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Motivated by recent numerical studies reporting putative quantum paramagnetic behavior in spin-1/2 Heisen-
berg models on the maple-leaf lattice, we classify Abrikosov fermion mean-field Ansätze of fully symmetric U(1)
and Z2 quantum spin liquids within the framework of projective symmetry groups. We obtain a total of 17 U(1)
and 12 Z2 algebraic PSGs, and, upon restricting their realization via mean-field Ansätze with nearest-neighbor
amplitudes (relevant to the studied models), only 12 U(1) and 8 Z2 distinct phases are obtained. We present both
singlet and triplet fields for all Ansätze up to third nearest-neighbor bonds and discuss their spinon dispersions
as well as their dynamical spin structure factors. We further assess the effects of Gutzwiller projection on the
equal-time spin structure factors.

DOI: 10.1103/PhysRevB.110.014414

I. INTRODUCTION

Two-dimensional geometrically frustrated lattices have
long been a fertile playground for realizing quantum spin
liquids (QSLs). Indeed, Heisenberg models on the celebrated
kagome and triangular lattices are known to realize a variety
of paramagnetic phases, including the exotic U(1) Dirac and
chiral QSLs [1–7]. A relatively new entrant in search of QSL
behavior is the maple-leaf lattice [8–19] [see Fig. 1(a)], where
the existence of a putative QSL phase sandwiched between
magnetically ordered and a dimerized ground state in the
spin S = 1/2 Heisenberg antiferromagnet has been reported
by pseudofermion functional renormalization group (pf-FRG)
calculations [16]. A subsequent study of this model employ-
ing neural quantum states and density matrix renormalization
group (DMRG) approaches also hinted at the possible ex-
istence of an intermediate QSL phase [17]. Another recent
DMRG exploration of parameter space with ferromagnetic
couplings on triangle and dimer bonds [red and blue bonds
in Fig. 1(a), respectively] provided an inkling for an island
of spin liquidity surrounded by magnetic and dimer orders
[18]. The precarious locations of the reported QSL phases
on the maple-leaf lattice have naturally led to speculations
concerning their possible origin from a nearby deconfined
quantum critical point. In similar spirit, it has recently been
shown that the inclusion of longer range Heisenberg cou-
plings induces quantum paramagnetic phases [20]. While
the aforementioned approaches provide evidence of quantum
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paramagnetic behavior, which could putatively be a QSL, they
fall short of characterizing its precise microscopic nature, i.e.,
gapless versus gapped, U(1) versus Z2 gauge structure, etc. A
powerful framework to systematically classify quantum spin
liquids with different gauge groups is provided for within a
parton representation by the method of projective symmetry
groups [21,22]. This framework has been extensively applied
on two- and three-dimensional lattices [23–48] and met with
wide success in describing the ground state and low-energy
behavior of quantum spin models [2,6,49–58].

To this end, we employ the projective symmetry group
(PSG) framework for fermionic partons to provide a system-
atic classification of fully symmetric QSL mean-field Ansätze
with different low-energy gauge groups [21]. We find a to-
tal of 17 U(1) and 12 Z2 distinct algebraic PSGs on the
maple-leaf lattice. Upon restricting the (singlet) mean-field
Ansätze to first neighbor amplitudes only, a total of 12 U(1)
and 8 Z2 states can be realized, while if amplitudes up to
third neighbor are included, all U(1) and Z2 distinct states
are realizable. While our treatment principally focuses on
singlet QSLs, in general, we also provide the symmetry al-
lowed triplet amplitudes thus enabling for a consideration of
competing ferromagnetic and spin-orbit couplings in the orig-
inal spin system. The Hamiltonians featuring such couplings
are likely to be present and potentially relevant in describ-
ing natural minerals [59–62] and synthetic crystals [63–67]
with maple-leaf crystal geometries or distortions thereof. In
two dimensions, it is well known that including these triplet
fields can lead to a plethora of topologically nontrivial spinon
models and possibly spin nematic states [68–72].

The article is organized as follows. In Sec. II, the projective
symmetry group approach is explicated and complemented by
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the symmetry operators on the maple-leaf lattice in Sec. III. A
synopsis of the projective symmetry group results is provided
in Sec. IV, succeeded by a mean field analysis of the PSG
candidate states in Sec. V. The latter Ansätze then enable us to
compute spinon bands as well as the equal-time and dynamic
spin structure factors (Sec. VI). In Sec. VII, we conclude that
Heisenberg models on the maple-leaf lattice open up an arena
of elusive quantum paramagnetic phenomena awaiting further
investigation and substantiation.

II. PROJECTIVE SYMMETRY GROUP APPROACH

In this section, we review the essential steps of the
projective symmetry group (PSG) classification of effective
low-energy theories of QSLs [21,22]. We start from a Heisen-
berg model defined on a lattice

Ĥ =
∑
rr′

Jrr′ Ŝr · Ŝr′ , (1)

where Ŝr denotes the SU(2) spin operator acting on the spin-
1/2 representation on site r. Due to the absence of magnetic
order in QSLs, a mean-field treatment must be carried out
within a parton representation of spin operators, and here we
adopt the representation in terms of two flavors of complex
fermions due to Abrikosov [73]

Ŝμ
r = 1

2

∑
αβ

f̂ †
rασ

μ

αβ f̂rβ, (2)

where the spinon operator f̂rα annihilates a fermion with
spin-α ∈ {↑,↓} at site r and σμ (μ ∈ {x, y, z}) are the three
Pauli matrices. This mapping artificially enlarges the local
Hilbert space from the spin space C2 to the four-dimensional
fermionic Fock space. Hence, this mapping reproduces the
physical Hilbert space of the spin model only in the subspace
of single occupation nr = 1 for all sites, which correspond to
S2 = 3/4, while the unphysical states with nr = 0 or 2, yield
S2 = 0 which do not correspond to spin states. Therefore a
correct description of the physical model needs to incorporate
a constraint which forbids empty and doubly occupied sites.
The constrained model leads to a description of the QSL
state in terms of a gauge theory [74,75]. The Heisenberg
Hamiltonian becomes quartic in terms of these fermions and a
Hubbard-Stratonovich transformation is employed to further
decouple the interacting model. We choose this decoupling
to neglect any magnetic terms, which then introduces the
auxiliary fields

χrr′δαβ = 2〈 f̂ †
rα f̂rβ〉,

�rr′εαβ = −2〈 f̂rα f̂rβ〉. (3)

To make further progress, we will assume static fields in
a mean-field treatment [76]. Using Nambu spinors ψ̂†

r =
( f̂ †

r↑, f̂r↓), one can write the Hamiltonian as

Ĥ =
∑
rr′

−3

8
Jrr′

[
(ψ̂†

r urr′ψ̂r′ + H.c.) − 1

2
Tr[u†

rr′urr′ ]

]

+
∑
r,μ

ψ̂†
r aμ(r)σμψ̂r (4)

with a local multiplier field aμ(r) which ensures single occu-
pancy on the mean-field level, i.e.,

〈∑
α

f̂ †
rα f̂rα

〉
= 1, 〈 f̂rα f̂rβ〉 = 0 ∀ r. (5)

The coupling matrices urr′ contain the mean-field amplitudes

urr′ =
(

χ
†
rr′ �rr′

�
†
rr′ −χrr′

)
= ι̇α0

rr′τ
0 +

∑
μ

α
μ

rr′τ
μ, (6)

which can be parameterized by four real coefficients
α0

rr′ , α
μ

rr′ ∈ R. Here, τ 0 is the 2 × 2 identity matrix and τμ

are the Pauli matrices acting in Nambu space. In the pure
mean-field picture (in this context often referred to as zeroth
order mean field [22]), the Hamiltonian Eq. (4) can be readily
solved. However, having relaxed this constraint may lead to
contributions from unphysical states. We will mitigate this
problem by constructing particular mean-field Ansätze that are
stable saddle-point solutions beyond the zeroth order mean-
field theory. To see which mean-field models are of interest,
we consider the type of fluctuations which are expected to
induce gapless excitations beyond the pure mean-field pic-
ture. Therefore we re-examine the fermionic representation
of the spin operator in Eq. (2) which is invariant under a
local U(1) transformation f̂rα → eι̇θ (r) f̂rα . Within the physical
subspace of single occupancy it is further invariant un-
der a particle-hole like transformation f̂rα → cos φ(r) f̂rα +
sign(α) sin φ(r) f̂ †

r,−α , where −α means flipping the spin label
and sign(↑) = +1, sign(↓) = −1. These two transformations
do not commute, as is manifest by considering their action on
the spinor ψ̂r. The angles of a successive application of U(1),
particle-hole, and again U(1) transformations can be regarded
as Euler angles parametrizing the group of rotations in a
three-dimensional space SO(3), which is locally isomorphic
to SU(2) [34]. It follows that in the fermionic representation
the Heisenberg Hamiltonian should be invariant under a lo-
cal SU(2) transformation [75]. Note that this local freedom
is different from the global spin rotation invariance of the
Heisenberg model. The gauge freedom is implemented in our
description by an action on the spinors according to ψ̂r →
Wrψ̂r with Wr ∈ SU(2). Equivalently, one can act on the cou-
pling matrices of a mean-field Ansatz urr′ → W †

r urr′Wr′ . It is
obvious that a generic coupling matrix urr′ will break this local
invariance. However, for a particular choice of the mean-field
decoupling, there might exist a subgroup G ⊆ SU(2), called
the invariant gauge group (IGG), for which

urr′ = W †
r urr′Wr′ , Wr ∈ G (7)

is true. Note that such a subgroup always exists since for
Z2 ⊆ G Eq. (7) is trivially fulfilled. Different mean-field An-
sätze which are related not only by Eq. (7) but by a generic
SU(2) gauge transformation lead to an equivalent description
and, therefore, the elements of G merely put different labels
on the same physical state [22]. One can further show that
fluctuations over a given mean-field Ansatz are generated by
elements of its G [21]. In this work, we will consider the

014414-2



CANDIDATE QUANTUM SPIN LIQUIDS ON THE … PHYSICAL REVIEW B 110, 014414 (2024)

(a) (b)

FIG. 1. (a) An illustration of the maple-leaf lattice with corresponding lattice vectors T1 and T2. The numbers denote the positions u within
the unit cell as explained in the main text. The point group rotations R,I, defined in Eq. (10), are drawn in black and gray respectively and
shown in the lower part. (b) Illustration of the three different colors which stand for three symmetry-inequivalent first nearest-neighbor bonds
(within one unit cell).

scenarios of G � U(1) and Z2.1 In the latter case, the ex-
citations of the fluctuation-fields are gapped such that at
sufficiently low energies the mean-field Ansatz leads to a
stable saddle-point. In the U(1) case, however, stability ar-
guments are more subtle and need to be considered for each
model separately [6,52,77–79].

The emergence of local invariance has further implications
regarding the symmetry properties of the model. Assume that
we want to investigate if the system at hand has any under-
lying symmetry. Such a symmetry would act on a mean-field
Ansatz as urr′ → OO(r)uO(r)O(r′ )O

†
O(r′ ), where O is a projec-

tive representation of the symmetry operation O acting in
Nambu space. Due to the local gauge freedom, we say that
the system is invariant under a given symmetry operation if
we can find a suitable gauge transformation GO such that

urr′ = GO(O(r))uO(r)O(r′ )G
†
O(O(r′)), GO(r) ∈ SU(2).

(8)

This equation defines the PSG, and in mathematical terms, it
is the extension of the symmetry group (SG) by the IGG

PSG = IGG � SG. (9)

PSGs provide a systematic way to classify and construct many
possible quantum states. This classification goes beyond the
Landau paradigm in the conventional sense [21,22]. We will
make use of this method in the following section and construct
possible quantum spin liquid states for the maple-leaf lattice.

III. LATTICE AND TIME-REVERSAL SYMMETRIES

The site coordinates on the maple-leaf lattice can be generi-
cally described by r = xT1 + yT2 + u. We choose the Bravais
lattice vectors in the Cartesian basis as T1 = a

2 (3
√

3,−1) and

1States with SU(2) IGG cannot be realized on the maple-leaf lattice
given its nonbipartite nature.

