√

Pin

h̄ωinc
e−iωint , (43)

where Pin is the input power, and ωin is the input frequency.
The corresponding input amplitude inside the magnet is

l̂y,out → μrefτ

1 − ρ2�2e2ikin l

√
Pin

h̄ωinc
e−iωint , (44)

where � = e−αabsl/2, and kin = ωin/v. The amplitude has peaks
at resonances kin = nπ/l for an integer n as expected for a
Fabry-Perot cavity.

Such an input light will scatter via magnons, resulting
in an output signal at the right port polarized along ex. We
assume an optical input pulse within a time smaller than the
magnon’s lifetime, such that we can take m̂(t ) = m̂e−iωmt .
Here, we have ignored the backaction of ex-polarized photons
on the magnons. The output amplitude is given by using the
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photonic equation of motion Eq. (39) along with the boundary
condition Eq. (42),

R̂x,out (t ) ≈
∞∑

p=0

(ρ�)2pη̂
[−2p]
tot (t ) + Ŝ (t ), (45)

where we identify two contributions for the output mode: the
first term, proportional to the operators η̂

[−2p]
tot (t ), corresponds

to all noise sources, while the second term, indicated by Ŝ (t ),
encodes the signal from the magnon mode. The notation

X̂ [−n](t ) ≡ X̂

(
t − nl

v

)
(46)

denotes retardation after n one-way trips inside the magnet.
The noise part η̂tot includes input noise from both the left and
the right ends of the waveguide along with optical noise added
inside the magnet η̂mag,

η̂tot = −ρ
(
R̂x,in − �2R̂[−2]

x,in

) + μrefτ
2�L̂[−1]

x,in + η̂mag(t ). (47)

As the output field R̂x,out depends on η̂tot retarded by an even
number of one-way trips, this translates to the output being
dependent on the noise from the right (left) retarded by an
even (odd) number of one-way trips, i.e., R̂[−2p]

x,in and L̂[−2p−1]
x,in .

The noise added inside the magnet, η̂x± introduced in
Eq. (39), accumulates to η̂mag whose correlations become

〈η̂mag(t )η̂†
mag(t ′)〉 = τ 2

v
(1 + ρ2�2)(1 − �2)δ(t − t ′), (48)

which are zero if � = 1 (optical absorption αabs = 0) or τ = 0
(no transmission).

The signal part is given by the expression

Ŝ (t ) = S0e−iωint
(
Abm̂e−iωmt + Arm̂†eiωmt

)
(49)

where

S0 = −i�l

c

μref (1 − ρ2)eikinl

1 − ρ2�2e2ikin l

√
Pin

h̄ωinc
. (50)

The blue sideband amplitude is proportional to

Ab = Gyxm̂eikml/2

1 − ρ2�2e2i(kin+km )l
, (51)

with km = ωm/v being the momentum of a hypothetical pho-
ton of frequency ωm. The peaks at ωin + ωm = nπv/l for an
integer n are expected from the resonance condition. The red
sideband component Ar is given by a similar formula as Ab

with replacements Gyx → G∗
xy and km → −km [61].

The input noise from outside {R̂, L̂} can be squeezed to
reduce the noise. Adopting the notation X̂ ∈ {R̂x,in, L̂x,in}, for a
quadrature X̂ e−iψ + X̂ †eiψ squeezed by a factor e−rin we have
the following noise correlations:

〈X̂ †(t )X̂ (t ′)〉 = sinh2 rin

2
δ(t − t ′), (52)

for the input noise occupation and

〈X̂ (t )X̂ (t ′)〉 = − sinh
rin

2
cosh

rin

2
e2iψδ(t − t ′), (53)

for the noise coherence.

C. Photon detection

In the previous subsection, we found the output fields, in
particular R̂x,out. A homodyne measurement of this field cor-
responds to the weighted photonic field with weight function
p(t ) [62] (see Sec. C 3),

âout =
∫

dt p(t )R̂x,out (t )ei(ωin+ωm )t , (54)

where we single out the red sideband. For an input pulse of
Tpul, we choose p(t ) = √

c/Tpul for |t | < Tpul/2 and 0 other-
wise. This ensures the commutation relation [âout, â†

out] = 1
converting the optical field into a confined bosonic mode.
Assuming that the blue sideband is far away in frequency, we
get by integrating Eq. (45)

âout ≈ η̂out + Sm̂, (55)

where S is given by

S = S0
Gyx

1 − ρ2�2e2i(kin+km )l

√
cTpul. (56)

We note that as we have ignored backaction from output pho-
tons on magnons, the above result is valid only for |S| 	 1.
When this condition is not satisfied, the above expression
should still be valid as an order-of-magnitude estimate. For
|S| ≈ θ 	 1, Eq. (55) is similar to Eq. (1) that was used to
derive the main results in Sec. II.

