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In this work we propose a solid-state platform for creating quantum simulators based on implanted spin
centers in semiconductors. We show that under the presence of an external magnetic field, an array of S = 1 spin
centers interacting through magnetic dipole-dipole interaction can be mapped into an effective spin-half system
equivalent to the XYZ model in an external magnetic field. Interestingly, this system presents a wide range of
quantum phases and critical behaviors that can be controlled via magnetic field and orientational arrangement
of the spin centers. We demonstrate our interacting spin chain can be tuned to both isotropic Heisenberg model
and transverse-field Ising universality class. Notably, our model contains a line where the system is in a critical
floating phase that terminates at Berezinskii-Kosterlitz-Thouless and Pokrovsky-Talapov transition points. We
propose this system as a solid-state quantum simulator for the floating phase based on spin centers.
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I. INTRODUCTION

Quantum simulators designed for handling complex prob-
lems not solvable with classical computers have been a rapidly
expanding field of quantum information science [1–3]. Crit-
ical behaviors of complex systems may be investigated and
tested with specially designed quantum simulators that con-
tain the essential physics and can be created and probed in
the laboratory in a controlled way. Critical phenomena are
universal across distinct systems within the same universality
classes, as they depend only on the symmetries and dimen-
sionality of the system, and accordingly provide unifying
principles that apply across very different fields of physics
[4]. Quantum spin chains have been extensively studied due to
their relative simplicity and rich critical behaviors [5] and can
be exploited as quantum simulators. The physics of spin-half
chains is particularly interesting and can be directly mapped to
systems of fermions [6] and, moreover, effective spin models
with spin S were proposed as quantum simulators for lattice
field theories [7–11], with special interest in the S = 1 trunca-
tion [12,13]. While neutral atoms, trapped ions, cavity arrays,
quantum dots, superconducting circuits, photons, and nuclear
spins have been further studied as quantum simulators, issues
with scalability or controlling and measuring individual qubits
remain [1,2]. Our proposed spin chain quantum simulator is
able to engineer numerous special Hamiltonian terms in order
to simulate a wide variety of critical behavior in a single
system and has pursuable avenues to address the issues faced
by other quantum simulators.

Recently, defects with spin in solids (spin centers) have
been demonstrated to be a promising platform for quan-
tum information science due to their many applications

*Contact author: jzhang91@cqu.edu.cn

[1,14–20]. These spin-S centers are qudits that can be op-
tically initialized with a laser and optically read via the
photoluminescence (PL) [Fig. 1(a)] and present long spin co-
herence times even at room temperature. Due to the sensitivity
of their energy levels to both magnetic and electric fields, they
are also great candidates for quantum sensing and metrol-
ogy [16,21–38]. Examples of solid-state spin centers are the
negatively charged nitrogen-vacancy (NV−) [16,17,39] and
neutral silicon-vacancy (SiV0) [40–43] spin centers in di-
amond and divacancy spin centers in silicon carbide (SiC)
[44–47]. Recent advances on the spatial implantation pre-
cision of spin centers [48–51] allow for the corresponding
creation of room-temperature coherent spin arrays [52–54].
Interestingly, the interaction between these spins can be set
by the relative position of the spin centers within the crystal
and further tuned by applied external magnetic and electric
fields. Moreover, as crystal hosts are much larger than the
typical spin-spin implantation separation, scalability of these
spin arrays appears encouraging. In addition, new avenues
for work with interacting spin centers have been opened by
studies and realizations of many-body phenomena in crys-
tals containing an ensemble of interacting spin centers, e.g.,
discrete time crystals [55,56], critical thermalization [35], Flo-
quet prethermalization in a long-range spin interacting system
[57], emergent hydrodynamics [58], quantum metrology with
strongly interacting spins [59], and Hamiltonian engineering
via periodic pulse sequences [60]. Therefore, spin arrays made
of spin centers are a promising solid-state candidate for the
implementation of quantum simulators.

In this paper we exploit the remarkable recent advances
in the creation and control of spin defects and propose a
solid-state quantum simulator for a spin-half system com-
posed of an one-dimensional (1D) array of spin defects [see
Fig. 1(a)]. We show that this system presents various quantum
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FIG. 1. (a) Schematic representation of silicon vacancy in diamond and the corresponding spin array of SiV’s coupled through dipole-
dipole interaction. The spin centers are initialized by a laser and optically read through the photoluminescence (PL). Also depicts the energy
levels and z axis from Eq. (1), as well as the angle θ between the z axis and the displacement vector between spin centers. (b) The phase
diagram of the effective spin- 1

2 SiV chain Hamiltonian in Eq. (7), demonstrated by the filled contour plot of von Neumann entanglement
entropy SvN. The phase boundaries are indicated by the peaks of SvN. The two white X’s and the two white stars show the locations of BKT
and PT points, respectively. The ring is an Ising critical line and the bright yellow curve connecting the PT point on the ring and the PT point
at θ = 0 and hz = 2 is demonstrated to be the �x = 0 (red dashed) line, given by Eq. (10), which stays in a critical floating phase near the PT
points and transitions via BKT points to a gapped phase for 0.06π � θ � π/4. The insets on the �x = 0 line show the spin density profiles for
the AFM phase inside the ring at θ = 0.41π and the floating phase at θ = 0.4π . The θ = 0 line shows the critical partially magnetized phase
with a high entanglement plateau for hz < 2.

phases and critical behaviors, which can be achieved using
different spatial arrangements of spin centers and different
values of the applied magnetic field [see Fig. 1(b)]. More
specifically, we consider an external magnetic field is applied
to a 1D chain of anisotropic S = 1 spin centers interact-
ing via the magnetic dipole-dipole interaction. We show this
creates an effective S = 1/2 system with various spin-spin
interaction terms. The corresponding phase diagram is char-
acterized by calculation of the von Neumann entanglement
entropy and contains gapped magnetic orders and critical
lines that correspond to the isotropic Heisenberg model, float-
ing phases [61–65] ending at Berezinskii-Kosterlitz-Thouless
(BKT) [66,67] and Pokrovsky-Talapov (PT) [68] points, and
transverse-field Ising transitions. The presence of the floating
phase makes our quantum simulator a promising potential
candidate to study emerging incommensurate order and as-
sociated critical behavior described by Tomonaga-Luttinger
liquid (TLL) theory [69].