T2 = a
2 (−√

3, 5), with lattice constant a; u denotes the posi-
tion of lattice sites within the unit cell. The unit cell is fixed
such that its center coincides with the center of a hexagon as
depicted in Fig. 1. Every site u in the unit cell can be written
as u = xua1 + yua2, where a1 = a(0, 1) and a2 = a

2 (−√
3, 1)

and xu, yu ∈ {0,±1}. Using the convention of Fig. 1, we
label these sites in a shorthand notation by u = {1, . . . , 6}.
The underlying symmetry group S of the maple-leaf lattice
is given by the wallpaper group P6 which can be generated by
four operations: two translations (T1 and T2), inversion (I) and
a C3-rotation (R) (we adopt an anticlockwise rotation).2 These
operations act on a lattice site at (x, y, u) by

T1(x, y, u) → (x + 1, y, u),

T2(x, y, u) → (x, y + 1, u),

R(x, y, u) → (−y, x − y, R(u)),

I (x, y, u) → (−x,−y, I (u)),

R−1(x, y, u) → (y − x,−x, R−1(u)). (10)

Figure 1 depicts the action of these operations. Within our
convention of the unit cell the operations R, I only permute
elements in u, which is summarized in Table I. Thus, one can
compute their action on the Bravais lattice (x, y) and on one
unit cell u separately. The mutual relations of Eq. (10) lead to
the following set of algebraic conditions:

T1T2 = T2T1, (11)

I2 = 1, (12)

TiITi = I, (13)

2Instead of (I) and a C3 rotation, one can equivalently work with
only a single sixfold rotation C6. Note that this lattice lacks any
reflection symmetry.
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TABLE I. Here, we summarize how the point group symmetry
operations transform the six sites within the unit cell, i.e., (0, 0, u)
with u = 1, 2, 3, 4, 5, 6. The general transformation rules are
given in Eq. (10) and visualized in Fig. 1.

u I(u)/I−1(u) R(u) R−1(u)

1 4 3 5
2 5 4 6
3 6 5 1
4 1 6 2
5 2 1 3
6 3 2 4

R3 = 1, (14)

T −1
1 R = RT1T2, (15)

T −1
2 RT1 = R, (16)

R−1IRI = 1. (17)

These relations fix the underlying group structure. Note that
in case of the PSG, the identity 1 is defined only modulo the
invariant gauge group G.

Besides operations acting on the site index of a spinor,
we also include time-reversal symmetry T , which acts on
an Ansatz according to T (urr′ , aμ

r ) → −(urr′ , aμ
r ) [22]. This

leads to the additional conditions

T 2 = 1, (18)

T ST −1S−1 = 1. (19)

In Appendix A, we list all the precise conditions for the
corresponding representation matrices GS (r) and GT (r).

IV. PSG SOLUTIONS

In this section, we present a set of gauge inequivalent rep-
resentation matrices for the group extensions G � U(1), Z2.
The details of the construction are presented in Appendix B
for the U(1) case, and Appendix C for the Z2 case.

A. U(1) PSG solution

The generic form of U(1) PSG solution for any symmetry
operator O is given by GO(x, y, u) = g3(φO(x, y, u))(ι̇τ 1)wO .
Here, g3(ξ ) should be read as eι̇ξ τ 3

, with ξ ∈ [0, 2π ), and
wO is an integer that takes the values 0 and 1. Note that for
O ∈ {T1, T2, R} consistent solutions only exist for wO = 0.
The solutions for φO(x, y, u) are

φT1 (x, y, u) = yθ, φT2 (x, y, u) = 0, (20)

φR(x, y, u) = [
xy − 1

2 x(x − 1)
]
θ, (21)

φI (x, y, u) = θ̃I (x + y) + ρI (u), (22)

φT (x, y, u) = uπδwT ,0. (23)

The parameters in the above equations are given in
Appendix B. In total, we enumerated 17 distinct U(1) PSG
classes which are listed in Table II.

TABLE II. The 17 U(1) PSG classes are listed here. n and nI are
integers that can take values 0 or 1.

wT wI θ θ̃I ρI (u) Number of PSG class

0 0 3θ̃I θ̃I 0 1
0 1 nπ θ

pI (u−1)π
3 , pI = 0, 1, 2, 3 8

1 0 nπ θ nIπδmod(u,2),0 4
1 1 nπ θ nIπδmod(u,2),0 4

B. Z2 PSG solution

In the Z2 case, the GO are generic SU(2) matrices. A set
of gauge inequivalent solutions is given by

GT1 (x, y, u) = ηyτ 0, GT2 (x, y, u) = τ 0, (24)

GR(x, y, u) = ηxy− 1
2 x(x−1)τ 0, (25)

GI (x, y, u) = ηx+yηu+1
I τ 0, (26)

GT (x, y, u) = ηu+1
T I gT , gT ∈ {τ 0, ι̇τ 2}. (27)

Taking only lattice symmetries into account, the number of the
gauge inequivalent Ansätze is classified by the integer (binary)
parameters η, ηI , yielding 22 = 4 distinct classes. Inclusion
of time-reversal leads to 22 × 4 = 16 PSG classes, as the
integer ηT I can take values 0 or 1. However, the solutions
with gT = τ 0 and ηT I = 1 yield vanishing Ansätze, so we
can effectively consider a total of 22 × 3 = 12 PSG classes
which lead to fully symmetric QSLs.

V. SHORT RANGED MEAN-FIELD

In this section, we explicitly construct and discuss
all mean-field Ansätze for first nearest neighbor (1NN)
amplitudes according to the PSG symmetry conditions
derived in the previous section. As shown in Fig. 1, there are
three symmetry inequivalent 1NN bonds, which are referred
to as red, blue, and green bonds in the remainder of the
paper. Inserting the gauge inequivalent PSG representations
GO in Eq. (8) enables the construction of the mean-field
matrices urr′ according to the desired symmetry. A similar
yet one-site condition can be used for the Lagrange multiplier
aμ(r). By an Ansatz, we refer to the pair (urr′ , aμ(r)).
We present the U(1) Ansätze first, followed by the Z2

states in the ensuing subsection. A concise summary of the
general transformation rules in Eq. (8) for the Z2 states
is shown in Fig. 14. Appendix E contains the results for
mean-field models up to third nearest neighbors. Before
we proceed to a detailed discussion of the mean-field
Ansätze, we make explicit the notations for ui j on the
bonds within a reference unit cell (x, y) = (0, 0). We
use the notations u12

1g, u23
1g, u34

1g, u45
1g, u56

1g, and u61
1g for the

bonds (i, j) given by ((0,0,1),(0,0,2)), ((0,0,2),(0,0,3)),
((0,0,3),(0,0,4)), ((0,0,4),(0,0,5)), ((0,0,5),(0,0,6)), and
((0,0,6),(0,0,1)), respectively. There are three blue bonds
per unit cell denoted by u14

1b, u36
1b and u52

1b for the bonds
(i, j) given by ((0,0,1),(0,1,4)), ((0, 0, 3), (−1,−1, 6)),
and ((0,0,5),(1,0,2)), respectively. In addition, there
are six red bonds per unit cell denoted by u13

1r , u24
1r ,

u35
1r , u46

1r , u51
1r and u62

1r for the bonds (i, j) given by
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((0,0,1),(1,1,3)), ((0,0,2),(0,1,4)), ((0, 0, 3), (−1, 0, 5)),
((0, 0, 4), (−1,−1, 6)), ((0, 0, 5), (0,−1, 1)), and
((0,0,6),(1,0,2)), respectively. These notations are graphically
illustrated in Fig. 1(b). Based on these, the ui j on the other
bonds can straightforwardly be obtained by translations.

A. U(1) mean-field

We divide the U(1) Ansätze in four classes labeled by UA,
UB, UC, and UD corresponding to the different PSG labels
(wT ,wI ) = (0, 0), (0,1), (1,0), and (1,1), respectively.

1. wI = 0 and wT = 0 (class UA)

The Ansatz matrices for this class are given by

u12
1g = u34

1g = u56
1g = u23

1g = u45
1g = u61

1g = ι̇χ0
1gτ

0 + χ3
1gτ

3,

u14
1b = u36

1b = u52
1b = ι̇χ0

1bτ
0 + χ3

1bτ
3,

uuu′
1r = 0, aμ(u) = 0,

2 tan−1

(
−χ3

1b

χ0
1b

)
+ θ̃I = π. (28)

Applying N successive translations along T1 will modify u14
1b

and u36
1b according to

u14
1b ≡ u(x,y,1),(x,y+1,4)

T N
1→ g3(−3N θ̃I )u(x+N,y,1),(x+N,y+1,4)

= g3(−3N θ̃I )u14
1b, u36

1b ≡ u(x,y,3),(x−1,y−1,6)

T N
1→ g3(3N θ̃I )u(x+N,y,3),(x+N−1,y−1,6)

= g3(3N θ̃I )u36
1b, (29)

while all other bonds remain invariant. The realization of such
an Ansatz on a finite lattice needs the implementation of the
following constraint

θ̃I = m

n
π, with m, n ∈ Z. (30)

Members of this class will be labeled as

UA[m, n]. (31)

Since uuu′
1r = 0, all the red bonds vanish for 1NNs and the only

SU(2) flux φh [see Fig. 2(a) for the definition of the different
fluxes] piercing through the central hexagon is depicted in
Fig. 3. The precise flux value is determined by the mean-field
parameters χ

0/3
1g .

2. wI = 1 and wT = 0 (class UB)

We label this class as

UBnpI, (32)

where the classifying quantum numbers are n ∈ {0, 1}, and
pI ∈ {0, 1, 2, 3}. The coupling matrices are

u12
1g = u34

1g = u56
1g = ι̇χ0

1gτ
0 + χ3

1gτ
3,

u23
1g = u45

1g = u61
1g = −g3(pIπ/3)

(
u12

1g

)†
,

u14
1b = u36

1b = u52
1b = ι̇χ0

1bτ
0 + χ3

1bτ
3,

u14
1b = −ηg3(pIπ )u14

1b,

(a)

(b)

FIG. 2. (a) Illustration of SU(2) fluxes on the maple-leaf lattice.
Note that all fluxes are defined starting from the same lattice site
marked by a red star. The two stars are therefore thought of as
equivalent. (b) The green (blue) hexagon depicts the first (extended)
Brillouin zone. The extended Brillouin zone is obtained via scaling
by a factor of

√
7 and rotation by an angle φ = arccos 5

2
√

7
with

respect to the first Brillouin zone. The orange rectangular region
shows the reduced Brillouin zone corresponding to Ansätze which
double the unit cell along T1. The high symmetry points are �(0, 0),
X ( 5π

14
√

3
, π

14 ), M( π

7
√

3
, 3π

7 ), Y (− 3π

14
√

3
, 5π

14 ), K ( 4π

7
√

3
, 8π

21 ), K ′( 2π√
3
, 2π

3 ),

and M ′( 2π√
3
, 0).

uuu′
1r = 0, aμ(u) = 0, (33)

where we denote g3(nπ ) = η. The spatial dependence of u14
1b

and u36
1b is given by

ηN u14
1b(x + N, y) = u14

1b(x, y),

ηN u36
1b(x + N, y) = u36

1b(x, y). (34)

Therefore, the realization of an Ansatz with η = −1 re-
quires a doubling of the unit cell. Like in the UA class, only
the loop operator corresponding to the hexagons is finite with

Pφh ∝ g3((pI + 1)π ). (35)
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FIG. 3. Flux pattern for the Ansatz classes UA and UB. These
classes share the common property that all red bonds vanish. The
flux through the hexagons denoted by φh, and the blue bonds differ
for specific class members and are further specified in the main text.

The gauge inequivalent Ansätze in this class are as follows:
For η = +1 with φh = 0, an Ansatz has to obey

u12
1g = u34

1g = u56
1g = u23

1g = u45
1g = u61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = ι̇χ0

1bτ
0 + χ3

1bτ
3,

uuu′
1r = 0. (36)

An appropriate gauge transformation sets χ0
1g = 0 and we

redefine χ3
1g = χ1g. This state is then labeled as UB03 and

shown in Fig. 4. Note that for 1NN, pI = 3 and pI = 1 lead
to the same result.

For η = +1 with φh = π , the Ansätze are

u12
1g = u34

1g = u56
1g = −u23

1g = −u45
1g = −u61

1g = χ1gτ
3,

uuu′
1b = 0, uuu′

1r = 0. (37)

We label this state as UB00 where pI = 0. Notice that this
configuration corresponds to the π -flux hexagonal plaquette
singlet state as shown in Fig. 5. pI = 2 gives the same state
for 1NN.