The noise component η̂out is found by integrating the noise
component in Eq. (45). Since the noise η̂tot depends on the
input from outside, {L̂x,in, R̂x,in}, that are squeezed, the inte-
grated noise will be squeezed as well. More concretely, the
variance in the quadrature η̂ψ = η̂oute−iψ + η̂

†
oute

iψ is

σ 2
s = e−rin + (1 − e−rin )(1 − �2)(1 − ρ2)

1 + ρ2�2 − 2ρ� cos(kinl + kml )
. (57)

The squeezing is reduced compared to the waveguide in-
put, i.e., σ 2

s > e−rin , due to the noise added by the magnet.
Similarly, the quadrature η̂ψ+π/2 has a variance σ 2

b given by
replacing rin → −rin in Eq. (57). Finally, the two quadra-
tures are independent, i.e., 〈η̂ψ η̂ψ+π/2 + η̂ψ+π/2η̂ψ 〉 = 0. In
the case of impedance matching ρ = � and at resonance
(kin + km)l = 2nπ , we find σs = 1, i.e., there is no squeezing.
However, to keep the coherent ey-polarized input resonant,
we require kinl = 2nπ . This implies that the output photons
will be slightly off-resonant as kml 	 1. To compensate for
this small detuning, the reflectivity should be slightly lower,
ρ < �, to effectively increase the cavity linewidth up to de-
tuning, i.e., 1 − ρ ∼ kml . As discussed in Sec. III, this would
typically imply, 1 � 1 − ρ � 1 − �, giving σ 2

s ≈ e−rin .

V. CONCLUSION

We have proposed and evaluated a method for performing
quantum tomography of magnon states hosted in dielectrics.
In our proposal, the tomographic reconstruction is performed
via optical light scattered by magnons, i.e., BLS. We dis-
cussed the reconstruction of the magnon’s density matrix
through the statistical analysis of the output photons using
a maximum likelihood estimate (MLE). For the input light
squeezed by a factor erin and the ratio of magnon to noise
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amplitude in the output being tan θ , we can define a qualitative
figure of merit F = tan(θ )erin for the tomographic fidelity.
When F 	 1, the tomographic reconstruction fails, although
the procedure still yields information about the coherent com-
ponent of the magnon state, such as 〈m̂〉. High F � 1 would
typically yield good reconstruction fidelities (unless θ 	 1),
although meeting such a condition requires significant tech-
nological advancements.

In the realistically achievable case of tan(θ )erin ∼ 1, we
observed that regions with positive Wigner functions were
accurately reproduced, while the algorithm ignored the neg-
ative regions that encode quantum features, for example,
the interference fringes of cat states. This issue stems from
limitations in the data itself rather than the reconstruction
algorithm. A substantial number of data points may be
necessary to address the subtle changes in the probability
distributions caused by the quantum features. We note that
getting more data points than we considered here, N = 104,
is experimentally feasible because each optical pulse for
measurement should be shorter than the magnons’ lifetime
(<100 ns). However, it will require higher computational
resources for MLE, which has a linear complexity O(N ).
The computational efficiency can be significantly improved
by using compact representations of the density matrices
such as tensor networks [63], restricted Boltzmann ma-
chines [64,65] and other neural networks, which we leave to a
future study.

We discussed the specific setup of a cylindrical op-
tomagnonic waveguide, such that the output field of the
waveguide includes a signal due to BLS by magnons. The
conversion of magnons to photons is approximately indepen-
dent of the geometry, so we expect our results to hold for
other structures too, such as spheres [2,3,7] or optomagnonic
crystals [66–68]. We evaluated the SNR for input light in
the infrared regime, an optimal choice for our purposes since
the magneto-optical activity of YIG is relatively high at such
frequencies, while optical dissipation is minimal. Despite this
favorable regime, we found that the SNR is still low, <0.2. It
is indeed possible to improve the SNR by increasing the input
laser power, contingent on transporting excess heat away from
the magnet, e.g., by using a material with a high heat conduc-
tivity. Furthermore, we demonstrated that injecting squeezed
vacuum can partially compensate for the low SNR, effectively
reducing noise in the system.

While initially designed for ferromagnets, our proposed
scheme can potentially be extended to antiferromagnets
(AFMs). Unlike ferromagnets, AFMs exhibit a stronger
BLS amplitude for processes involving two magnons than
those involving a single magnon [69,70], yielding a sig-
nificantly higher SNR. Nevertheless, the tomographic re-
construction has to be modified to take into account the
different relationship between the output optical field and
magnon operators, specifically the operator in Eq. (4) would
involve two-magnon operators. Quantum tomography of
magnon states in antiferromagnets can be used, for exam-
ple, to reconstruct intrinsic magnon squeezed state in such
materials [71].