The paper is organized as follows. In Sec. II, we start by in-
troducing the general Hamiltonian that describes spin centers,
followed by a discussion of the dipole-dipole coupling, and of
the projection of the Hamiltonian onto an effective spin-half
subspace. We then consider material candidates where this
quantum simulator can be realized. In Sec. III, we present our
results and discuss the most interesting regions of the phase
diagram. We analyze the critical lines of the phase diagram in
Sec. III A for the isotropic Heisenberg chain with an external
field in the z direction, Sec. III B for Ising transitions, and
Sec. III C for the critical floating phase. We discuss experi-
mental feasibility of this platform in Sec. IV and summarize
our results and discuss future work in Sec. V.

II. MODEL

In this section we establish a way for implementing quan-
tum simulators in solid-state platforms. Our proposal relies

on the use of the spin center in semiconductors for creating
interacting spin chain models in solid-state systems. Accord-
ingly, we provide the Hamiltonian for the spin centers and the
dipole-dipole interaction between them. We then show that
the total Hamiltonian can be mapped into a spin- 1

2 XYZ chain
with an applied magnetic field in the x–z plane.

A. Spin center Hamiltonian

The Hamiltonian for the ground state of S = 1 spin centers
in solids can be generally described by a zero-field splitting
term, plus the Zeeman interaction. For highly symmetric spin
centers, e.g., NV− and SiV0 centers in diamond, and (hh) and
(kk) divacancies in SiC, the low-energy effective Hamiltonian
is described as arising primarily from two interacting elec-
trons forming a triplet manifold {|0〉, | − 1〉, |1〉} with ground
state Hamiltonian [16,40,45–47,70]

HS = hD(Sz )2 + hγ

2π
B(r) · S, (1)

where D is the zero-field splitting between the triplet states
m = 0 (|0〉) and m = ±1 (| ± 1〉); Sx, Sy, and Sz are the triplet
spin-1 matrices, γ is the gyromagnetic ratio (or g factor), and
B(r) is the magnetic field at the position of the spin center,
r. Although spin centers also possess excited states, those are
separated by relatively higher energy (∼100 THz) compared
to the energy scale associated to the ground state (∼1 GHz)
and, therefore, will be neglected in this work. Accordingly,
in the presence of an external magnetic field along the defect
main symmetry axis, defined here as the z direction [B(r) =
Bẑ], the triplet energy levels read Em=±1 = hD ± hγ

2π
B and

Em=0 = 0, and are illustrated in Fig. 1(a). For the majority
of spin centers, D ∼ 1 GHz and γ /2π ∼ 28 GHz/T, thus
showing that spin centers can be easily manipulated with mi-
crowave radiation and also respond sensitively to an external
magnetic field.
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B. Magnetic dipole-dipole coupling between spin centers

If we now consider an array of spin centers separated by
interatomic distances, different spin centers will be coupled
to each other through both magnetic dipole-dipole coupling
and exchange interaction. While the exchange interaction
dominates for interatomic distances d � 1 nm [71,72], the
dipole-dipole interaction dominates for d � 5 nm. Assuming
a chain with spin centers separated by distances �10 nm, we
can disregard the exchange interaction, yielding the effective
interacting Hamiltonian between spin centers i and j,

Hi j
int = μ0(hγ /2π )2

4π |ri j |3 [3(S j · r̂i j )(Si · r̂i j ) − (S j · Si )], (2)

where μ0 is the vacuum permeability, ri j = ri − r j is the
displacement vector between spins i and j located at ri and
r j , respectively, and r̂i j = ri j/|ri j |.

In this paper, the z axis is defined by the orientation of
each spin center, predefined by the zero-field splitting term
proportional to (Sz )2 within Eq. (1). Here, we express ri j

in spherical coordinates with corresponding angles θ and φ.
Since the z axes of each spin center are aligned, our sys-
tem possesses azimuthal symmetry and we set φ = 0. With
these assumptions, we can conveniently rewrite the magnetic
dipole-dipole interaction between spin centers i and j [Eq. (2)]
as

Hi j
int = μ0(hγ /2π )2

4π |ri j |3
[
Sx

i Sy
i Sz

i

] · T ·

⎡
⎢⎣

Sx
j

Sy
j

Sz
j

⎤
⎥⎦, (3)

with dipole-dipole tensor

T =

⎡
⎢⎣

3 sin2(θ ) − 1 0 3
2 sin(2θ )

0 −1 0
3
2 sin(2θ ) 0 3 cos2(θ ) − 1

⎤
⎥⎦. (4)

Assuming a typical electronic gyromagnetic ratio
(γ /2π ∼ 28 GHz/T) and |ri j | ∼ 10 nm, we obtain
Hi j

int/h ∼ 50 kHz, which is shown to be much stronger
than the dephasing and relaxation rates of spin centers (100
μs to seconds) [15,73].