For η = −1, an Ansatz with φh = π appears for pI = 0
labeled by UB10 and is given by

u12
1g = u34

1g = u56
1g = −u23

1g = −u45
1g = −u61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = ι̇χ0

1bτ
0 + χ3

1bτ
3, uuu′

1r = 0, (38)

and shown in Fig. 6. An Ansatz with pI = 2 is gauge equiva-
lent to UB10 for 1NN.

Ansätze for η = −1 with φh = 0 appear for pI = 3 and are
labeled by UB13. The matrices are given by

u12
1g = u34

1g = u56
1g = u23

1g = u45
1g = u61

1g = χ1gτ
3,

uuu′
1b = 0, uuu′

1r = 0. (39)

FIG. 4. Flux pattern for the Ansatz UB03. The arrows on the
lines denote the orientation of the bonds. The triangles are pierced
by nontrivial flux φbg which is defined for an anticlockwise rotation.
Triangles for which the circulation goes clockwise carry negative flux
−φbg and are here drawn in blue.

Such an Ansatz corresponds to the 0-flux hexagonal plaquette
singlet state. pI = 1 yields the same state for 1NN. This
state is effectively the same as for η = +1 as the mean-field
amplitudes on the blue bonds vanish. Notice that for both, 0
and π fluxes, hexagonal singlet plaquette Ansätze, the IGG is
SU(2).

3. wI = 0 and wT = 1 (class UC)

This class is labeled as

UCnnI (40)

FIG. 5. Flux pattern for the Ansatz UB00. The green lines denote
bonds for which the coupling matrices are multiplied by −1.
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FIG. 6. Flux pattern for the Ansatz UB10. The green and blue
lines denote where the coupling matrices are multiplied by a sign
factor −1. The arrows on the lines denote the orientation of the
bonds. With η = −1 one has a doubling of the unit cell which is
enclosed by the dashed lines. The triangles are pierced by nontrivial
flux φbg, which is defined for an anticlockwise rotation. Triangles for
which the circulation goes clockwise carry negative flux −φbg and
here drawn in blue. The hexagons carry a π flux.

with n, nI ∈ {0, 1}. We use the shorthand notation η =
g3(nπ ) and ηI = g3(nIπ ). The coupling matrices are deter-
mined as

u12
1g = ηIu23

1g = u34
1g = ηIu45

1g = u56
1g = ηIu61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3, u14
1b = ηηI

(
u14

1b

)†
,

u13
1r = u24

1r = ηu35
1r = u46

1r = ηu51
1r = u62

1r = χ1rτ
3,

a3(u) �= 0, a1, a2 = 0. (41)

The spatial dependence is given by

ηN u14
1b(x + N, y) = u14

1b(x, y),

ηN u36
1b(x + N, y) = u36

1b(x, y),

ηN u24
1r (x + N, y) = u24

1r (x, y),

ηN u13
1r (x + N, y) = u13

1r (x, y),

ηN u46
1r (x + N, y) = u46

1r (x, y),

ηN u51
1r (x + N, y) = u51

1r (x, y), (42)

while all other bonds are translation invariant. The Ansätze for
η = +1 and ηI = +1 are

u12
1g = u23

1g = u34
1g = u45

1g = u56
1g = u61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3,

u13
1r = u24

1r = u35
1r = u46

1r = u51
1r = u62

1r = χ1rτ
3,

a3(u) �= 0, a1, a2 = 0, (43)

FIG. 7. Flux pattern (π, ∗, 0, ∗, ∗, π ) for the Ansatz class UC01
given by Eq. (44). The green lines denote where the coupling matri-
ces are multiplied by ηI = −1.

while for ηI = −1,

u12
1g = −u23

1g = u34
1g = −u45

1g = u56
1g = −u61

1g = χ1gτ
3,

uuu
1b = 0,

u13
1r = u24

1r = u35
1r = u46

1r = u51
1r = u62

1r = χ1rτ
3,

a3(u) �= 0, a1, a2 = 0. (44)

In the notation of Eq. (40), the above two states are
labeled as UC00 and UC01, respectively. Another way of
describing these states is by specifying their flux struc-
tures (φh, φt1 , φt2 , φt3 , φt4 , φr). The definition of these different
fluxes is shown in Fig. 2. For the two previously discussed
states this alternative notation leads to (0,0,0,0,0,0) and
(π, ∗, 0, ∗, ∗, π ), respectively. The “∗” symbol indicates the
absence of a well defined flux operator of the associated loop.
Figure 7 shows the flux pattern of the UC01 class.

The mean-field amplitudes for the η = −1 Ansatz are given
by

u12
1g = u23

1g = u34
1g = u45

1g = u56
1g = u61

1g = χ1gτ
3,

u13
1r = u24

1r = −u35
1r = u46

1r = −u51
1r = u62

1r = χ1rτ
3,

uuu
1b = 0, a3(u) �= 0, a1, a2 = 0, (45)

for ηI = +1. This state is classified as UC10 with the associ-
ated flux pattern (0, ∗, 0, ∗, ∗, π ) which is shown in Fig. 8. In
the case that ηI = −1, one finds

u12
1g = −u23

1g = u34
1g = −u45

1g = u56
1g = −u61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3,

u13
1r = u24

1r = −u35
1r = u46

1r = −u51
1r = u62

1r = χ1rτ
3,

a3(u) �= 0, a1, a2 = 0. (46)
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FIG. 8. Flux pattern (0, ∗, 0, ∗, ∗, π ) for the Ansatz class UC10
given by Eq. (45). The red lines denote where the coupling matrices
are multiplied by the sign factor η = −1. This sign factor leads to a
doubled unit cell which is enclosed by the dashed lines.

We will call this Ansatz UC11. It features the flux pattern
(π, 0, 0, 0, 0, 0), as depicted in Fig. 9.

FIG. 9. Flux pattern (π, 0, 0, 0, 0, 0) for the Ansatz class UC11
given by Eq. (46). The red, blue, and green lines denote the bonds
in which the coupling matrices are multiplied by a factor −1. The
η = −1 factor leads to a doubled unit cell which is enclosed by the
dashed lines.

FIG. 10. Flux pattern for the Ansatz class UD00 given by
Eq. (49). The red and green lines denote where the coupling matrices
are multiplied by negative sign factors.

4. wI = 1 and wT = 1 (class UD)

Members of this class are labeled as

UDnnI . (47)

The transformation properties of the mean-field amplitudes
are

u12
1g = −ηIu23

1g = u34
1g= − ηIu45

1g = u56
1g = −ηIu61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3, u14
1b = −ηηIu14

1b,

u13
1r = −u24

1r = ηu35
1r = −u46

1r = ηu51
1r = −u62

1r = χ1rτ
3,

aμ(u) = 0. (48)

The spatial dependence is the same as that of the UC-class [see
Eq. (42)]. The following Ansätze are for η = +1 and ηI =
+1:

u12
1g = −u23

1g = u34
1g = −u45

1g = u56
1g = −u61

1g = χ1gτ
3,

uuu′
1b = 0,

u13
1r = −u24

1r = u35
1r = −u46

1r = u51
1r = −u62

1r = χ1rτ
3. (49)

The ones corresponding to ηI = −1 are

u12
1g = u23

1g = u34
1g = u45

1g = u56
1g = u61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3,

u13
1r = −u24

1r = u35
1r = −u46

1r = u51
1r = −u62

1r = χ1rτ
3. (50)

UD00 and UD01 denote the two states above with their
associated flux structures presented in Figs. 10 and 11,
respectively.
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FIG. 11. Flux pattern for the Ansatz class UD01 given by
Eq. (50). The red lines denote where the coupling matrices are
multiplied by −1.

In the case of η = −1 the Ansätze for ηI = +1 are

u12
1g = −u23

1g = u34
1g = −u45

1g = u56
1g = −u61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3,

u13
1r = −u24

1r = −u35
1r = −u46

1r = −u51
1r = −u62

1r = χ1rτ
3,

(51)

while those belonging to ηI = −1 are

u12
1g = u23

1g = u34
1g = u45

1g = u56
1g = u61

1g = χ1gτ
3,

uuu′
1b = 0,

u13
1r = −u24

1r = −u35
1r = −u46

1r = −u51
1r = −u62

1r = χ1rτ
3.

(52)

These states are labeled as UD10 (flux structure shown
in Fig. 12) and UD11 (flux structure shown in Fig. 13),
respectively.

B. Z2 mean-field Ansätze

All the Ansätze with IGG � Z2 have been listed in
Table III. The corresponding sign structures, depicted in
Fig. 14, are given as

u12
1g = ηIu23

1g = u34
1g = ηIu45

1g = u56
1g = ηIu61

1g = u1g,

u14
1b = u36

1b = u52
1b = u1b,

u13
1r = u24

1r = ηu35
1r = u46

1r = ηu51
1r = u62

1r = u1r . (53)

The spatial dependence is the same as for the UC and UD
classes [see Eq. (42)]. We adopt the following labeling scheme
for the Z2 Ansätze:

ZηηIηT Iγ . (54)

FIG. 12. Flux pattern for the Ansatz class UD10 given by
Eq. (51). The red and green lines denote where the coupling matrices
are multiplied by negative sign factors. The dashed lines enclose the
doubled unit cell.

Here, we denote the positive signs of the η-parameters by “0”
and the negative by “1” accordingly. The γ label corresponds
to the representation of time-reversal, i.e., gT ∝ τ γ .

The first four Ansätze in Table III correspond to a ho-
mogeneous representation of time-reversal GT (x, y, u) = ι̇τ 2.

FIG. 13. Flux pattern for the Ansatz class UD11 given by
Eq. (52). The red and green lines denote where the coupling matrices
are multiplied by negative sign factors. The dashed lines enclose the
enlarged unit cell.
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TABLE III. First nearest-neighbor symmetric Z2 mean-field An-
sätze as they are classified in the main text. The allowed mean-field
amplitudes for the three symmetry inequivalent bonds are listed for
each class, together with the allowed onsite terms.

1NN

Label u1g u1b u1r Onsite

Z0002 χ1gτ
3 + �1gτ

1 χ1bτ
3 + �1bτ

1 χ1rτ
3 + �1rτ

1 τ 3

Z0102 χ1gτ
3 + �1gτ

1 0 χ1rτ
3 + �1rτ

1 τ 3

Z1002 χ1gτ
3 + �1gτ

1 0 χ1rτ
3 + �1rτ

1 τ 3

Z1102 χ1gτ
3 + �1gτ

1 χ1bτ
3 + �1bτ

1 χ1rτ
3 + �1rτ

1 τ 3

Z0012 ι̇χ1gτ
0 + �1gτ

2 �1bτ
2 χ1rτ

3 + �1rτ
1 τ 3

Z0112 ι̇χ1gτ
0 + �1gτ

2 ι̇χ1bτ
0 χ1rτ

3 + �1rτ
1 τ 3

Z1012 ι̇χ1gτ
0 + �1gτ

2 ι̇χ1bτ
0 χ1rτ

3 + �1rτ
1 τ 3

Z1112 ι̇χ1gτ
0 + �1gτ

2 �1bτ
2 χ1rτ

3 + �1rτ
1 τ 3

Notice that the Z2 state labeled by Z0002 belongs to the
nonprojective class, i.e., the linear representation of the space
group with uniform real hopping and s-wave pairing. From the
given structures of these four Ansätze one sees the connection
to their parent U(1) states which is highlighted in Fig. 15.
Z0002, Z0102, Z1002, and Z1102 appear in the vicinity of
the U(1) Ansätze labeled by UC00, UC01, UC10, and UC11,
respectively.