The plots in the paper can be reproduced using the codes
available in Ref. [72].
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APPENDIX A: MAXIMUM LIKELIHOOD

Given a set of data (ai, φi ) for i ∈ {1, . . . , N}, we want to
find the magnon density matrix that maximizes the probability
of observing the set, i.e., that maximizes

P =
N∏

i=1

p(ai, φi, ρ̂ ), (A1)

where

p(a, φ, ρ̂ ) = Tr[ρ̂P̂(a, φ)], (A2)

with P̂(a, φ) defined in Eq. (4). To ensure hermiticity and
positivity, we write ρ̂ = T̂ †T̂ . The trace constraint is enforced
via a Lagrange multiplier, giving the optimization function,

L[ρ̂] = −
N∑

i=1

log Tr[T̂ †T̂ P̂i] − λ(Tr[T̂ †T̂ ] − 1), (A3)

where P̂i ≡ P̂(ai, φi ) and λ is a Lagrange multiplier. Varying
w.r.t. T̂ ,

0 =
∑

i

Tr[(T̂ †δT̂ + δT̂ †T̂ )P̂i]

Tr[T̂ †T̂ P̂i]
− λTr[T̂ †δT̂ + δT̂ †T̂ ].

(A4)
As this holds for all arbitrary variations, we can replace δT̂ →
iδT̂ and subtract the two results, in order to get

N∑
i=1

P̂iT̂ †

Tr[T̂ †T̂ P̂i]
= λT̂ †. (A5)

Multiplying both sides by T̂ , and taking the trace gives λ = N ,
leading to Ẑ (ρ̂)ρ̂ = ρ̂, where

Ẑ (ρ̂) = 1

N

N∑
i=1

P̂i

pi
, (A6)

where pi ≡ Tr[ρ̂P̂i] is the probability of observing the data
point (ai, φi ). Because of hermiticity of ρ̂ and P̂i, we also have
ρ̂Ẑ (ρ̂) = ρ̂ and therefore, ρ̂ = F̂ (ρ̂) with

F̂ (ρ̂) = Ẑ (ρ̂)ρ̂ + ρ̂Ẑ (ρ̂)

2
. (A7)

The superoperator F̂ is well-defined in the space of density
matrices, i.e., for a valid ρ̂, F̂ (ρ̂) is also a valid density matrix.

We choose an initial guess ρ̂0 ∝ ∑N
i=1 P̂(ai, φi ), normal-

ized to unity trace, and find the sequence ρ̂i = F̂ [ρ̂i−1].
To show that this series converges, consider the norm square
of F̂ ,

Tr[F̂ [ρ̂]2] = 1

2N2

∑
i j

Tr

[
P̂iρ̂P̂j ρ̂ + ρ̂2P̂iP̂j

pi p j

]
. (A8)
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The norm can diverge if pi 	 1 but such a pair of (ai, φi ) has
a very small probability of occurrence. To get an estimate of
the norm for a given data, we can replace the summation by a
probabilistic integral

1

N

∑
i

→
∫

daidφi pi. (A9)

Thus, we get

Tr[F̂ [ρ̂]2] ≈ 1

2

∫
daida jdφidφ jTr[P̂iρ̂P̂j ρ̂ + ρ̂2P̂iP̂j].

(A10)
Assuming the completeness of the projection operators,
Tr[F̂ [ρ̂]2] � λ2 where λ is the highest eigenvalue of ρ̂. As
Tr[ρ̂2] = ∑

i λ
2
i , where λi are the eigenvalues of ρ, we con-

clude that Tr[F̂ [ρ̂]2] � Tr[ρ̂2], i.e., F̂ is a contraction in the
space of density matrices. Thus, the Banach fixed point theo-
rem guarantees the convergence of the above recursion.

APPENDIX B: PROBABILITY DISTRIBUTIONS

In this section, we discuss the states we considered for
evaluation and the relevant probability distributions. The dis-
placement operator is

D̂(α) = exp(αm̂† − α∗m̂). (B1)

The squeezing operator is

Ŝ(r, ψ ) = exp
[ r

2
(e−2iψ m̂2 − e2iψ m̂†,2)

]
. (B2)

The magnon probability distributions are calculated using the
defining relation,

〈 f̂ (m̂φ )〉 =
∫

dm f (m)pm(m, φ), (B3)

where f is an arbitrary function, m̂φ = m̂e−iφ + m̂†eiφ , and
the average is calculated using the magnon density matrix ρ̂m.
One can invert the above as

pm(m, φ) = 〈δ̂(m − m̂φ )〉. (B4)

However, such an inversion would involve a singular δ-
distribution that can make it difficult to keep the analysis
rigorous. However, one can write these also in terms of the
displacement operators using the relation

〈D̂(iβeiφ )〉 = 〈eiβm̂φ 〉 =
∫

dmeiβm pm(m, φ) (B5)

that follows from the definition of pm. Inverting the above
Fourier transform, we get

pm(m, φ) =
∫

dβ

2π
Tr

[
ρ̂eiβ(m−m̂φ )

]
, (B6)

that gives a rigorous alternative to Eq. (B4). The optical prob-
ability distributions are then calculated using Eqs. (15),

pa(a, φ) =
∫

da′ pη(cos θa − sin θa′, φ)