Considering a spin chain of equally spaced (|ri j | =
|r|) N spin centers oriented along a straight line with a
polar angle θ [see Fig. 1(a)], and assuming only nearest-
neighbor (NN) interactions due to the short-range char-
acter of the dipole-dipole interaction, we obtain the total
Hamiltonian

Htot =
∑

i

HSi +
∑
i, j

Hi j
intδi, j±1. (5)

We thus have an interacting spin chain that can simulate non-
trivial physics of strongly correlated systems. Notice that if
the dipole-dipole coupling is strong, a long-range interaction
should be kept and quantum phenomena like spontaneous
breaking of continuous symmetries in low dimensions can be
observed [74,75].

C. Effective spin-half Hamiltonian

Despite the spin-1 character of our spin centers, we
can effectively map the total spin-1 interacting Hamiltonian

[Eq. (5)] into a spin- 1
2 interacting Hamiltonian. To do so, we

first apply a magnetic field B = Bcẑ with Bc ∼ D/(γ /2π ),
such that the levels |−1〉 and |0〉 are nearly degenerate. Under
this condition, the state |1〉 is separated from both |−1〉 and |0〉
by ∼1 GHz. As the coupling between different spin centers
is ∼50 kHz, nondegenerate perturbation theory guarantees
that the effect of level |1〉 within the manifold spanned by
|−1〉 and |0〉 can be neglected. Accordingly, by projecting
the total spin-1 interacting Hamiltonian [Eq. (5)] onto the low
energy {|−1〉, |0〉} subspace, we obtain the spin- 1

2 interacting
Hamiltonian [see Appendix A]

H = J
N−1∑
i=1

{
[3 sin2(θ ) − 1]σ x

i σ x
i+1 − σ

y
i σ

y
i+1

+3 cos2(θ ) − 1

2
σ z

i σ z
i+1 + 3 sin(2θ )

2
√

2

(
σ x

i σ z
i+1 + σ z

i σ x
i+1

)}

− J
N∑

i=1

{
[hz + 3 cos2(θ ) − 1]σ z

i + 3 sin(2θ )√
2

σ x
i

}
,

(6)

with J = μ0(hγ /2π )2/8π |r|3, hz = (Em=−1 − Em=0)/J ,
and Pauli matrices σx,y,z defined as σ+ = (σ x +
iσ y)/2 = |0〉〈−1|. From now on, we will set
J = 1.

The Hamiltonian in Eq. (6) is invariant under the trans-
formations θ → θ + π , or θ → π − θ combined with a π

rotation of all spins around the z axis; thus we restrict
our analysis to θ ∈ [0, π/2] in the following calculations.
We set A = 3 sin2(θ ) − 1, B = [3 cos2(θ ) − 1]/2, and C =
3 sin(2θ )/(2

√
2), then rotate the spins around the y axis

by an angle α (see Appendix B). Choosing proper values
of α, we eliminate the σ x

i σ z
i+1 + σ z

i σ x
i+1 terms, yielding the

following XYZ model with an effective external field in the
x-z plane

H̃ =
N−1∑
i=1

(
Jxσ

x
i σ x

i+1 + Jzσ
z
i σ z

i+1 − σ
y
i σ

y
i+1

)

−
N∑

i=1

(
�zσ

z
i + �xσ

x
i

)
(7)

and parameters

Jx(z) = ∓
√

(A − B)2

4
+ C2 + A + B

2
, (8)

�z = (hz + 2B) cos(α) + 2C sin(α), (9)

�x = −(hz + 2B) sin(α) + 2C cos(α), (10)

α =

⎧⎪⎨
⎪⎩

1
2 arctan

(
2C

B−A

)
, if 0 � θ < arcsin

(
2
3

)
,

π
4 , if θ = arcsin

(
2
3

)
,

1
2 arctan

(
2C

B−A

) + π
2 , if arcsin

(
2
3

)
< θ � π

2 .

(11)

It is noticed that the same model can also be engineered using
p-orbital bosons in optical lattices [76] and the long-range
dipolar XYZ model in one or two dimensions can be built in
artificial arrays of Rydberg atoms in optical tweezers [77].
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FIG. 2. Dependence of the coupling constants of the rotated
Hamiltonian on θ . The NN interaction strengths Jx(z) only depend on
θ , while the rotated fields �x(z) depend on both θ and hz. The values
of �x(z) as a function of θ for fixed hz = 0 and fixed �z(x) = 0 are
depicted here, respectively.

Without �x(z) fields, the XYZ model is integrable [78] and
can be exactly solved using the Bethe ansatz [79]. However,
the Hamiltonian [Eq. (7)] is more complex due to the pres-
ence of external fields. As Jx(z) and �x(z) depend on θ and
hz, analyzing the corresponding parameter space shows what
quantum phases and critical phenomena our quantum simu-
lator can explore. Figure 2 shows the effective Hamiltonian
parameters [Eqs. (8)–(11)] as functions of θ . Notice that the
interaction strengths Jx and Jz only depend on θ , while the
effective field components �x and �z depend on both θ and
hz. At θ = 0, we have Jx = −1, Jz = 1, �x = 0 for arbitrary
hz and �z linear in hz. After a π rotation around the z axis
for even or odd sites, the Hamiltonian [Eq. (7)] becomes a
Heisenberg model in an external field along the z direction.
Conversely, near θ = π/2, α ≈ π/2, �z ≈ 0 and depends
little on hz, the Jz coupling dominates the interactions and
the �x field can drive a continuous quantum phase transition
between disordered and antiferromagnetic (AFM) phases as
the transverse-field Ising model does [80]. As θ increases from
0 to π/2, Jx changes from −1 to −0.5, and Jz changes from
1 to 2, while |Jz| � 1 � |Jx| is always true. The interactions
of the system favor ferromagnetic (FM) order in the x-y plane
and AFM order in the z direction. Due to the noncommutative
properties of spin operators, the competitions between tenden-
cies toward FM and AFM orders in different directions can
result in nontrivial quantum criticalities [81–83].