The next four Z2 Ansätze contain a site dependent rep-
resentation of time-reversal GT (x, y, u) = (−1)u+1 ι̇τ 2. The
connection to the parent U(1) states is not apparent here
but it can be established by using appropriate gauge trans-
formations. Let us consider the Ansatz labeled by Z0012.
First, all pairing terms have to be set equal to zero �1g = 0,
�1b = 0 and �1r = 0 which restores the continuous U(1)
symmetry. Then, using a gauge transformation of the form
W (x, y, u) = −ι̇τ 3δmod(u,2),0 transforms it into UC01. On the
other hand, it transforms into UD01 if one uses a gauge trans-
formation of the form W (x, y, u) = ι̇τ 1δmod(u,2),0 which sets
χ1g = 0. Therefore UC01 and UD01 share the same Z2 de-
scendant given by Z0012. Similarly, one can verify that UC00

FIG. 15. Different PSG classes and the connection between the
parent U(1) and their descendent Z2 states.

and UD00 descent to Z0112, UC11 and UD11 to Z1012,
and UC10 and UD10 to Z1112. Finally, for GT (x, y, u) =
(−1)u+1τ 0, Z2 Ansätze with first nearest-neighbor amplitudes
cannot be realized.

FIG. 14. Transformation pattern for the first neighbor bonds. The labeling convention is that site 1 sits at the twelve o’clock position and
increases counterclockwise (cfr Fig. 1). The form of the independent Ansatz matrices u12

1g, u14
1b, and u13

1r for the Z2 states is given in Table V
and their transformation rules are depicted in (a)–(c), respectively. Different shadings of the color encode the different sign factors η, ηI and
their products.

014414-10



CANDIDATE QUANTUM SPIN LIQUIDS ON THE … PHYSICAL REVIEW B 110, 014414 (2024)

VI. SPINON BANDS, DYNAMICAL, AND EQUAL-TIME
SPIN STRUCTURE FACTORS

In this section, we summarize the properties of the spinon
excitation spectrum and dynamical structure factors of dif-
ferent U(1) Ansätze. We adopt the gauge choice given in
Sec. V A. In Fig. 16, we present the spinon spectrum ob-
tained upon fixing the magnitude of the symmetry allowed
first-neighbor hoppings equal to unity, and all further neighbor
hoppings fixed to zero. We plot the energy along the high sym-
metry path, which is � → M → K → � of the first Brillouin
zone [green hexagon in Fig. 2(b)] for the Ansätze realizable in
a single unit cell and � → X → M → Y → � → M of the
reduced Brillouin zone [yellow rectangle in Fig. 2(b)] for the
Ansätze realizable in a doubled unit cell.

(i) UC00. This state is described by uniform hopping pat-
tern and thus its spectrum is that of the maple-leaf lattice band
structure [11]. This state has a Dirac point at the center of
the Brillouin zone [Fig. 16(a)]. However, the presence of the
Dirac like dispersion is an artifact of fixing all first-neighbor
hoppings to one. In general, for other choices of hoppings the
spectrum can be gapped or feature a Fermi surface.

(ii) UC01. The spectrum consists of three doubly degener-
ate bands [Fig. 16(b)]. The Fermi level is such that the lower
half of the middle band is filled which gives rise to a Fermi
surface.

(iii) UD00. A nodal Fermi surface is observed in this
Ansatz [Fig. 16(e)]. However, this is not a robust generic
property as it gets gapped out upon varying the hopping
amplitudes.

(iv) UD11. This state consists of quasi-flat bands and fea-
tures a nodal Fermi surface [Fig. 16(h)] for the given choice of
parameters. It can nonetheless be completely gapped out for
other choices of hopping amplitudes.

(v) UC10, UC11, UD01, UD10, UB03, and UB10. These
states comprise of gapped excitations for a generic choices
of hopping parameters, however, among these the UB03
Ansatz shows Dirac dispersion for some choices of hopping
parameters.

Further characterization can be made by studying the spin-
spin correlations via the spin structure factors. Here, we
consider both the dynamical and equal-time structure factors,
and for the latter also assess the impact of Gutzwiller projec-
tion. We first discuss the dynamical structure factor (DSF) as
defined in Eq. (G1) [see Appendix G for details]. In Fig. 17,
we show the DSF for different U(1) Ansätze along the high
symmetry directions � → M ′ → K ′ → � of the extended
Brillouin zone. For the UC00 state [see Fig. 17(a)], we notice
the appearance of low-energy intensity around the � point,
which is expected due to the presence of a Dirac point. In
addition, there appear two principal dispersive variations in
intensity. Among these, the dispersive continuum at lower en-
ergy occurs due to the scattering process from the three filled
bands to the first empty band, while the intensity variation
at higher energy is due the scattering from the filled bands
to the dispersive uppermost empty band. For the UC01 state
[see Fig. 17(b)], the dome like variation at lower energies
is due to the contribution from excitations near the Fermi
surface. Besides, there appears a flat strong intensity contin-
uum at higher energies on a diffuse low intensity background,

and this can be ascribed to scattering processes between the
lowest (filled) mode and the highest (empty) mode. As the
UC10 state consists of all quasi-flat modes, this reflects in
the observed flat continuum [see Fig. 17(c)]. Similar infer-
ences can be drawn for UC11, UD10, and UD11, shown in
Figs. 17(d), 17(g) and 17(h), respectively. However, due to
the presence of few dispersive modes above and below the
Fermi level, a very low intensity diffusive background can
be noted for UC11. For UD11, the remnant finite intensity
down to zero energy at the � point is due to the excitations
around the Fermi surface. Similar consequence of the nodal
Fermi surface can also be found in case of UD00 state [see
Fig. 17(e)]. Here, the horizontal intensities at ω ≈ 3, 4.5, 6,
are due to the excitations between the quasi-flat bands in the
segment MK .

While the calculation of the DSF is performed at the mean-
field level given the numerical complexities involved, one can
still assess the effects of gauge fluctuations beyond mean-field
in the equal-time (frequency integrated) structure factor which
is given by

S(k) = 1

Ns

∑
i, j

eι̇k·(ri−r j )〈�|Ŝi · Ŝ j |�〉 , (55)

Here, the wave function |�〉 is defined by Gutzwiller-
projecting the fermionic wave function to spin space, i.e.,
enforcing single fermionic occupation of each lattice site. The
Gutzwiller projection is treated numerically by means of a
suitable Monte Carlo framework [80]. The results obtained
with and without projection are compared in Figs. 18 and
19 for the various U(1) Ansätze. The unprojected S(k) show
a rather featureless ring of intensity encircling the extended
Brillouin zone. The effects of gauge fluctuations introduced
by the Gutzwiller projection are pronounced and one observes
the appearance of well-defined momentum modulated fea-
tures in the projected structure factors. These are triangulated
patterns around the K ′ points, featuring either a homogeneous
intensity distribution or soft maxima at the triangular vertices.
This pattern is qualitatively similar to that of the dimerized
hexagonal singlet state of Ref. [18]. While an inspection of
the qualitative similarities of the S(k) for some of our U(1)
states with that obtained from recent pf-FRG calculations [16]
might help narrow down candidate QSL states, a definitive
statement would require assessing the energetic competition
between U(1) and Z2 QSLs within a variational Monte Carlo
framework. It is interesting to note that a generic feature of
all Ansätze is the absence of pinch points in their projected
S(k) in contrast to the Dirac spin liquid on the kagome
lattice [58].

VII. DISCUSSION AND OUTLOOK

In this work, we have performed a projective symmetry
group classification of spin-1/2 symmetric quantum spin liq-
uids with different gauge groups on the maple-leaf lattice.
Employing the Abrikosov fermion representation we obtain
17 U(1) and 12 Z2 distinct PSGs. The restriction of mean-field
Ansätze to short-range (first-neighbor) singlet amplitudes, of
relevance to concerned models, leads to only 12 U(1) and 8 Z2

distinct phases. In light of recent numerical studies pointing to
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FIG. 16. Spinon band structures for the different U(1) Ansätze with nearest neighbor hoppings only, corresponding to the gauge shown in
the manuscript figures. The magnitude of the symmetry allowed hoppings is set to one. The gray line marks the Fermi level.

QSL ground states in extended S = 1/2 Heisenberg models
on the maple-leaf lattice, our classification thus sets the stage
for future works aimed at characterizing their precise micro-
scopic nature. The Gutzwiller projected equal-time structure

factors for the different variational states could be compared
to those obtained from unconstrained numerical approaches
to narrow down and identify promising candidate ground
states. For a precise identification of the nature of the spin
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FIG. 17. Dynamical structure factor plotted along the high-symmetry path [see Fig. 2(b)] in the extended Brillouin zone for a system size
of 14 × 14 × 6 sites, where all symmetry allowed first-neighbor hopping amplitudes are set to one, and further neighbors to zero.

liquid, it would be worthwhile to perform a variational Monte
Carlo study towards optimizing the corresponding Gutzwiller
projected wave functions and assess the energetic competi-
tiveness of the U(1) and Z2 states for Hamiltonian parameter
regimes displaying QSL ground states. The evidence of a
U(1) Dirac spin liquid ground state on the triangular lat-
tice [6,7] and on its 1/4-site depleted version, the kagome
lattice [2,3], poses the interesting question concerning the
potential stability of the Dirac state under a periodic site
depletion. Viewed from this perspective, it would be inter-

esting to gauge its stability on the maple-leaf lattice which
is an intermediate depletion density, being a 1/7-site deple-
tion of the triangular lattice. An alternate treatment of these
Ansätze would be their analysis within the pseudofermion
functional renormalization group framework [81] by using the
low-energy effective vertex functions (instead of the bare cou-
plings) within a self-consistent Fock-like mean-field scheme
to compute low-energy theories for emergent spinon excita-
tions [82,83]. Within the parameter space of nearest-neighbor
couplings, a QSL has been located between magnetic and
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FIG. 18. Equal-time spin structure factors of the UB and UC states (with all symmetry allowed hopping amplitudes set to one), as obtained
with the unprojected and projected fermionic wave functions within VMC. The color plot shows the isotropic structure factor S(k) in the kx-ky

plane. The momenta are in units of 2π . The results have been obtained on a 6 × 12 × 12 (=864)-site finite cluster with all the symmetries of
the lattice. The red hexagons with solid (dashed) lines delimits the first (extended) Brillouin zones.

dimer orders, which fuels the speculation of its possible origin
from a proximate deconfined quantum critical point, and the
scenario of a gapless spin liquid as a plausible candidate.
Furthermore, since Ref. [20] reports nonmagnetic behavior
arising from quantum melting of noncoplanar orders in a S =

1/2 J1-J2-J3 Heisenberg model, it would be important to ex-
tend the current analysis to classify chiral spin liquids. Given
the recent reporting of QSL behavior in a model featuring
mixed ferro- and antiferromagnetic couplings [18], the incor-
poration of symmetry allowed triplet fields in the projected
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FIG. 19. Equal-time spin structure factors of the UD states (with
all symmetry allowed hopping amplitudes set to one), as obtained
with the unprojected and projected fermionic wave functions within
VMC. The color plot shows the isotropic structure factor S(k) in
the kx-ky plane. The momenta are in units of 2π . The results have
been obtained on a 6 × 12 × 12 (=864)-site finite cluster with all the
symmetries of the lattice. The red hexagons with solid (dashed) lines
delimits the first (extended) Brillouin zones.

wave functions would prove essential to accurately capture
the ground state behavior. Finally, it would be interesting to
identify the respective parent QSLs whose potential instabili-
ties yield the plethora of dimer orders that have been reported
in the generalized parameter space of the nearest-neighbor
Heisenberg model.
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APPENDIX A: GENERIC GAUGE CONDITIONS

The algebraic conditions Eqs. (11)–(19) written in terms of
PSG representations yield

GT1 (x, y, u)GT2 (x − 1, y, u)

× G−1
T1

(x, y − 1, u)G−1
T2

(x, y, u) = eι̇θτ 3
/ητ 0, (A1)

GI (x, y, u)GI (−x,−y, I (u)) = eι̇θIτ 3
/ηIτ 0, (A2)

G−1
T1

(x + 1, y, u)GI (x + 1, y, u)

× G−1
T1

(−x,−y, I (u))G−1
I (x, y, u) = eι̇θ̃Iτ 3

/ηIx τ
0, (A3)

G−1
T2

(x, y + 1, u)GI (x, y + 1, u)

× G−1
T2

(−x,−y, I (u))G−1
I (x, y, u) = eι̇θIy τ 3

/ηIyτ
0, (A4)

GR(x, y, u)GR(y − x,−x, R2(u))

× GR(−y, x − y, R(u)) = eι̇θRτ 3
/ηRτ 0, (A5)

G−1
R (−y, x − y, R(u))GT1 (−y, x − y, R(u))

× GR(−y − 1, x − y, R(u))

× GT1 (x + 1, y + 1, u)GT2 (x, y + 1, u) = eι̇θRx τ 3
/ηRx τ

0,

(A6)

G−1
R (−y, x − y, R(u))G−1

T2
(−y, x − y + 1, R(u))

× GR(−y, x − y + 1, R(u))GT1 (x + 1, y, u)

= eι̇θRy τ 3
/ηRyτ

0, (A7)

014414-15



JONAS SONNENSCHEIN et al. PHYSICAL REVIEW B 110, 014414 (2024)

G−1
R (−y, x − y, R(u))GI (−y, x − y, R(u))

× GR(y, y − x, RI (u))GI (−x. − y, I (u))

= eι̇θRIτ 3
/ηRIτ 0, (A8)

GT (x, y, u)GO (x, y, u)

× G−1
T (O−1(x, y, u))G−1

O (x, y, u) = eι̇θT Oτ 3
/ηT Oτ 0,

(A9)

[GT (x, y, u)]2 = eι̇θT τ 3
/ηT τ 0, (A10)

where on the right-hand side of the equations the entry corre-
sponds to the U(1) extension and the second entry denotes the
Z2 case.