× pm(sin θa + cos θa′, φ), (B7)

and Eq. (5),

pη(η, φ) = 1√
2πσs

exp

[−η2

2σ 2
s

]
. (B8)

For the vacuum state, ρ̂m,vac = |0〉〈0|, we get

〈0 | D̂(α) | 0〉 = e−|α|2/2, (B9)

which after Fourier transforming gives

pm,vac(m, φ) = e−m2/2

√
2π

. (B10)

If pm,ρ̂ is known for a given ρ̂, then for a displaced density
matrix ρ̂α = D̂(α)ρ̂D̂†(α), we get using Eq. (B4),

pm,ρ̂α
(m, φ) = Tr[ρ̂mδ̂(m − m̂φ − 2Re[αe−iφ])], (B11)

where we used the relation

D†(α)m̂D(α) = m̂ + α. (B12)

Thus,

pm,ρ̂α
(m, φ) = pm,ρ̂ (m − 2Re[αe−iφ], φ), (B13)

Similarly for a squeezed density matrix ρ̂r,ψ =
Ŝ(r, ψ )ρ̂Ŝ†(r, ψ ), we find

pm,ρ̂r,ψ (m, φ) = Tr[δ̂(z∗m̂ + zm̂† − m)ρ̂m], (B14)

where z = cosh reiφ − ei(2ψ−φ) sinh r, and we used the
relation

S†(r, ψ )m̂S(r, ψ ) = cosh rm̂ − e2iψ sinh rm̂†. (B15)

For z = |z|ei�, we get the probability distribution

pm,ρ̂r,ψ (m, φ) = 1

|z| pm,ρ̂

(
m

|z| ,�
)

. (B16)

Using these relations and the expression for pm,vac, we can
calculate the probability distributions of

|
gau〉 = D̂(αg)Ŝ(rg, ψg)|0〉 (B17)

as

pm,gau(m, φ) = 1√
2πσm(φ)

exp

[
− (m − 2Re[αge−iφ])2

2σ 2
m(φ)

]
,

(B18)
where the angle-dependent variance is

σ 2
m(φ) = e−2rg cos2(φ − ψg) + e2rg sin2(φ − ψg). (B19)

The corresponding optical probability distribution can be
found via a straightforward Gaussian integral,

pa,gau(a, φ) = 1√
2πσa(φ)

exp

[
− (a − 2 sin θRe[αge−iφ])

2σ 2
a (φ)

]
,

(B20)
where the optical variance is

σ 2
a (φ) = cos2 θσ 2

s + sin2 θσ 2
m(φ). (B21)

While the mean is scaled down by a factor sin θ , the variance
is mixed with the noise variance σ 2

s .
Next, we consider a classical mixture of coherent states,

given by the density matrix

ρ̂cl = |αc〉〈αc| + | − αc〉〈−αc|
2

. (B22)
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The magnon probability density in this case is given by putting
rg = 0 in pm,gau along with the following replacements:

2pm,cl = pm,gau|αg→αc + pm,gau|αg→−αc . (B23)

Explicitly,

pm,cl(m, φ) = 1√
2π

exp

[
m2 + 4y2

R

2

]
cosh(2ayR), (B24)

where αce−iφ = yR + iyI . The photon probability density is
also found in a similar way using pa,gau,

pa,cl(a, φ) = 1√
2πσ

exp

[
−

(
a2 + 4y2

R sin2 θ

2σ 2

)]

× cosh

(
2ayR sin θ

σ 2

)
, (B25)

where σ 2 = sin2 θ + cos2 θσ 2
s .

Next, a cat state is defined as

|
cat〉 = N D̂(αc) + eiψc D̂(−αc)√
2

|0〉, (B26)

where the normalization constant is

N = 1√
1 + e−2|αc|2 cos ψc

. (B27)

The average of the product of the displacement operators D̂(α)
can be found using the relations D̂(−αc) = D̂†(αc),

D̂(−αc)D̂(α)D̂(αc) = e2iIm[αα∗
c ]D̂(α), (B28)

D̂(±αc)D̂(α)D̂(±αc) = D̂(α ± 2αc), (B29)

along with Eq. (B9). Finally, we get the probability distribu-
tion

pm,cat (m, φ) = N 2

√
2π

e− m2

2 −2R2

× [cosh (2ayR) + cos (2ayI − ψc)]. (B30)

The optical output’s probability distribution can be written as

pout
cat (a, φ) = N 2 pout

cl (a, φ)

[
1 + exp

(
− 2|αc|2

1 + tan2 θ/σ 2
s

)

× cos
( 2ayI sin θ

σ 2 − ψc
)

cosh
( 2ayR sin θ

σ 2

)
]
. (B31)

APPENDIX C: PHOTON PROPAGATION
IN A LOSSY WAVEGUIDE

Consider an infinitely long single mode optical waveguide
along ez. In this section, we review propagation of photons
in a lossy dielectric cylinder to set the stage to study BLS
in the next section. We ignore the polarization index as the
propagation for both the polarizations is independent of each
other.