Without �x(z) fields, the Hamiltonian has a set of Z2 sym-
metries and is invariant under a π rotation about any of the x,
y, or z axes. The uniform fields �x(z) will orient all spins in the
same direction and explicitly break the Z2 symmetry about
the other two axes. There are two special lines corresponding
to �x = 0 and �z = 0, respectively, where the Hamiltonian
[Eq. (7)] depends only on θ . The rotated fields along the two
lines read

�z = 2C/ sin(α) for �x = 0, (12)

�x = 2C/ cos(α) for �z = 0. (13)

While increasing θ along the �z = 0 line, the Hamiltonian
[Eq. (7)] begins at θ = 0 at an SU(2) symmetric Heisenberg
point where �x = 0, then immediately becomes Ising-like,
and ends at θ = π/2 with �x = 5. As a result, only Ising
transitions are possible on the �z = 0 line and the positive
increasing �x field will simply enhance FM order in the x
direction. We have explored this line numerically and found
no critical behaviors beyond those at θ = 0.

Along the �x = 0 line, the Hamiltonian [Eq. (7)] begins
at θ = 0 as a Heisenberg model with an external field �z =
4 [see Eq. (16)], which is a commensurate-incommensurate
transition point (see Sec. III C), and ends at θ = π/2 as an
AFM phase with �z = 0, where Jz = 2 dominates the interac-
tion strength. Throughout the �x = 0 line, the field �z will
attempt to align all spins, while the AFM coupling Jz > 0
will attempt to antialign NN spins in the z direction. This
competition may cause the proliferation of domain walls in
the presence of Jx(y) terms and nontrivial incommensurate
order can appear [62,63]. In summary, based on analyzing
the parameter space of the Hamiltonian [Eq. (7)], we have
discovered our quantum simulator can probe the Heisenberg
model in an external field, Ising transition lines, and quantum
criticalities associated with incommensurate orders. These
rich features are confirmed and extensively studied in Sec. III
via large-scale numerical calculations.

III. RESULTS

In order to understand the phase diagram in the whole
parameter space, we perform finite-size density-matrix renor-
malization group (DMRG) calculations [84–86] (see Ap-
pendix C). Our DMRG calculations typically use an odd
number of sites to avoid domain walls forming in the center of
the chain due to finite-size boundary effects (see Appendix D).
We utilize the von Neumann entanglement entropy as the uni-
versal phase-transition indicator and graph the phase diagram
of our Hamiltonian [Eq. (7)]. The von Neumann entanglement
entropy SvN is a measure of entanglement between the subsys-
tem A of a quantum many-body system and its complement
B

SvN = −Tr[ρ̂A ln(ρ̂A)], (14)

where ρ̂A = TrBρ̂ is the reduced density matrix for the sub-
system A and ρ̂ is the density matrix of the whole system,
which is equal to |�0〉〈�0| if the system is in the ground
state |�0〉. Here, we only consider the case where A is half
of the system. At a critical point on phase transition lines or
in gapless phases, conformal field theory (CFT) predicts that
the entanglement entropy of a system with open boundary
conditions diverges logarithmically with the system size as
[87–91]

SvN = s0 + c

6
ln(N ), (15)

where c is the central charge referred to as the conformal
anomaly and s0 is a nonuniversal constant. This universal
scaling behavior of SvN can be used to detect critical points
or lines and calculate the central charge to determine the
system’s universality class.
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Figure 1(b) shows the phase diagram of the model in the θ–
hz plane using von Neumann entanglement entropy [Eq. (14)].
As mentioned above in Sec. II C, the rotated Hamiltonian
[Eq. (7)] at θ = 0 is a Heisenberg model in an external field
along the z direction �z = 2 + hz. At �z = 0 or hz = −2,
our solid-state system will simulate the SU(2) Heisenberg
model. According to the results in Refs. [81,92], the model
is in the critical partially magnetized phase for �z ∈ (0, 4)
or hz ∈ (−2, 2) and goes to the fully magnetized phase for
�z > 4 via a commensurate-incommensurate PT transition
at �z = 4 or hz = 2. These behaviors are confirmed by the
high-entanglement segment ending at hz = 2 on the bottom
line of the phase diagram.

Close to θ = π/2, the interaction strength between NN
spin projections along the z direction dominates, so the trans-
verse field can drive an Ising transition with ν = 1 and
c = 1/2. In the phase diagram Fig. 1(b), there is an Ising
critical ring centered at θ = π/2 and hz = 1. Inside this
ring, our system is in an AFM phase manifesting nonzero
staggered magnetization per site in the z direction mz

stag =
[
∑

i(−1)i〈Sz
i 〉]/N [see inset of Fig. 1(b)]. The system is in

the disordered phase outside the ring, except for one bright
yellow line where the entanglement entropy is large. This line
coincides with the special line defined by �x = 0 in Eq. (10)
[see red dashed line in Fig. 1(b)]. Large entanglement on
the line indicates the existence of a critical phase that is
demonstrated to be the floating phase (see Sec. III C). The
ends of this line are indicated by the asterisk symbol and
correspond to PT transition points that are on the boundary
of the critical floating phase [see inset of Fig. 1(b)]. Along
this line, the floating phase emerges from the upper PT point
down to θ ≈ π/4 (top X marker) and from the bottom PT
point up to θ ≈ 0.06π (bottom X marker). On the line for
0.06π � θ � π/4 (between the X markers), the system is a
gapped phase, separated from the floating phase by the two
BKT transitions which are represented by the X markers.
In the following subsections, we analyze the properties of
these quantum phases and phase transitions with substantial
numerical evidence.