APPENDIX B: U(1) PSG

The canonical form of a U(1) Ansatz is given by

ui j = ι̇Imχi jτ
0 + Reχi jτ

3. (B1)

Correspondingly, the loop operators take the form PC =
ui ju jk . . . uli = eι̇ξ τ 3 ≡ g3(ξ ). The structure of the gauge trans-
formation which keeps the canonical form intact is

GO(x, y, u) = g3(φO(x, y, u))(ι̇τ 1)wO , (B2)

where wO can take values 0,1 and O ∈ {T1, T2, R, I, T }.

1. Lattice symmetries

For O ∈ {T1, T2}, there are three cases (i) (wT1,wT2 ) =
(0, 0), (ii) (wT1 ,wT2 ) = (1, 0), and (iii) (wT1,wT2 ) = (1, 1).
Cases (ii) and (iii) can not satisfy Eqs. (A7) and (A6), respec-
tively. Therefore we need to consider only case (i), i.e., wT1 =
wT2 = 0. Using the local gauge freedom, one can choose

φT1 (x, 0, u) = φT2 (x, y, u) = 0. (B3)

Using this, Eq. (A1) gives

GT1 = g3(yθ ), GT2 = τ 0. (B4)

Let us now define �iφO(x, y, u) = φO(x, y, u) −
φO[T −1

i (x, y, u)]. With this definition and Eq. (B4) we
can recast Eqs. (A3) and (A4) as

�1φI (x, y, u) = θ̃I + (1 − (−1)wI )yθ,

�2φI (x, y, u) = θIy . (B5)

Generally, all solutions must obey the following consistency
relation:

�1φO(x, y, u) + �2φO
[
T −1

1 (x, y, u)
]

= �2φO(x, y, u) + �1φO
[
T −1

2 (x, y, u)
]
. (B6)

For O = I and insertion of Eq. (B5) in the above relation
yields

(1 − (−1)wI )θ = 0, (B7)

which means for wI = 1 we have 2θ = 0. Note that there
is no constraint on θ for wI = 0. Substituting this back in
Eq. (B5), we obtain the following solution for φI :

φI (x, y, u) = xθ̃I + yθIy + ρI (u), (B8)

where ρI (u) = φI (0, 0, u). Using this solution (B8) in
Eq. (A2) gives

ρI (u) + (−1)wIρI (I (u)) = θI,

(1 + (−1)wI )θ̃I = (1 + (−1)wI )θIy = 0, (B9)

which implies 2θ̃I = 2θIy = 0 for wI = 1, while there is no
constraint on θ for wI = 0. From Eqs. (A6) and (A7), one
obtains relations similar to Eq. (B5):

�1φR(x, y, u) = yθ + (−1)wR ((1 − x)θ − θRx ),

�2φR(x, y, u) = (−1)wR (xθ + θRy ). (B10)

The consistency condition (B6) for O = R imposes the fol-
lowing restriction on θ :

(1 − (−1)wR )θ = 0, (B11)

which means for wR = 1, 2θ = 0, while there is again no
constraint on θ for wR = 0. Substituting this in Eq. (B10),
yields the following solution for φR:

φR(x, y, u) = x

[
y − (−1)wR

2
(x − 1)

]
θ

− (−1)wR (xθRx − yθRy ) + ρR(u). (B12)

Notice that wR = 1 does not satisfy Eq. (A5). Furthermore,
Eq. (A5) gives the following condition for wR = 0:

ρR(u) + ρR(R2(u)) + ρR(R(u)) = θR. (B13)

Under a local gauge transformation W (x, y, u), the pro-
jective representation GO transforms as GO(x, y, u) →
W †(x, y, u)GO(x, y, u)W [O−1(x, y, u)]. A local gauge trans-
formation of the form

W (x, y, u) = g3(xξx + yξy) (B14)

does not change the structure of the GTi besides a negligible
global phase, which has no consequence on the Ansätze. It
will, however, modify the phases θRx , θRy , θ̃I , and θIy such
that we can use a suitable choice to set

θRx = θRy = 0. (B15)

Then Eq. (A8) yields

for wI = 0:

θ̃I = θIy = 1
3 (θ + 2π p), p = 0, 1, 2; (B16)

and for wI = 1:

θ̃I = θIy = θ, (B17)

ρI (u) − ρR(u) + (−1)wI (ρI (IR−1(u)) + ρR(I (u))) = θRI .

(B18)

Inserting Eqs. (B16) and (B17), the solution for φI can be
rewritten as

φI (x, y, u) = 1
3 (θ + 2π p)(x + y)δwI ,0 + θ (x + y)δwI ,1

+ ρI (u). (B19)

Furthermore, we are left with a sublattice-dependent gauge
transformation of the form

W (x, y, u) = g3(ξu). (B20)
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Under such a transformation ρR,u transforms for u ∈ {1, 3, 5}
as

ρ̃R(1) = −ξ1 + ρR(1) + ξ5,

ρ̃R(3) = −ξ3 + ρR(3) + ξ1,

ρ̃R(5) = −ξ5 + ρR(5) + ξ3. (B21)

We choose ξ1, ξ3, and ξ5 such that ρ̃R(1) = ρ̃R(3) = ρ̃R(5) =
ρR. This requires

ξ1 = ρR(1) + ξ5 − ρR,

ξ3 = ρR(1) + ρR(3) + ξ5 − 2ρR,

3ρR = ρR(1) + ρR(3) + ρR(5). (B22)

Substituting Eq. (B13) in the last condition of the above equa-
tions, gives 3ρR = θR which implies

ρR = 1
3 (θR + 2π pR), with pR = 0, 1, 2. (B23)

One can fix ρ̃R(2) = ρ̃R(4) = ρ̃R(6) = ρR similarly by the
following choices:

ξ2 = ρR(2) + ξ6 − ρR,

ξ4 = ρR(4) + ρR(2) + ξ6 − 2ρR. (B24)

Note that we are still left with unfixed ξ5 and ξ6. With a
suitable gauge choice, one can set ρI (1) = 0. Let us fix the
other ρI (u) separately for wI = 0 and wI = 1.

a. wI = 0

In this case, using Eq. (B23), the relations given in
Eqs. (B9) and (B18) are rewritten as

ρI (u) + ρI (I (u)) = θI,

ρI (u) + ρI (IR−1(u)) = θRI . (B25)

These two relations lead to

ρI (1) = ρI (3) = ρI (5) = 0,

ρI (2) = ρI (4) = ρI (6) = θI . (B26)

b. wI = 1

In this case, using Eq. (B23), the relations given by
Eqs. (B9) and (B18) are rewritten as

ρI (u) − ρI (I (u)) = θI,

ρI (u) − ρI (IR−1(u)) = θRI + 2ρR (B27)

leading to

ρI (u) = pI (u − 1)π

3
, with pI = 1, 2, 3. (B28)

This completes the gauge fixing procedure of the lattice group
operations.

2. Time-reversal

We proceed in finding the PSG solutions for time-reversal
symmetry. Using Eq. (A9) with O ∈ {T1, T2}, one gets

�1φT (x, y, u) = θTx + [1 − (−1)wT ]yθ,

�2φT (x, y, u) = θTy . (B29)

The consistency condition (B6) for O = T gives

[1 − (−1)wT ]θ = 0, (B30)

which implies for wT = 1 that 2θ = 0. A solution for GT can
be obtained from Eq. (B29) as

φT (x, y, u) = xθTx + yθTy + ρT (u) . (B31)

Let us consider the remaining conditions for wT = 0 and
wT = 1 separately.

a. wT = 0

In this case, Eq. (A10) yields

2θTx = 2θTy = 0, ρT (u) = θT
2

+ πnT (u),

with nT (u) = 0, 1. (B32)

From Eq. (A9) with O = R, we obtain

θTx = θTy , 3θTx = 0, (B33)

ρT (u) − ρT (R−1(u)) = θT R. (B34)

From Eqs. (B32) and (B33), it follows:

θTx = θTy = 0. (B35)

Finally, Eq. (A9) with O = I gives

ρT (u) − (−1)wIρT (I (u)) = θT I . (B36)

Using Eqs. (B32), (B34), and (B36), we can fix ρT (u) as

ρT (1) = ρT (3) = ρT (5) = 0, (B37)

ρT (2) = ρT (4) = ρT (6) = π. (B38)

If wI = 0, one can set ρI (u) = θI/2, i.e., independent of the
sublattice u by using a sublattice dependent gauge transfor-
mation of the form W (x, y, u) = g3(θI/2)δmod(u,2),0 without
altering our previous results. As in the case of the lattice sym-
metries, a global phase has no impact and we can conveniently
set ρI (u) = 0.

b. wT = 1

Here, Eq. (A10) does not yield any constraint. From
Eq. (A9) with O = R, and using the fact that 2θ = 0 for
wT = 1, we obtain

θTx = θTy , 3θTx = 0, (B39)

ρT (u) − ρT (R−1(u)) = θT R + 2ρR(u). (B40)

Furthermore, Eq. (A9) with O = I for wI = 0 yields

2θTx = 2
3 (θ + 2pπ ) ⇒ θTx = 1

3 (θ + 2pπ ) + nπ, (B41)

ρT (u) − ρT (I (u)) = θT I + 2ρI (u). (B42)

Equations (B39) and (B41) require θ = nπ . Using Eqs. (B40)
and (B42), we can fix ρT (u) for wI = 0 as

ρT (u) ∈ {0, θT I − θ ′
T R, θ ′

T R, θT I,−θ ′
T R, θT I + θ ′

T R},
(B43)
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θ ′
T R = θ ′

T R + 2ρR = 2p′
T Rπ

3
, p′

T R = 0, 1, 2; (B44)

2θT I + 2θI = 0 ⇒ θT I = −θI + nIπ, nI = 0, 1.

(B45)

Equation (A9) with O = I for wI = 1 yields

ρT (u) + ρT (I (u)) = θT I + 2ρI (u) = θT I + 2pI (u − 1)π

3
.

(B46)

This together with Eq. (B42) gives

ρT (u) ∈ {ρ1, θT I − ρ1, ρ1, θT I − ρ1,−ρ1, θT I − ρ1}.
(B47)

Notice that the wT = 1 solution for GT has a spatial depen-
dence. To remove this, similar to the wT = 0 case, we use a
gauge transformation of the form W (x, y, u) = g3(ξ (x, y, u))
with

ξ (x, y, u) = θTx (x + y)

2
, (B48)

which yields the following

φ̃T (x, y, u) = ρT (u), (B49)

φ̃R(x, y, u) = [
xy − 1

2 x(x − 1)
]
nπ + ρR(u) + nTx πx, (B50)

φ̃I (x, y, u) = nπ (x + y) + ρI (u), nTx = 0, 1. (B51)

This can be set to zero using a gauge transformation of the
form W (x, y, u)=g3((x + y)nTx π ). Furthermore, for wT =1,

we can choose a sublattice-dependent gauge transformation of
the form W (x, y, u) = g3(ξ (u)) with

ξ (u) = ρT (u)

2
, (B52)

so that ρT (u) = 0. The advantage of such a choice is that the
mean-field amplitudes contain only real hopping values. For
wI = 0, in the new gauge, we obtain

ρT (u) = 0, ρR(u) = ρR − θ ′
T R

2
, (B53)

ρI (u) = θIδmod(u,2),0 − (−1)mod(u,2) θT I
2

. (B54)

Using Eq. (B45), one can rewrite Eq. (B54) as

ρI (u) =
(−θI + nIπ

2

)
δmod(u,2),1

+
(

3θI − nIπ

2

)
δmod(u,2),0. (B55)

For wI = 1, in the this gauge, we obtain

ρT (u) = 0, ρR(u) = ρR, (B56)

ρI (u) = pI (u − 1)π

3
+ θT I

2
. (B57)

As the global phases do not have any impact on the Ansätze
we can discard them. For example, in Eqs. (B53) and (B57),
we could set ρR − θ ′

T R
2 = 0 and θT I

2 = 0, respectively. As
a summary, all the gauge inequivalent choices are listed in
Table II.