The quantized electric field is given by Ê = Ê + Ê†
, where

Ê (r) =
∑

σ

∫
dk√
2π

eikzEk (x, y)â(k), (C1)

Here, the spatial point r = (x, y, z), k gives the wave-vector in
the z direction, the function Ek (x, y) is the transverse distri-
bution of the electric field, and the photon field annihilation
operators satisfy [â(k), â†(k′)] = δ(k − k′). The electric field
functions are normalized as,

ε0εr

∫
dxdyE∗

k (x, y) · Ek (x, y) = h̄|k|v
2

, (C2)

where εr is the relative permittivity and v is the speed of
light inside the dielectric. The normalization is chosen to
ensure that the Hamiltonian becomes that of field harmonic
oscillators,

Ĥopt = h̄v

∫
dk|k|â†(k)â(k). (C3)

The equations of motion without dissipation are

d

dt
â(k) = −i|k|vâ(k). (C4)

This can be converted to position space by introducing
the forward and backward propagating waves as â+(z, t ) =∫ ∞

0
dk√
2π

eikzâ(k, t ) and â−(z, t ) = ∫ 0
−∞

dk√
2π

eikzâ(k, t ). Be-
cause of the integrals being over only half spaces, their
commutation relations are not as simple as their wave-vector
counterparts. Nevertheless, position dependent photonic fields
are useful for introducing local dissipation sources in the
equations of motion,

(∂t ± v∂z )â±(z, t ) = −γ

2
â±(z, t ) − √

γ η̂±(z, t ). (C5)

Here, the noise source is assumed to be a local white source
[η̂±(z, t ), η̂†

±(z′, t ′)] = δ(z − z′)δ(t − t ′) with other commuta-
tors being zero, and the dissipation rate γ = vαabs with αabs

being the optical absorption coefficient. The general solution
of the above differential equation is

â±(z, t ) = eαabs (∓z−l/2)/2â±

(
∓ l

2
, t + ∓z − l/2

v

)

∓ √
vαabs

∫ z

∓l/2

dz̃

v
e∓αabs (z−z̃)/2η̂±

(
z̃, t ∓ z − z̃

v

)
.

(C6)

This gives â+(z, t ) and â−(z, t ) in terms of the retarded bound-
ary terms â+(−l/2, t ) and â−(l/2, t ), respectively, in addition
to added noise.

We briefly pause to check the commutation relations of
photons in bulk. Putting l → ∞, the first term disappears be-
cause of the exponential and the noise terms can be simplified
to

[â±(z, t ), â†
±(0, 0)] = e∓αabs|z|/2δ(z ∓ vt ). (C7)

This can be understood as photons traveling with speed v and
suffering an amplitude decay per unit length of αabs/2.

1. Boundary conditions

The propagation in an infinite waveguide, given by
Eq. (C6), should be supplemented by boundary conditions in
the case of a finite waveguide. For simplicity, we assume that
the small magneto-optical effects do not affect the boundary
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implying that the two polarizations can be considered inde-
pendent of each other. Consider a semi-infinite magnet in the
space z > 0 with the medium on the left, z < 0, being air. For
sufficiently small z, the photons on the left satisfy

z < 0 : â±(z, t ) = â±
(

0, t ∓ z

c

)
, (C8)

while the ones in the right

z > 0 : â±(z, t ) = â±
(

0, t ∓ z

v

)
, (C9)

ignoring dissipation. We define

l̂±(t ) = â±(0−, t ), L̂±(t ) = â±(0+, t ). (C10)

Using Eq. (C7), we get

[L̂±(t ), L̂†
±(t ′)] = 1

c
δ(t − t ′), (C11)

[l̂±(t ), l̂†
±(t ′)] = 1

v
δ(t − t ′). (C12)

We assume a general scattering matrix between inputs
{L̂+, l̂−} and outputs {L̂−, l̂+},(

l̂+
L̂−

)
=

(
τ1 ρ1

ρ2 τ2

)(
L̂+
l̂−

)
. (C13)

Correct commutation relations follow if

μref = τ 2
1 + μrefρ

2
1 , 1 = ρ2

2 + μrefτ
2
2 , (C14)

where μref is the refractive index of the waveguide. Ignoring
the small effect of the magnetization, we assume time-reversal
symmetry giving(

l̂−
L̂+

)
=

(
τ1 ρ1

ρ2 τ2

)(
L̂−
l̂+

)
. (C15)

Equations (C13)–(C15) can be satisfied by two parameters, ρ

and τ , (
l̂+
L̂−

)
=

(
μrefτ ρ

−ρ τ

)(
L̂+
l̂−

)
, (C16)

satisfying μrefτ
2 + ρ2 = 1.