A. θ = 0: Heisenberg chain

The spin- 1
2 chain Hamiltonian in Eq. (7) for θ = 0 reads

Hθ=0 =
∑

i

( − σ x
i σ x

i+1 − σ
y
i σ

y
i+1 + σ z

i σ z
i+1

)

− (hz + 2)
∑

i

σ z
i , (16)

which is a Heisenberg model with an external field in the z
direction after a π rotation around the z axis for even or odd
sites. It has an SU(2) Heisenberg point at hz = −2, which is
in the BKT universality class [93] with a central charge c = 1.
As we increase hz from −2, a nonzero magnetization per site
in the z direction, mz = [

∑
i〈Sz

i 〉]/N , is induced (see Fig. 3).
As the total magnetization is conserved, the magnetization
in the z direction

∑
i〈Sz

i 〉 increases in steps of 1/2 and the
magnetization per site is continuous in the large N limit.
Based on previous studies [81,82], before the magnetization
saturates, the system is in the critical partially magnetized

FIG. 3. Entanglement entropy SvN for N = 257 and 1025 and the
magnetization per site |mz| for N = 1025 as functions of hz at θ = 0.
The large entanglement entropy with small oscillations (blue pluses
and blue squares) in the partially magnetized phase sharply drops
to zero in the fully magnetized phase. The magnetization per site
increases with hz in the partially magnetized phase and saturates at
1/2 in the fully magnetized phase. The inset shows a fit of the power-
law scaling of |mz| near the phase transition between the partially and
fully magnetized phases.

phase with logarithmically diverging entanglement entropy.
Our data shows that large SvN persists until hz = 2, where SvN

suddenly jumps to zero and the magnetization per site satu-
rates at 1/2. When the system size is increased from N = 257
to N = 1025, the increment in SvN is almost a constant about
0.23, consistent with the CFT prediction ln(4)/6 with central
charge c = 1. It has been argued that SvN for Eq. (16) has
parity oscillations that depend on the Fermi momentum and
Luttinger liquid parameter [94], which also results in oscilla-
tions in SvN as a function of hz shown in Fig. 3. The oscillation
amplitude decreases with the system size and SvN becomes
smooth in the large N limit. For hz � 2, all the spins point
along the z direction and the system is in the fully magnetized
phase with maximum magnetization.

In the thermodynamic limit, the magnetization per site
along the z-direction mz changes continuously with hz; thus
there is a power-law scaling for mz near the phase transi-
tion inside the partially magnetized phase. In the inset of
Fig. 3, we plot mz as a function of hz near hz

c = 2. Assuming
mz ∼ 1/2 − (hz

c − hz )β , we obtain β = 0.501(1) from a curve
fit. Our numerical results are consistent with the transition
between the incommensurate partially magnetized phase and
the commensurate fully magnetized phase belonging to the PT
universality class with β = ν = 1/2 [68].

B. Ising ring

For θ = π/2, the spin chain Hamiltonian Eq. (7) reads

Hθ= π
2

=
∑

i

(
−1

2
σ x

i σ x
i+1 − σ

y
i σ

y
i+1 + 2σ z

i σ z
i+1

)

+ (hz − 1)
∑

i

σ x
i . (17)
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FIG. 4. Staggered magnetization per site mz
stag and entanglement entropy SvN for the Ising ring. (a) The magnitude of the staggered

magnetization per site |mz
stag| along the crystal z axis as a function of θ and hz is plotted for N = 1025. (b) The entanglement entropy SvN

as a function of hz at θ = π/2 is plotted for different system sizes. (c) The peak positions of SvN as a function of 1/N are fit to a polynomial to
extrapolate the critical value of hz for the Ising transition at θ = π/2 on the left side of the ring. (d) The entanglement entropy at the critical
point found in (c) vs ln(N ) is fit to the CFT form in Eq. (15) and the extracted central charge c = 0.498(3).

Here, Jz = 2|Jy| = 4|Jx| = 2, �x = 1 − hz, and �z = 0. The
dominant part of the Hamiltonian is a transverse-field Ising
model HIsing = ∑

i[2σ z
i σ z

i+1 − �xσ
x
i ], which has a quantum

phase transition belonging to the Ising universality class. A
π rotation about the z axis only reverses the direction of the
�x field, so there should be two Ising critical points equidis-
tant from hz = 1. The critical points of HIsing are given by
|hz − 1| = 2 [80]. However, the FM coupling −σ xσ x/2 will
enhance the effects of transverse field, so the expected critical
values follow |hz

c − 1| < 2. At a deviation δθ from θ = π/2,
e.g., θ = π/2 − δθ , one can show that, in Eq. (7), Jx, Jz,
and �x all deviate from the values at θ = π/2 by order of
(δθ )2, so the transverse-field Ising model persists to be the
dominant part of the Hamiltonian as long as δθ is small. As θ

is decreased from π/2, the positive Jz decreases, the negative
Jx decreases, and |�z| increases, so the strength of the �x field
at the critical points should decrease until a tiny transverse
field can induce an Ising transition. Therefore, it is expected
to have a ring of Ising critical points centered at θ = π/2 and
hz = 1, up to a correction of the order of (δθ )2.