APPENDIX C: Z2 PSG

1. Lattice symmetry

Using the local gauge redundancy, the relation Eq. (A1)
leads to the solution for the projective gauge matrices for O ∈
{T1, T2} as follows:

GT1 (x, y, u) = ηyτ 0, GT2 (x, y, u) = τ 0. (C1)

Using Eqs. (A3) and (A4) gives

GI (x, y, u) = ηx
Ix

η
y
Iy

gI (u). (C2)

The cyclic condition given by Eq. (A2) for I gives

gI (u)gI (I (u)) = ηIτ 0. (C3)

After coordinate transformation (x, y, u) → R−1(x, y, u),
Eqs. (A6) and (A7) can be written as

GR(x, y, u) = ηRx η
y−x+1GR(x − 1, y, u),

GR(x, y, u) = ηRyη
xGR(x, y − 1, u). (C4)

These relations yield the solution for GR as follows:

GR(x, y, u) = ηx
Rx

η
y
Ry

ηxy− 1
2 x(x−1)gR(u). (C5)

The cyclic condition Eq. (A5) for R yields

gR(u)gR(R2(u))gR(R(u)) = ηRτ 0. (C6)

Exploiting Eq. (A8) leads us to the following constraints:

ηIx = ηIy = η,

gI (R(u))gR(RI (u))gI (I (u)) = ηRIgR(R(u))

⇒ gI (u)gR(I (u))gI (IR−1(u)) = ηRIgR(u). (C7)

Further simplification can be obtained if we consider the
gauge

W (x, y, u) = ηx
xη

y
yτ

0. (C8)

We find that the above transformation does not change the
structure of the translational gauges except for a global sign
modification. This sign can yet be absorbed by a redefinition
including these modified signs. It can further be seen that the
gauge transformation Eq. (C8) modulates GR as

G̃R(x, y, u) = W †(x, y, u)GR(x, y, u)WR−1(x,y,u)

= (ηxηyηRx )x(ηyηRy )yηxy− 1
2 x(x−1)gR(u). (C9)

Setting ηy = ηRy and ηx = ηyηRx , the result becomes

G̃R(x, y, u) = ηxy− 1
2 x(x−1)gR(u). (C10)

Hereafter, we shall omit the tilde symbol. The representation
GI does not get modified by the gauge transformation. We
can also exploit a sublattice dependent gauge transformation
W (x, y, u) = W (u) for further fixing the g matrices as follows:

gR(u) = ηRτ 0. (C11)

In the above, we have used Eq. (C6). The remaining sign
factor ηR which is global can be neglected. The gI matrices
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(a) (b) (c)

FIG. 20. Symmetry inequivalent Ansatz matrices u13
2g, u12

2b, and u14
2r (see Table V for the Z2 states) for the second neighbor bonds transform

as depicted in (a)–(c), respectively. Different shadings of the colors encode the different sign factors η, ηI and their products.

can be fixed using the above equation and Eqs. (C3) and (C7)
as follows.

gI (1) = gI (3) = gI (5) = τ 0, (C12)

gI (2) = gI (4) = gI (6) = ηIτ 0. (C13)

This completes the gauge fixing of the lattice symmetry oper-
ations in the Z2 case.

2. Time reversal

Here, we find a PSG representation for time-reversal sym-
metry. Using Eq. (A9) for O ∈ {T1, T2}, the solution for
GT (x, y, u) can be written as

GT (x, y, u) = ηx
Tx

η
y
Ty

gT (u). (C14)

Equation (A10) leads to the following condition:

[gT (u)]2 = ηT τ 0. (C15)

From Eq. (A9) for O = I and substituting Eqs. (C2) and
(C12), we have

GT (x, y, u)GI (x, y, u)

× G−1
T (−x,−y, I (u))G−1

I (x, y, u) = ηT Iτ 0

⇒ gT (I (u)) = ηT IgT (u) . (C16)

Similarly for O = R and substituting Eq. (C10), we find

GT (x, y, u)GR(x, y, u)

× G−1
T (y − x,−x, R−1(u))G−1

R (x, y, u) = ηT Rτ 0,

⇒ η
y
Tx

η
y−x
Tx

gT (u)gR(u)g−1
T (R−1(u))g−1

R (u) = ηT Rτ 0,

⇒ ηTx = ηTx = 1, (C17)

and gT (R−1(u)) = ηT RgT (u). (C18)

Further simplification using Eqs. (C16) and (C18) yields
the concise solution for PSG representation of time-reversal
symmetry

GT (x, y, u) = ηu+1
T I gT . (C19)

APPENDIX D: Z2 ANSÄTZE BEFORE TIME-REVERSAL

This Appendix contains all different symmetry relations
that are needed to construct up to third nearest neighbor
mean-field Hamiltonians. The definitions of the different u
matrices are shown in Fig. 1 for the first-neighbor bonds, and
for the second and third-neighbor bonds in Figs. 20 and 21,
respectively. For bonds at all geometrical distances, we find
three symmetry inequivalent bonds that are colored green,
red, and blue. For each color, we fix one Ansatz whereas the
allowed form varies for different PSGs and can be found in
Table V. All others are related by the underlying symmetries
of the lattice.

1. 1NN Ansätze

In the ensuing section, we employ the following notation:
The bonds are defined with respect to a reference unit cell,
i.e., (x, y) = (0, 0). All the reference bonds are labeled as ui j

1∗,
with “*” denoting the green, blue, and red bonds as g, b, and
r, respectively. i and j refer to the sublattice numbering of the
sites of the bond where i lies within the unit cell and except
for green bonds, j lies within any of the neighboring unit cells.
Notice, that for the three red bonds which form triangles, two
can be defined as ui j

1r , however, there is also a red bond for
which both the sites do not reside within the reference unit
cell. In this case, we use the notation upqr

1r . Here, p denotes the
sublattice index of the vertex of the triangle that lies within the
reference unit cell while q and r denote the sublattice indices
of the other two vertices of the same triangle. We use this
convention in the last line of Eqs. (D5) and (D6).

a. Green 1NN bonds (u1g)

For the green colored bonds, we fix the Ansatz matrix
u12

1g. Applying a chain of symmetry operations induces all
symmetry related bonds

u12
1g

R−→ u34
1g

R−→ u56
1g

IR−→ u45
1g

R−→ u61
1g

R−→ u23
1g. (D1)

Using the PSG representations yields

u12
1g = u34

1g = u56
1g = ηIu45

1g = ηIu61
1g = ηIu23

1g. (D2)
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(a) (b) (c)

FIG. 21. Symmetry inequivalent Ansatz matrices u14
3g, u16

3b, and u13
3r (see Table V for the Z2 states) for the third-neighbor bonds transform

as depicted in (a)–(c), respectively. Different shadings of the colors encode the different sign factors η, ηI and their products.

b. Blue 1NN bonds (u1b)

Similarly to the green bonds, operating with the chain of
transformations yields for the blue bonds

u14
1b

R−→ u36
1b

R−→ u52
1b

IR−→ u25
1b

R−→ u41
1b

R−→ u63
1b,

u14
1b

T2I−−→ (
u14

1b

)†
. (D3)

This results in

u14
1b = u36

1b = u52
1b = ηηIu25

1b = ηηIu41
1b = ηIu63

1b

u14
1b = ηηI

(
u14

1b

)†
. (D4)

c. Red 1NN bonds (u1r)

For the red bonds, we have

u13
1r

R−→ u35
1r

R−→ u51
1r

IR−→ u46
1r

R−→ u62
1r

R−→ u24
1r ,

u15
1r

R−→ u31
1r

R−→ u53
1r

IR−→ u42
1r

R−→ u64
1r

R−→ u26
1r ,

u135
1r

R−→ u351
1r

R−→ u513
1r

IR−→ u462
1r

R−→ u624
1r

R−→ u246
1r . (D5)

This yields

u13
1r = ηu35

1r = ηu51
1r = u46

1r = u62
1r = u24

1r ,

u15
1r = u31

1r = u53
1r = ηu42

1r = u64
1r = ηu26

1r ,

u135
1r = ηu351

1r = ηu513
1r = ηu462

1r = u624
1r = ηu246

1r . (D6)

On the other hand, inclusion of translations gives the follow-
ing constraints:

u35
1r

T1−→ (
u51

1r

)† T2−→ u135
1r ,

u13
1r

T −1
2−−→ u513

1r

T −1
1−−→ (

u31
1r

)†
,

u351
1r

T −1
2−−→ u51

1r

T −1
1−−→ (

u15
1r

)†
(D7)

yielding

u135
1r = ηu13

1r , u15
1r = η

(
u13

1r

)†
. (D8)

The results of this Appendix are also summarized in Fig. 14.

2. 2NN and 3NN

Instead of showing the explicit symmetry relations, we
only state the results for the second and third neighbors after
inserting the PSG representations. A summary of these results
is shown in Fig. 20 for the second neighbors and in Fig. 21 for
the third neighbors. The second neighbor matrices are given
by

u13
2g = u35

2g = u51
2g = u46

2g = u62
2g = u24

2g,

u12
2b = ηu34

2b = ηu56
2b = ηIu45

2b = ηIu61
2b = ηIu23

2b,

u14
2r = ηu36

2r = ηu52
2r = ηIu41

2r = ηIu63
2r = u25

2r . (D9)

The third-neighbor matrices are

u14
3g = u36

3g = u52
3g = ηIu41

3g = ηIu63
3g = ηIu25

3g,

u16
3b = u32

3b = u54
3b = ηIηu43

3b = ηIu65
3b = ηIηu21

3b,

u15
3r = u31

3r = ηu53
2r = ηu42

3r = ηu64
3r = ηu26

3r . (D10)

APPENDIX E: U(1) MEAN-FIELD ANSÄTZE UP TO 3NN

In analogy to the previous Appendix, we present here the
U(1) mean-field models up to third-nearest neighbors. The ini-
tial form of one of the Ansätze is determined by the underlying
PSG.

1. wI = 0 and wT = 0 (class UA)

u12
1g = u34

1g = u56
1g = u23

1g = u45
1g = u61

1g = ι̇χ0
1gτ

0 + χ3
1gτ

3,

u14
1b = u36

1b = u52
1b = ι̇χ0

1bτ
0 + χ3

1bτ
3,

uuu′
1r = 0, u14

1b = g3(−θ̃I )
(
u14

1b

)†
. (E1)

uuu′
2g = 0,

u12
2b = g3(−3θ̃I )u34

2b = g3(−3θ̃I )u56
2b = ι̇χ0

2bτ
0 + χ3

2bτ
3,

u23
2b = u45

2b = u61
2b = g3(2θ̃I )u12

2b,

u14
2r = g3(−3θ̃I )u36

2r = g3(−3θ̃I )u52
2r = ι̇χ0

2rτ
0 + χ3

2rτ
3,

u14
2r = g3(θ̃I )

(
u14

2r

)†
. (E2)
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TABLE IV. Symmetric U(1) mean-field Ansätze up to third-nearest neighbors. See Appendix E for the sign structure.