2. Photon amplitude

Now, consider a finite magnet as in Fig. 7 with sides at
z = ±l/2. We want to find the photon amplitude inside the
magnet in terms of the inputs

L̂in(t ) = â+

(
− l

2
− ε, t

)
,

R̂in(t ) = â−

(
l

2
+ ε, t

)
, (C17)

for a negligible ε > 0. Similarly, one can define L̂out and R̂out

by interchanging â+ ↔ â−. The boundary operators inside the
magnet are defined analogously, e.g.,

l̂in = â−

(−l

2
+ ε, t

)
, (C18)

and so on. The outside operators are related to inside operators
via the boundary conditions,(

l̂out

L̂out

)
=

(
μrefτ ρ

−ρ τ

)(
L̂in

l̂in

)
, (C19)

which holds also with L̂ → R̂ and l̂ → r̂. The inside operators
are related via the equations of motion, Eq. (C6),

r̂in = �l̂ [−1]
out + η̂+,I,

l̂in = �r̂[−1]
out + η̂−,I. (C20)

Here, � = e−αabsl/2 gives the decay of the signal. We introduce
a notation for retarded waves

f̂ [−n] ≡ f̂

(
t − nl

v

)
. (C21)

The integrated noises are given by

η̂±,I(t ) = −√
vαabs

∫ l/2

−l/2

d ξ̃

v
e−αabs(l/2∓ξ̃ )/2η̂±

×
(

ξ̃ , t − l/2 ∓ ξ̃

v

)
. (C22)

This gives the variance,

〈η̂±,I(t )η̂†
±,I(t

′)〉 = 1 − �2

v
δ(t − t ′). (C23)

The forward wave equation in Eq. (C20) can be interpreted as
the photons from the left boundary, l̂out, traveling through with
a delay of l/v, a decay of �, and added noise N̂+. A similar
interpretation holds for the backward moving wave.

The resulting set of equations can be solved to get a recur-
sive relation,

l̂out = ρ2�2 l̂ [−2]
out + F̂L, (C24)

with the force

F̂L = μrefτ
(
L̂in + ρ�R̂[−1]

in

) + ρ
(
N̂− + ρ�η̂

[−1]
+,I

)
. (C25)

The above recursion is solved by

l̂out =
∞∑

p=0

(ρ�)2pF̂ [−2p]
L . (C26)

Similarly, we get

r̂out =
∞∑

p=0

(ρ�)2pF̂ [−2p]
R , (C27)

where

F̂R = μrefτ
(
R̂in + ρ�L̂[−1]

in

) + ρ
(
η̂+,I + ρ�η̂

[−1]
−,I

)
. (C28)

3. Output

Given the photon amplitudes inside the magnet, the outputs
are simply given by the boundary conditions in Eq. (C19).
For concreteness, we consider the right side boundary with
output R̂out (t ). The output wave is collected and filtered into a
confined photon operator as [62]

âout =
∫

dt p̃(t )eiωobst â+(zdet, t ), (C29)
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where zdet > l/2 is the detector position, ωobs is the center
frequency of the filter and p̃(t ) > 0 is the instantaneous col-
lection efficiency. As the evolution outside the magnet is that
of a traveling wave, we get

â+(zdet, t ) = R̂out

(
t − zdet − l/2

c

)
, (C30)

giving

âout =
∫

dt p(t )eiωobst R̂out (t ), (C31)

where

p(t ) = p̃

(
t + zdet − l/2

c

)
, (C32)

and we ignored a constant phase shift. For the correct commu-
tation relations [âout, â†

out] = 1, the function p(t ) must satisfy

∫
dt

c
p2(t ) = 1. (C33)

Typically, we take p(t ) to be a constant in a time window and
zero outside. Similar terms can be defined with R̂ → L̂.

Vacuum: For a vacuum input

〈X̂in(t )X̂ †
in(t ′)〉 = 1

c
δ(t − t ′), (C34)

with X ∈ {L, R}. We get an intuitively appealing correlation
function inside the magnet

〈l̂out (t )l̂†
out (t

′)〉 = 1

v

∞∑
μ=−∞

(ρ�)2|μ|δ
(

t − t ′ − 2μl

v

)
. (C35)

For infinite dissipation � → 0 or no reflection ρ → 0, the
correlation function is that of a free wave with no retardation.
Otherwise, the waves at time separation 2rl/v are correlated
with a decrease in correlation (ρ�)2|r| corresponding to 2r
reflections and dissipation during one way trips.

For the output fields X̂out (t ), we get a vacuum state

〈X̂out (t )X̂ †
out (t

′)〉 = δ(t − t ′)
c

, (C36)

as expected in thermal equilibrium. This gives âout in vacuum
state.

Squeezed Vacuum. For a squeezed input, the correlations
can be written in terms of the quadratures: X̂s,in = X̂ine−iψ +
X̂ †

ineiψ and −iX̂b,in = X̂ine−iψ − X̂ †
ineiψ for X ∈ {L, R} and the

squeezing direction given by ψ . For a squeezing factor of r,

〈X̂s,in(t )X̂s,in(t ′)〉 = e−r δ(t − t ′)
c

〈X̂b,in(t )X̂b,in(t ′)〉 = er δ(t − t ′)
c

〈X̂s,in(t )X̂b,in(t ′) + X̂b,in(t )X̂s,in(t ′)〉 = 0.