We do see a ring of critical points in the phase diagram
shown in Fig. 1(b). To demonstrate that the phase transi-
tions belong to the Ising universality class, we show the
staggered magnetization per site |mz

stag| in Fig. 4(a), where
there is a circular area in which |mz

stag| > 0 and out of which
|mz

stag| = 0. This observation indicates an AFM phase inside
the ring and a quantum phase transition associated with Z2

symmetry breaking. Moreover, this region can be verified
as belonging to the Ising universality class by showing that
the central charge c = 1/2. To find c for the transition, it is
necessary to find the critical field hz

c where the Ising transition
occurs. We first plot SvN as a function of hz for different sys-
tem sizes, N , shown in Fig. 4(b). Interpolations are performed
to accurately locate the peak positions of SvN. Subsequently,
in Fig. 4(c) we plot the corresponding values of hz for SvN

peaks as a function of 1/N . We then fit the peak positions
with a high degree polynomial of 1/N to obtain the value of
the critical field hz

c in the thermodynamic limit N → ∞. The
extrapolated value of hz

c is 0.5036(2) and the corresponding
|�x| = 0.4964(2) < 2 as expected. We finally calculate the

entanglement entropy for different N at hz
c and fit the data

with the expected scaling predicted by CFT and given by
Eq. (15). The results are presented in Fig. 4(d) and yield
the fitted value of c = 0.498(3), which is consistent with the
value c = 0.5 for Ising CFT. In Appendix E we show results
for θ = 1.4 ≈ 0.45π , where we found hz

c = 0.6298(12) and
c = 0.50(3). All of these observations verify that the critical
ring is of Ising universality class.

C. �x = 0: Incommensurate line

We have argued in Sec. II C that the �x = 0 line is special,
while the �z = 0 line is trivial without any criticality, so the
�x = 0 line will be analyzed in this section. Notice that any
field perturbation along the x direction, i.e., �x = 0 → δ�x,
will reduce the symmetry of the XYZ model in the presence
of an external field along the z direction [see Eq. (7)]. Both
spontaneous and explicit global symmetry breakings result
in energetic domain wall excitations and create a gapped
phase with low entanglement between subsystems. Thus the
entanglement entropy peaks exactly at �x = 0, as shown in
Fig. 1(b), and any criticality must be strictly on the �x = 0
line without finite width.

In the phase diagram Fig. 1(b), it is observed that the
�x = 0 line connects the circular phase boundary to the PT
point at θ = 0. As discussed in Sec. II C, the competition
between an AFM coupling and the tendency to align along
the external field in the presence of transverse FM couplings
may cause proliferation of domain wall excitations and create
a floating phase. The floating phase is a quasi-long-range
incommensurate density wave order with gapless excitations
and emergent U(1) symmetry [62,63,95]. On the �x = 0 line
below the ring, we indeed observe an incommensurate density
wave at θ = 0.4π [see the inset of Fig. 1(b)], where the
wavelength is fractional in units of lattice spacing but close to
2, due to proximity to the AFM phase which has a periodicity
of 2. The big envelope is due to the superposition of two waves
with close wave vectors: one is the floating phase and the other
is the intrinsic wave defined by the lattice. Another example
of an incommensurate density wave is shown in Fig. 5(d) for
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FIG. 5. Critical properties along the �x = 0 line. (a) The entanglement entropy SvN as a function of θ is plotted for different system sizes on
the left y axis. The results for N = 2049 sites only contain data with θ � 0.064π . The inverse correlation length ξ−1

Sz extracted from connected
correlators C(r) = 〈Sz

i0
Sz

i0+r〉 − 〈Sz
i0
〉〈Sz

i0+r〉 with i0 = (N − 1)/2 is plotted on the right y axis. (b) The filled contour plot shows the absolute
value of the discrete Fourier transform of the spin density profile |S̃z

k | as a function of θ and k on a natural logarithmic scale for N = 1025. The
peak position kp of |S̃z

k | changes continuously from kp = 0 (kp = 2π ) to kp = π with θ . The three red asterisks show the locations of PT points,
while the four red X’s show the locations of BKT points. The inset shows kp vs θ fit to their power law near the PT point with kp = π . (c) The
entanglement entropy at θ = 0.38π as a function of ln N is fit to the CFT form in Eq. (15) to find the central charge c = 1.02(3). (d) The spin
density profile at θ = 0.38π is plotted for N = 1281. (e) The best data collapse of the rescaled energy gap Nz�E vs N1/ν (θ − θPT ) for various
system sizes is presented at the optimal values of the PT point θPT and critical exponents ν and z. The inset shows the rescaled energy gap
N2�E as a function of θ/π .

θ = 0.38π , where the wavelength deviates more from 2 and
the envelope is smaller. These incommensurate density waves
with varying wavelength show that we have a floating phase
on the �x = 0 line.

Based on the theory of TLL [69], a large class of 1D
critical phases is described by a free boson field with a
renormalized stiffness K (Luttinger liquid parameter), where
the bosons act as density fluctuations and propagate with an
effective velocity v. The PT transition between 1D critical
phases and crystalline orders happens when this velocity be-
comes zero and the physical system has a spectrum where the
leading dispersion relation is quadratic with the momentum
of low-energy excitations [96]. Additionally, the BKT tran-
sition happens when the Luttinger-liquid parameter reaches
the value at which TLL is unstable and becomes a disor-
dered phase with exponentially decaying correlations [69,95].
The values of K and v in the effective TLL theory change
continuously with coupling constants in the physical sys-
tem. This suggests there is a critical floating phase near the
PT point at θ = 0 and the �x = 0 line must have another
PT point between the floating phase and AFM phase. Our
model is similar to the XY model in an external field along
the x direction, which is dual to the quantum ANNNI [62]
model and has a critical floating phase bounded by a BKT
line and a PT line [97]. As a result there are likely BKT
transitions between the floating phase and the disordered

phase on the �x = 0 line and this is investigated further in
this section.