1NN 2NN 3NN

{wI, wT } {n, pI} u1g u1b u1r u2g u2b u2r u3g u3b u3r Onsite

{1, 0} {0, 0} ι̇τ 0, τ 3 0 0 0 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 0 0
{1, 0} {0, 1} ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0
{1, 0} {0, 2} ι̇τ 0, τ 3 0 0 0 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 0 0
{1, 0} {0, 3} ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0
{1, 0} {1, 0} ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 ι̇τ 0, τ 3 0 0
{1, 0} {1, 1} ι̇τ 0, τ 3 0 0 0 ι̇τ 0, τ 3 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0
{1, 0} {1, 2} ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 ι̇τ 0, τ 3 0 0
{1, 0} {1, 3} ι̇τ 0, τ 3 0 0 0 ι̇τ 0, τ 3 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0
{wI, wT } {n, nI} u1g u1b u1r u2g u2b u2r u3g u3b u3r Onsite

{0, 1} {0, 0} τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3

{0, 1} {0, 1} τ 3 0 τ 3 τ 3 τ 3 0 0 τ 3 τ 3 τ 3

{0, 1} {1, 0} τ 3 0 τ 3 τ 3 τ 3 0 τ 3 τ 3 τ 3 τ 3

{0, 1} {1, 1} τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 0 τ 3 τ 3 τ 3

{1, 1} {0, 0} τ 3 0 τ 3 τ 3 τ 3 0 0 τ 3 τ 3 τ 3

{1, 1} {0, 0} τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 τ 3

{1, 1} {0, 0} τ 3 τ 3 τ 3 τ 3 τ 3 τ 3 0 τ 3 τ 3 τ 3

{1, 1} {0, 0} τ 3 0 τ 3 τ 3 0 τ 3 τ 3 τ 3 τ 3 τ 3

{wI, wT } {θ̃I} u1g u1b u1r u2g u2b u2r u3g u3b u3r Onsite

{0, 0} {mπ/n} ι̇τ 0, τ 3 ι̇τ 0, τ 3 0 0 ι̇τ 0, τ 3 ι̇τ 0, τ 3 τ 3 ι̇τ 0, τ 3 0 0

u14
3g = u36

3g = (
u25

3g

)† = χ3gτ
3r,

u16
3b = u32

3b = u54
3b = ι̇χ0

3bτ
0 + χ3

3bτ
3,

u21
3b = u43

3b = g3(3θ̃I )u65
3b = g3(3θ̃I )u16

3b,

uuu′
3r = 0. (E3)

2. wI = 1 and wT = 0 (class UB)

u12
1g = u34

1g = u56
1g = ι̇χ0

1gτ
0 + χ3

1gτ
3,

u23
1g = u45

1g = u61
1g = −g3(pIπ/3)

(
u12

1g

)†
,

u14
1b = u36

1b = u52
1b = ι̇χ0

1bτ
0 + χ3

1bτ
3, u14

1b = −ηg3(pIπ )u14
1b,

uuu′
1r = 0. (E4)

uuu′
2g = 0,

u12
2b = ηu34

2b = ηu56
2b = ι̇χ0

2bτ
0 + χ3

2bτ
3,

u23
2b = u45

2b = u61
2b = −g3(pIπ/3)

(
u12

2b

)†
,

u14
2r = ηu36

2r = ηu52
2r = ι̇χ0

2rτ
0 + χ3

2rτ
3,

u14
2r = −ηg3(pIπ )u14

2r . (E5)

u14
3g = u36

3g = (
u25

3g

)† = ι̇χ0
3gτ

0 + χ3
3gτ

3,

u14
3g = −g3(pIπ )u14

3g,

u16
3b = u32

3b = u54
3b = ι̇χ0

3bτ
0 + χ3

3bτ
3,

u21
3b = u43

3b = ηu65
3b = −ηg3(pIπ/3)

(
u16

3b

)†
,

uuu′
3r = 0. (E6)

3. wI = 0 and wT = 1 (class UC)

In the following, η = g3(θ = nπ ) and ηI = g3(θI =
nIπ ).

u12
1g = ηIu23

1g = u34
1g = ηIu45

1g = u56
1g = ηIu61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3, u14
1b = ηηI

(
u14

1b

)†
,

u13
1r = u24

1r = ηu35
1r = u46

1r = ηu51
1r = u62

1r = χ1rτ
3. (E7)

u13
2g = u24

2g = u35
2g = u46

2g = u51
2g = u62

2g = χ2gτ
3,

u12
2b = ηIu23

2b = ηu34
2b = ηIu45

2b = ηu56
2b = ηIu61

2b = χ2bτ
3,

u14
2r = ηu36

2r = ηu52
2r = χ2rτ

3, u14
2r = ηηI

(
u14

2r

)†
. (E8)

u14
3g = u36

3g = u25
3g = χ3gτ

3, u14
3g = ηI

(
u14

3g

)†
,

u16
3b = ηηIu21

3b = u32
3b = ηηIu43

3b = u54
3b = ηIu65

3b = χ3bτ
3,

u13
3r = ηu24

3r = u35
3r = ηu46

3r = u51
3r = u62

3r = χ3rτ
3. (E9)

4. wI = 1 and wT = 1 (class UD)

u12
1g = −ηIu23

1g = u34
1g = −ηIu45

1g = u56
1g = −ηIu61

1g = χ1gτ
3,

u14
1b = u36

1b = u52
1b = χ1bτ

3, u14
1b = −ηηIu14

1b,

u13
1r = −u24

1r = ηu35
1r = −u46

1r = ηu51
1r = −u62

1r = χ1rτ
3.

(E10)

u13
2g = −u24

2g = u35
2g = −u46

2g = u51
2g = −u62

2g = χ2gτ
3,

u12
2b = −ηIu23

2b = ηu34
2b = −ηIu45

2b = ηu56
2b = −ηIu61

2b=χ2bτ
3,

u14
2r = ηu36

2r = ηu52
2r = χ2rτ

3, u14
2r = −ηηIu14

2r . (E11)
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TABLE V. Symmetric Z2 mean-field Ansätze up to third-nearest neighbors. The sign configurations on the second and third nearest
neighbor bonds can be found in Eqs. (D9) and (D10).

1NN 2NN 3NN

{ηT , gT } {η, ηI} u1g u1b u1r u2g u2b u2r u3g u3b u3r Onsite

{+, ι̇τ 2} {+,+} τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 3

{+, ι̇τ 2} {+,−} τ 1,3 0 τ 1,3 τ 1,3 τ 1,3 0 0 τ 1,3 τ 1,3 τ 3

{+, ι̇τ 2} {−,+} τ 1,3 0 τ 1,3 τ 1,3 τ 1,3 0 τ 1,3 τ 1,3 τ 1,3 τ 3

{+, ι̇τ 2} {−,−} τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 τ 1,3 0 τ 1,3 τ 1,3 τ 3

{−, ι̇τ 2} {+,+} ι̇τ 0, τ 2 τ 2 τ 1,3 τ 1,3 ι̇τ 0, τ 2 τ 2 τ 2 ι̇τ 0, τ 2 τ 1,3 τ 3

{−, ι̇τ 2} {+,−} ι̇τ 0, τ 2 ι̇τ 0 τ 1,3 τ 1,3 ι̇τ 0, τ 2 ι̇τ 0 ι̇τ 0 ι̇τ 0, τ 2 τ 1,3 τ 3

{−, ι̇τ 2} {−,+} ι̇τ 0, τ 2 ι̇τ 0 τ 1,3 τ 1,3 ι̇τ 0, τ 2 ι̇τ 0 τ 2 ι̇τ 0, τ 2 τ 1,3 τ 3

{−, ι̇τ 2} {−,−} ι̇τ 0, τ 2 τ 2 τ 1,3 τ 1,3 ι̇τ 0, τ 2 τ 2 ι̇τ 0 ι̇τ 0, τ 2 τ 1,3 τ 3

{−, τ 0} {+,+} ι̇τ 0, τ 2 τ 3 0 0 ι̇τ 0, τ 1,2,3 τ 1,2,3 τ 1,2,3 ι̇τ 0, τ 1,2,3 0 0
{−, τ 0} {+,−} ι̇τ 0, τ 2 ι̇τ 0 0 0 ι̇τ 0, τ 1,2,3 ι̇τ 0 ι̇τ 0 ι̇τ 0, τ 1,2,3 0 0
{−, τ 0} {−,+} ι̇τ 0, τ 2 ι̇τ 0 0 0 ι̇τ 0, τ 1,2,3 ι̇τ 0 τ 1,2,3 ι̇τ 0, τ 1,2,3 0 0
{−, τ 0} {−,−} ι̇τ 0, τ 2 τ 3 0 0 ι̇τ 0, τ 1,2,3 τ 1,2,3 ι̇τ 0 ι̇τ 0, τ 1,2,3 0 0

u14
3g = u36

3g = u25
3g = χ3gτ

3, u14
3g = −ηIu14

3g,

u16
3b = −ηηIu21

3b = u32
3b = −ηηIu43

3b = u54
3b = −ηIu65

3b

= χ3bτ
3,

u13
3r = −ηu24

3r = u35
3r = −ηu46

3r = u51
3r = −u62

3r = χ3rτ
3.

(E12)

The symmetry allowed mean-field amplitudes on the ref-
erence bonds up to third-nearest-neighbor are tabulated in
Table IV.

APPENDIX F: SYMMETRIC MEAN-FIELD ANSÄTZE
INCLUDING TRIPLET TERMS UP TO 3NN

The most general mean-field Hamiltonian for fermionic
spinons is written as

H =
∑

i=0,x,y,z

Hi (F1)

with

Hi =
∑
rα,r′

β

Hi
rα,r′

β
,

Hi
rα,r′

β
= Tr

[
τα�rα

u(i)
rα,r′

β

�
†
r′
β

]
, (F2)

where �̂rα
=

(
f̂rα,↑ f̂ †

rα,↓
f̂rα,↓ − f̂ †

rα,↑

)
. For the bond rα ← r′

β , we

use eight complex numbers ah, bh, ch, dh, ap, bp, cp, dp to
parametrize the 16 real parameters in u(i)

rα,r′
β

:

u(0)
rα,r′

β

= ι̇Reahτ
0 − Reapτ

1 − Imapτ
2 − Imahτ

3,

u(x)
rα,r′

β

= Rebhτ
0 + ι̇(Rebpτ

1 + Imbpτ
2 + Imbhτ

3),

u(y)
rα,r′

β

= Rechτ
0 + ι̇(Recpτ

1 + Imcpτ
2 + Imchτ

3),

u(z)
rα,r′

β

= Redhτ
0 + ι̇(Redpτ

1 + Imdpτ
2 + Imdhτ

3). (F3)

More explicitly, we have

H0
rα,r′

β
= ι̇a∗

h( f̂ †
rα,↑ f̂r′

β ,↑ + f̂ †
rα,↓ f̂r′

β ,↓)

+ ap( f̂ †
rα,↑ f̂ †

r′
β ,↓ − f̂ †

rα,↓ f̂ †
r′
β ,↑) + H.c.,

Hx
rα,r′

β
= −b∗

h( f̂ †
rα,↓ f̂r′

β ,↑ + f̂ †
rα,↑ f̂r′

β ,↓)

− ι̇bp( f̂ †
rα,↑ f̂ †

r′
β ,↑ − f̂ †

rα,↓ f̂ †
r′
β ,↓) + H.c.,

Hy
rα,r′

β

= −ι̇c∗
h ( f̂ †

rα,↓ f̂r′
β ,↑ − f̂ †

rα,↑ f̂r′
β ,↓)

− cp( f̂ †
rα,↑ f̂ †

r′
β ,↑ + f̂ †

rα,↓ f̂ †
r′
β ,↓) + H.c.,

Hz
rα,r′

β
= −d∗

h ( f̂ †
rα,↑ f̂r′

β ,↑ − f̂ †
rα,↓ f̂r′

β ,↓)

+ ι̇dp( f̂ †
rα,↑ f̂ †

r′
β ,↓ + f̂ †

rα,↓ f̂ †
r′
β ,↑) + H.c. (F4)

We define in Table VI the bond parameters for the rep-
resentative bonds up to 3NN. All other bonds can then be
obtained by performing certain PSG operations from these
bonds. Table VI serves as the reference to map the terms and
parameters in Tables IV, V, and VII, VIII.

Note that for onsite bond, we only have four com-
plex parameters that are possibly nonzero, αh, βp, γp, δp,
due to fermion anticommutativity and hermiticity of the
Hamiltonian.