Then, we can calculate the output noise statistics also in terms
of similar quadratures,

c〈X̂s,out (t )X̂s,out (t
′)〉

= e−rδ(t − t ′) +
∞∑

μ=−∞

(ρ�)2|μ|μrefτ
2

1 − ρ2�2
(1 − e−r )(1 − �2)

× δ

(
t − t ′ − 2μl

v

)
.

For r �= 0, the output is colored. For the collected photons,〈
â2

out,s

〉 = e−r + (1 − e−r )(1 − ρ2)(1 − �2)

×
∞∑

μ=−∞

(ρ�)2|μ|

1 − ρ2�2
e2iμωobsl/v

∫
dt

c
p

(
t − 2μl

v

)
p(t ).

If p(t ) is nearly constant over a width τ , we can approx-
imate p(t − 2μl/v) ≈ p(t ) for μ < 2vτ/l . Additionally, If
(ρ�)vτ/l 	 1, then the contribution of μ > 2vτ/l would
be negligible, and we can use the normalization of p(t ),
Eq. (C33), to get the result in the main text, Eq. (57). For
a τ > 100 ns and l < 100 µm, we have vτ/l > 1000, which
should be sufficient for this condition to hold.

Classical input. We consider a classical input from the left,
i.e.,

〈L̂in(t )〉 =
√

Pin

h̄ωin
e−iωint . (C37)

The field inside the magnet can be found using

〈l̂out (t )〉 = μrefτ

1 − ρ2�2e2ilωin/v

√
Pin

h̄ωin
e−iωint . (C38)

The output field towards the right is

〈R̂out (t )〉 = μrefτ
2�eilωin/v

1 − ρ2�2e2ilωin/v

√
Pin

h̄ωin
e−iωint . (C39)

This gives a coherent âout with a significant amplitude only if
ωobs ≈ ωin.

APPENDIX D: OPTOMAGNONIC WAVEGUIDE

In this Appendix, we discuss the effect of BLS on a large
ey-polarized input, giving a scattered output in ex-polarization.
We assume that the ground state magnetization is along ey

direction.
We assume that only the uniform mode is excited and

quantize it by the Holstein-Primakoff transformation,

M̂z − iM̂x ≈ 2MZPFm̂, (D1)

where we ignore terms higher order in m̂ and the zero point
fluctuations are given by

MZPF =
√

γGh̄Ms

2Vmag
, (D2)

with γG being the absolute value of the gyromagnetic ra-
tio, Ms being the saturation magnetization, and Vmag being
the volume of the magnet. The generalization to all magnon
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modes is straightforward. The magnon Hamiltonian is Ĥmag =
h̄ωmm̂†m̂, where ωm is the resonance frequency.

The interaction Hamiltonian is that of scattering of light by
the magnetization,

Ĥint = c
√

εrε0

ωopt

∫
dV

[
i
�F

Ms
M̂ · (Ê† × Ê )

+�C

M2
s

(M̂ · Ê†
)(M̂ · Ê )

]
, (D3)

where Ê is given by a generalization of Eq. (C1),

Ê (r) =
∑

σ

∫
dk√
2π

eikzEσk (x, y)âσ (k). (D4)

Using the quantization, we get the interaction Hamiltonian

Ĥint = h̄m̂
∑
σ,σ ′

∫
dkdk′

2π
âσ (k)â†

σ ′ (k′)gσσ ′ (k, k′) + h.c. (D5)

The coupling is

h̄gσσ ′ (k, k′) = c
√

εr

ωopt

MZPF

Ms
ε0

∫
dV ei(k−k′ )z

× [i�F E∗
σ ′k′ (x, y) × Eσk (x, y)

+ �C (ey · E∗
σ ′k′ (x, y)Eσk (x, y) + ey

· Eσk (x, y)E∗
σ ′k′ (x, y))]+,

where A+ = Az + iAx. The final Hamiltonian is Ĥ = Ĥopt +
Ĥmag + Ĥint .

We can follow a similar procedure as Appendix C, to define
traveling waves âσ±. Their equations of motion should be sup-
plemented with the BLS interaction. For the uniform magnon
mode, we expect no backscattering, so the waves in opposite
direction move independent of each other via the equations of
motion (dissipation to be added later),

(∂t ± v∂z )âσ±(z, t )

= −i
∑
σ ′

∫
dz′

2π
[gσ ′σ±(z′, z)m̂(t ) + g∗

σσ ′±(z, z′)m̂†(t )]

× âσ ′±(z′, t ), (D6)

where the position dependent couplings gσσ ′± are defined as
Fourier transforms,

gσσ ′±(z, z′) =
∫∫

I±

dkdk′

2π
gσσ ′ (k, k′)e−ikz+ik′z′

, (D7)

with the intervals I+ = (0,∞) and I− = (−∞, 0).
BLS occurs between photons whose wave vector is sep-

arated by ωm/v 	 kopt, kopt being a nominal optical wave
vector. For frequencies not too close to the threshold of the
waveguide, Eσk (x, y) has a very weak dependence on k, such
that we can replace Eσk ≈ Eσkopt . This gives a local relation,
gσσ ′±(z, z′) ≈ 2πGσσ ′δ(z − z′), where