To numerically investigate our predictions, we plot the
entanglement entropy SvN as a function of θ for N = 257,
513, 1025, and 2049 in Fig. 5(a). We only provide data with
θ � 0.064π for N = 2049 to confirm criticality for small θ . It
is seen that the entanglement entropy around 0.15π saturates
at N � 512, indicating that there exists a noncritical gapped
phase on the �x = 0 line around this point. Near θ = 0 and
θ = 0.41π , SvN continues to increase with the system size for
large N , confirming that there exist two separate critical float-
ing phases. There are two BKT transition points on the �x = 0
line between the two floating phases and the gapped phase,
which are signaled by the peaks of SvN at θ ≈ 0.04π and
θ ≈ 0.26π . We also extract the correlation length ξSz from the
connected correlators C(r) = 〈Sz

i0
Sz

i0+r〉 − 〈Sz
i0
〉〈Sz

i0+r〉 with
i0 = (N − 1)/2 for N = 1025 [65] and plot ξ−1

Sz as a function
of θ in Fig. 5(a). One can see that ξ−1

Sz is maximized around
0.14π and decreases towards θ = 0 and θ = 0.41π , which
is consistent with the two floating phases having divergent
correlation lengths, while the correlation length of the gapped
phase between them is finite [98].

The PT point at θ = 0 has a spin density profile 〈Sz
i 〉

that is flat, which corresponds to a density wave vector
kp = 0, while the PT point at θ ≈ 0.41π on the AFM
phase boundary has staggered magnetization ordering, which
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corresponds to kp = π . We use a natural logarithmic scale
to show the absolute value of the discrete Fourier transform
of the spin density profile with the magnetization subtracted
|S̃z

k| = |∑n (Sz
n − mz ) exp (−ikn)| on the �x = 0 line and as a

function of θ and the wave vector k for N = 1025 in Fig. 5(b).
When calculating |S̃z

k| we used sites indexed between N/3 and
2N/3 in mz and the sum over n in order to remove some edge
effects. The peak position of k gives the density wave vector
kp, which characterizes the main oscillation pattern in the spin
density waves. It is clear that there exist two smooth lines of
peaks of |S̃z

k|, symmetric about k = π , connecting kp = 0 (2π )
at θ = 0 and kp = π at θ ≈ 0.41π . Thus the density wave
vector kp changes continuously from 0 (2π ) to π as θ is tuned
from 0 to about 0.41π . It is also seen that the peak height
of |S̃z

k| decreases with θ , until it reaches a minimum near
θ = 0.15π where it begins to increase. The floating phase has
a quasi-long-range incommensurate density wave order and
the peak height of |S̃z

k| should be finite, while the disordered
phase has no density wave order in the thermodynamic limit
and should have weaker oscillations in spin density profile
than the floating phase in finite-size systems. The results in
Fig. 5(b) are consistent with there being a gapped disordered
phase between two floating phases on the �x = 0 line.

To further quantify the criticality of the floating phase, we
study the scaling of the entanglement entropy at θ = 0.38π on
the �x = 0 line. The spin density profile is plotted in Fig. 5(d)
and one can see it is indeed an incommensurate density wave.
The entanglement entropy as a function of ln N is plotted in
Fig. 5(c), where we find SvN grows linearly with ln N . We
fit the data for SvN to the CFT form in Eq. (15) and obtain
the central charge c = 1.02(3), which is consistent with the
theory of TLL or Gaussian CFT with c = 1 [99].

We finally provide numerical evidence for the PT transition
between the floating phase and AFM phase on the �x = 0
line. Notice that the entanglement entropy suddenly drops as
θ increases past θ ≈ 0.41π where the �x = 0 line crosses the
AFM ring, which clearly distinguishes the PT point from a
BKT point where SvN changes smoothly across the transition.
The critical exponents for the PT transitions are β̄ = ν = 1/2
and z = 2. The β̄ exponent describes the power-law behavior
of the density wave vector kp − π ∼ (θc − θ )β̄ for the floating
phase near the PT point. We fit the peaks of |S̃z

k| in Fig. 5(b)
to a power-law form and obtain β̄ = 0.50(2), consistent with
the expected value 1/2. On the other hand, when approaching
the PT point from the gapped side, the correlation length di-
verges as ξ ∼ (θ − θc)−ν and the energy gap closes as �E ∼
1/Nz. A scaling hypothesis can be postulated for the energy
gap around the critical point Nz�E = f (N1/ν[θ − θc]), where
f (x) is a universal function of x. We calculate the energy
gap for N = 513, 683, 855, and 1025 at values of θ close
to the phase transition point but inside the AFM phase and
plot N2�E vs θ/π in the inset of Fig. 5(e). There exists a
fixed crossing point for N2�E near θ = 0.4095π , indicating
a phase transition there. We then fit Nz�E as a function
of N1/ν (θ − θPT) to a high-degree polynomial, where θPT,
ν, and z are tuning parameters. By minimizing the mean
squared residuals for the curve fit, the location of PT point
θPT and the critical exponents z and ν can be determined.
Figure 5(e) shows the optimal results for the curve fit where

θPT = 0.40946260(17)π , z = 1.963(33), and ν = .5093(77).
These results are consistent with the expected values ν = 1/2
and z = 2 for PT transitions.