1. U(1) Ansätze

Note that for U(1) PSG Ansätze, we only have hopping bi-
linears and no pairing, therefore the parameters with subscript
“p” (hence the τ 1 and τ 2 terms) vanish. We then simplify the
notation of the hopping parameters by omitting the subscript
“h” (i.e., (a, b, c, d ) := (ah, bh, ch, dh)) and write

u(0)
rα,r′

β

= ι̇Reaτ 0 − Imaτ 3,

u(x)
rα,r′

β

= Rebτ 0 + ι̇Imbτ 3,

u(y)
rα,r′

β

= Recτ 0 + ι̇Imcτ 3,

u(z)
rα,r′

β

= Redτ 0 + ι̇Imdτ 3. (F5)
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TABLE VI. Definition of bond parameters for the representative bonds. The last column lists the spatial symmetry operation (either none
or the twofold rotation I) that maps the bond to itself up to translation.

Bond type Representative bond rα ← r′
β Parameters for the bond uα

rα,r′
β

(α = 0, x, y, z) Stabilizer

Onsite bond (0, 0, 1) ← (0, 0, 1) (αh, 0, 0, 0, 0, βp, γp, δp) None

NN bond type “g” (0, 0, 1) ← (0, 0, 2) (a1g,h, b1g,h, c1g,h, d1g,h, a1g,p, b1g,p, c1g,p, d1g,p) None
NN bond type “b” (0, 0, 1) ← (0, 1, 4) (a1b,h, b1b,h, c1b,h, d1b,h, a1b,p, b1b,p, c1b,p, d1b,p) I
NN bond type “r” (0, 0, 1)0 ← (0, 1, 5) (a1r,h, b1r,h, c1r,h, d1r,h, a1r,p, b1r,p, c1r,p, d1r,p) None
2nd NN bond type “g” (0, 0, 1) ← (0, 0, 3) (a2g,h, b2g,h, c2g,h, d2g,h, a2g,p, b2g,p, c2g,p, d2g,p) None

2nd NN bond type “b” (0, 0, 1) ← (−1, 0, 6) (a2b,h, b2b,h, c2b,h, d2b,h, a2b,p, b2b,p, c2b,p, d2b,p) None
2nd NN bond type “r” (0, 0, 1) ← (1, 1, 4) (a2r,h, b2r,h, c2r,h, d2r,h, a2r,p, b2r,p, c2r,p, d2r,p) I
3nd NN bond type “g” (0, 0, 1) ← (0, 0, 4) (a3g,h, b3g,h, c3g,h, d3g,h, a3g,p, b3g,p, c3g,p, d3g,p) I
3nd NN bond type “b” (0, 0, 1) ← (0, 1, 6) (a3b,h, b3b,h, c3b,h, d3b,h, a3b,p, b3b,p, c3b,p, d3b,p) None
3nd NN bond type “r” (0, 0, 1) ← (−1, 0, 5) (a3r,h, b3r,h, c3r,h, d3r,h, a3r,p, b3r,p, c3r,p, d3r,p) None

The spatial constraints for these parameters are summa-
rized in Table VII.

Effect of time-reversal for U(1) Ansätze:
(i) when wT = 0. TRS forbids bonds connecting sublat-

tices with same sublattice parity, therefore all bonds with “1r,”
“2g,” and “3r” are constrained to vanish by the PSG classes;

(ii) when wT = 1. TRS forbids the appearance of
ι̇τ 0 on all bonds. This means that we have the TRS
constraints (Rea, Reb, Rec, Red ) = (0, 0, 0, 0) while
(Ima, Imb, Imc, Imd ) are not constrained by TRS.

2. Z2 Ansätze

The spatial constraints for the parameters of the Z2 Ansätze
are summarized in Table VII.

Effect of time reversal for Z2 Ansätze:
(i) when {ηT , gT } = {+, ι̇τ 2}, the constraints of TRS is

the same across all bond types: coefficient in front of τ 0,2

vanish, meaning (Reah, Rebh, Rech, Redh, Imap, Imbp, Imcp,

Imdp) = (0, 0, 0, 0, 0, 0, 0, 0) while the other eight real com-
ponents, (Imah, Imbh, Imch, Imdh, Reap, Rebp, Recp, Redp),
are not constrained by TRS;

TABLE VII. Spatial constraints for symmetric U(1) mean-field Ansätze up to third nearest neighbors. The parameters (b, c, d )1g, (b, c, d )1r ,
(b, c, d )2g, (b, c, d )2b, (b, c, d )3b, (b, c, d )3r are not spatially constrained and hence not listed. Note that time-reversal constraints (namely, when
wT = 0 all bonds with “1r”, “2g”, “3r” vanish) are not listed in this table.

1NN 2NN 3NN

{wI, wT } {n, pI} (a, b, c, d )1b (a, b, c, d )2r (a, b, c, d )3g

{1, 0} {0, 0}
{1, 0} {0, 1}
{1, 0} {0, 2}
{1, 0} {0, 3} = (−a, c, b, −d )1be−ι̇(n+pI )π = (−a, c, b, −d )2re−ι̇(n+pI )π = (−a, c, b, −d )1be−ι̇pIπ

{1, 0} {1, 0}
{1, 0} {1, 1}
{1, 0} {1, 2}
{1, 0} {1, 3}
{wI, wT } {n, nI} (a, b, c, d )1b (a, b, c, d )2r (a, b, c, d )3g

{0, 1} {0, 0}
{0, 1} {0, 1}
{0, 1} {1, 0} = (−a∗, c∗, b∗, −d∗)1b(−1)n+nI = (−a∗, c∗, b∗, −d∗)2r (−1)n+nI = (−a∗, c∗, b∗, −d∗)1b(−1)nI
{0, 1} {1, 1}
{1, 1} {0, 0}
{1, 1} {0, 1} = (−a, c, b, −d )1b(−1)n+nI = (−a, c, b, −d )2r (−1)n+nI = (−a, c, b, −d )1b(−1)nI
{1, 1} {1, 0}
{1, 1} {1, 1}
{wI, wT } {θ̃I} (a, b, c, d )1b (a, b, c, d )2r (a, b, c, d )3g

{0, 0} {mπ/n} = (−a∗, c∗, b∗, −d∗)1be−ι̇θ̃I = (−a∗, c∗, b∗, −d∗)2reι̇θ̃I = (−a∗, c∗, b∗,−d∗)3g
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TABLE VIII. Spatial constraints for symmetric Z2 mean-field Ansätze up to third-nearest neighbors. The parameters (b, c, d )1g, (b, c, d )1r ,
(b, c, d )2g, (b, c, d )2b, (b, c, d )3b, (b, c, d )3r are not spatially constrained (but are still constrained by time-reversal symmetry) and hence not
listed. Note that time-reversal constraints are not listed in this table.

1NN 2NN 3NN
{η, ηI} (ah, bh, ch, dh, ap, bp, cp, dp)1b (ah, bh, ch, dh, ap, bp, cp, dp)2r (ah, bh, ch, dh, ap, bp, cp, dp)3g

{±, ±} = ηηI× = ηηI× = ηI×
(−a∗

h, c∗
h, b∗

h,−d∗
h , ap, −cp, −bp, dp)1b (−a∗

h, c∗
h, b∗

h, −d∗
h , ap, −cp, −bp, dp)2r (−a∗

h, c∗
h, b∗

h, −d∗
h , ap, −cp, −bp, dp)3g

(ii) when {ηT , gT } = {−, ι̇τ 2}: the constraints of TRS is
no more the same across all bond types.

For the Onsite bonds, NN bond type “r”, 2nd NN bond
type “g”, and 3nd NN bond type “r”: coefficient in front of
τ 0,2 vanish, meaning (Reah, Rebh, Rech, Redh, Imap, Imbp,

Imcp, Imdp) = (0, 0, 0, 0, 0, 0, 0, 0) while the other eight real
components, (Imah, Imbh, Imch, Imdh, Reap, Rebp, Recp,

Redp), are not constrained by TRS.
For the NN bond types “g”, “b”, the 2nd NN

bond types “b”, “r”, and 3nd NN bond types “g”,
“b”, the coefficient in front of τ 1,3 vanish, meaning
(Imah, Imbh, Imch, Imdh, Reap, Rebp, Recp, Redp) =
(0, 0, 0, 0, 0, 0, 0, 0) while the other eight real components,
(Reah, Rebh, Rech, Redh, Imap, Imbp, Imcp, Imdp), are not
constrained by TRS.

APPENDIX G: SPIN STRUCTURE FACTOR

The dynamical spin structure factor is defined as

Sλλ′
(q, ω) =

∫ +∞

−∞

dτeι̇ωτ

2πN
∑
i, j

eι̇q·ri j
〈
Ŝλ

i (τ )Ŝλ′
j (0)

〉
, (G1)

where λ, λ′ ∈ {x, y, z}, ri j = ri − r j . and Ŝz
i (τ ) =

eι̇Ĥτ Ŝz
i e−ι̇Ĥτ . Due to the presence of spin-rotation symmetry,

it is sufficient to consider the longitudinal components only,
i.e.,

Szz(q, ω) =
∫ +∞

−∞

dτeι̇ωτ

2πN
∑
i, j

eι̇q·ri j
〈
eι̇Ĥτ Ŝz

i e−ι̇Ĥτ Ŝz
j

〉
. (G2)

This, in terms of fermion operators, reads as

Szz(q, ω) =
∫ +∞

−∞

dτeι̇ωτ

8πN
∑
i, j

eι̇q·ri j σ z
αασ z

ββ

×
∑
α,β

〈eι̇Ĥτ f̂ †
i,α f̂i,αe−ι̇Ĥτ f̂ †

j,β f̂ j,β〉. (G3)

For the U(1) Ansätze, ↑ and ↓ sectors are decoupled. As
a result, the basis contains only annihilation operators in
each sector. Consider a unitary matrix U such that U †ĤU =
diag(ε1, ε2, . . . , εN ), where N is the total number of sites.
Consequently, the basis vectors will transform as f̂i,α =

Uiμξ̂μ,α and Eq. (G3) can be recast as

Szz(q, ω) =
∫ +∞

−∞

dteι̇ωτ

8πN
∑

i, j,μ,μ′ν,ν ′
eι̇q·ri j σ z

αασ z
ββ

× U ∗
i,μUi,μ′U ∗

j,νUj,ν ′

×
∑
α,β

〈eι̇Ĥτ ξ̂ †
μ,αξ̂μ′,αe−ι̇Ĥτ ξ̂

†
ν,β ξ̂ν ′,β〉. (G4)

The scattering mechanism is as follows. At time τ = 0, a pair
of excitations is created by removing a fermion with a state
(ν ′, β ) from the filled bands (i.e., bellow the Fermi level) and
creating a fermion with a state (ν, β ) at the empty bands (i.e.,
above the Fermi energy) followed by the annihilation of the
pair of excitations at time τ . Thus 〈eι̇Ĥτ ξ̂ †

μ,αξ̂μ′,αe−ι̇Ĥτ ξ̂
†
ν,β ξ̂ν ′,β〉

gives

e−ι̇(εν−εν′ )τ × δ(ν ′, μ)δμ′,νδα,β . (G5)

Note that εν is independent of spin index because of spin
symmetry. Substitution of Eq. (G5) in Eq. (G4) yields

Szz(q, ω) = 1

2N
∑

i, j,μ,ν

eι̇q·ri j δ(ω − εν + εμ)

× U ∗
i,μUi,νU ∗

j,νUj,μnμ(1 − nν ). (G6)

Here, nγ = 1
eβ(εγ −εF )+1

with Fermi energy εF . At absolute zero
temperature, i.e., β = ∞, Eq. (G6) can be written using a step
function θ (x) as follows:

Szz(q, ω) = 1

2N
∑

i, j,μ,ν

eι̇q·ri j δ(ω − εν + εμ)

× U ∗
i,μUi,νU ∗

j,νUj,μθ (εF − εμ)θ (εν − εF ). (G7)

Now, the equal-time momentum resolved spin-spin correla-
tion function can be calculated from the above equation as
Szz

eqt (q) = ∑
ω Szz(q, ω). Thus

Szz
eqt (q) = 1

2N
∑

i, j,μ,ν

eι̇q·ri jU ∗
i,μUi,νU ∗

j,νUj,μ

× θ (εF − εμ)θ (εν − εF ). (G8)
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