Gσσ ′ = ic
√

εr

h̄ωopt

MZPF

Ms
ε0

∫
d2ρ[�F E∗

σ ′ (ρ) × Eσ (ρ)

+ �C (ey · E∗
σ ′ (ρ)Eσ (ρ) + ey · Eσ (ρ)E∗

σ ′ (ρ))]+
(D8)

suppressing the kopt index. For typical cases of the polarization
being along ex and ey, we have Gxx = Gyy = 0.

Finally, we model the optical dissipation as a local source,

(∂t ± v∂z )âσ±(z, t ) = −i
∑
σ ′

M̂σσ ′ (t )âσ ′±(z, t )

− γ

2
âσ±(z, t ) − √

γ η̂σ±(z, t ). (D9)

Here, the magnon operator Mσσ ′ (t ) = Gσ ′σ m̂(t ) +
G∗

σσ ′m̂†(t ), and the noise source is assumed to be a local
white source [η̂σ±(z, t ), η̂†

σ ′±(z′, t ′)] = δσσ ′δ(z − z′)δ(t − t ′).
The above equations can be solved analytically to give

âσ±(z, t ) = e∓γ (z±l/2)/2v âσ+

(
∓ l

2
, t ∓ z ± l/2

v

)

∓
∫ z

∓l/2

d ξ̃

v
e∓γ (z−ξ̃ )/2v

[√
γ η̂σ±

(
ξ̃ , t ∓ z − ξ̃

v

)

+ i
∑
σ ′

M̂σσ ′

(
t ∓ z − ξ̃

v

)
âσ ′±

(
ξ̃ , t ∓ z − ξ̃

v

)]
.

(D10)

For the forward moving wave: the first term is the propogation
of the amplitude from the left boundary and the second term
integrates the scattered light via BLS and noise.

For ey polarization, we assume that the input is large
enough such that we can ignore any backaction from the
magnons. We want to find the output in ex polarization.
The inputs and outputs are defined analogous to Eqs. (C17)
and (C18) but with a polarization index. The output towards
the right of the magnet is

R̂x,out = −ρR̂x,in + τ r̂x,in. (D11)

R̂x,in is the noise from the outside (which can be squeezed).
To find the amplitudes inside the magnet, we use Eq. (D10) to
get

r̂x,in(t ) = �l̂ [−1]
x,out + η̂x+,I − i

∫ l/2

−l/2

d ξ̃

v
e−αabs(l/2−ξ̃ )/2

× M̂xy

(
t − l/2 − ξ̃

v

)
ây+

(
ξ̃ , t − l/2 − ξ̃

v

)
,

(D12)

where we used Gxx = 0. The noise is given by

η̂x+,I = −√
γ

∫ l/2

−l/2

d ξ̃

v
e−γ (l/2−ξ̃ )/2v η̂x+

(
ξ̃ , t − l/2 − ξ̃

v

)
.

(D13)
We can treat ây+ classically for a large coherent input (see the
previous section),

ây+(z, t ) = e−γ (z+l/2)/2v l̂y,out

(
t − z + l/2

v

)
, (D14)

which can be use to simplify the expression for r̂x,in(t ) to

r̂x,in(t ) = �l̂ [−1]
x,out + η̂x+,I − ie−αabsl/2 l̂y,out

(
t − l

v

)

×
∫ l/2

−l/2

d ξ̃

v
M̂xy

(
t − l/2 − ξ̃

v

)
. (D15)
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Ignoring backaction on magnons, we assume a time-
dependence m̂(t ) = m̂e−iωmt . For ωml/v 	 1, we find

r̂x,in = �l̂ [−1]
x,out + η̂x+,I − i

�l

v

× (
Gyxm̂eikm (l/2−vt ) + G∗

xym̂†e−ikm (l/2−vt ))l̂ [−1]
y,out .

(D16)

The above equation generalizes the result in Appendix C for
the output photons by adding the magnon contribution. Thus,
we can write analogously

R̂x,out = R̂(0)
x,out + R̂(M )

x,out. (D17)

The first term is a squeezed vacuum, as discussed in Sec. C 3.
The second term is given by

R̂(M )
x,out (t ) = S0

(
Gyxm̂eikml/2e−i(ωin+ωm )t

1 − ρ2�2e−2ik+l

+ G∗
xym̂†e−ikml/2e−i(ωin−ωm )t

1 − ρ2�2e−2ik−l

)
, (D18)

where k± = (ωin ± ωm)/v, we assumed a classical l̂y, and

S0 = −i
τ�l

v

μrefτeiωin l/v

1 − ρ2�2e2ilωin/v

√
Pin

h̄ωin
. (D19)
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