In summary, we have provided strong evidence in this sec-
tion that, on the �x = 0 line, there exist two separate critical
floating phases each bounded by a PT point and BKT point,
between which is a gapped disordered phase bounded by two
BKT points.

IV. EXPERIMENTAL FEASIBILITY

Here we explore and discuss the best spin center candidates
for realizing our proposal, in addition to assessing the feasi-
bility of it. As already mentioned, there are many examples
for spin-1 spin centers in solid-state systems that are relevant
for our proposal, including the different divacancies in SiC,
and both NV− and SiV0 centers in diamonds. Within these
candidates, the one that is more established in terms of un-
derstanding, knowledge, control, implantation precision, and
manipulation is the NV− center in diamonds. However, the
more abundant nitrogen isotopes, 14N and 15N, have nonzero
nuclear spin. Since the spin of the electrons constituting the
NV− centers is close to the N atoms, the hyperfine interaction
between them is substantial, with corresponding strength �2
MHz [39,100,101]. As the magnetic dipole-dipole interaction
produces NV-NV coupling around ∼50 kHz, this interaction
would be suppressed by the coupling of the NV− to the
N nuclear spin. Due to this reason, the realization of our
proposal will be optimal for solid-state systems that do not
present strong hyperfine interactions between spin centers and
nonzero spin nuclei. Accordingly, both divacancies in SiC and
SiV0 centers in diamond are shown to be better candidates for
our proposal as the majority of their atoms (28Si and 12C) do
not have nuclear spin. Although ≈ 99% of naturally occurring
carbon is 12C, carbon sites near spin centers containing 13C
can have hyperfine couplings to the spin centers with strengths
> 1 MHz [102,103]. Subsequently, it may be necessary to use
an isotopically pure 12C diamond host for the spin centers,
as these can reach a 12C concentration greater than 99.99%
[104–107] and even as high as 99.997% [108]. Furthermore,
isotopically pure 12C and 28Si in silicon carbide hosts are an
option, with works reporting 99.98% 12C and 99.85% 28Si
[15,109].

Despite the rich theoretical predictions for the different
phases of our system, it presents a few experimental chal-
lenges. The spin center chain must be compact enough for
the magnetic dipole-dipole interaction to be measurable. NV−

centers have been implanted with a separation of 16 ± 5
nm [48]. This is nearing the previously mentioned ∼10 nm
minimum spin center separation where the magnetic dipole-
dipole interaction is maximized, while still dominating the
exchange interaction. However, the variation in the relative
placement of the spin centers must also be small enough to
ensure that the couplings do not significantly change between
different pairs of NN spin centers, since we assume the spin
centers are equally spaced and in a straight line. Nonetheless,
it has been shown that ordered phases are robust in both
disordered spin- 1

2 chains with couplings that vary randomly
between pairs of NN sites [110] and in finite sized spin- 1

2
chains with weak disordered couplings [111].
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Another challenge is that the spin center couplings are
proportional to J , which in temperature units reads J/kB ≈
2 µK (considering spin centers separated by 10 nm). At
temperatures not significantly below J/kB, the ground state
ordering presented in the phase diagram [Fig. 1(b)] may per-
sist, as other ground state orders have even been observed
at temperatures above J/kB [112]. Nonetheless, the critical
temperature which breaks this order can vary significantly
depending on the model and the values of its parameters
[113–115]. This very low temperature regime is currently
unachievable in experimental setups, thus setting practical
limitations to our proposal. To overcome this, we propose
to engineer stronger spin-spin coupling J by taking advan-
tage of tunable interactions mediated by bosonic modes, e.g.,
photonic [116–118], polaritonic [119], phononic [120,121],
and magnonic [18,20,122–129]. In particular, hybrid schemes
with magnon-mediated spin-spin coupling were proposed
[18,20] and yield both easy scalability and strong coupling
J/h ≈ 1 MHz between NV’s distanced by ∼1 μ. As a con-
sequence, these schemes also relax the requirements for a
compact chain of precisely placed spin centers mentioned
above. These magnon-mediated interactions are easily tunable
through external magnetic fields and the relative displacement
between spins. Most importantly, they do not strongly harm
the coherence of spin centers, with long calculated coherence
times of T2 ∼ 0.3 ms [20]. Alternatively, spin centers can be
coupled to each other via exchange interaction [71,72]. For
a spin-spin distance r ∼ 1 nm, exchange interaction reaches
∼2.4 THz [71], which is at least seven orders of magnitude
larger than the magnetic dipole-dipole interaction at r ∼ 5–10
nm. In short, hybrid quantum systems offer an alternative
solution for pushing the critical temperatures for realizing
different floating phases using spin centers.

Another consideration for the implementation of this quan-
tum simulator is addressing noise in the system. The nuclear
spin noise can be safely disregarded due to the use of both
high isotopically pure hosts and spin centers with zero nuclear
spin. Therefore, the dominant noise source in our platforms
will be given by magnetic and electric noise arising from the
fluctuation of spins and charges in the crystal host. These
types of noises become more relevant for shallow implanted
spin centers due to the strong fluctuations of charge and spins
at the crystals’ surface [38,130–132]. Despite recent improve-
ments on the surface treatment that brought the coherence
time of spin centers up to 100 µs [133–135], this is still short
compared to the seconds of coherence time that spin centers
can achieve, e.g., in divacancies in SiC [15] and neutral silicon
vacancies in diamond [42]. Even though noise is present in
our system, the coherence time is much longer than other
established platforms of quantum simulators, besides trapped
ions [136–138]. This is significant because the dephasing
strength of noise in spin centers with seconds of coherence
time is � ∼ 1 Hz, which is many orders of magnitude weaker
than our simulator’s dipolar coupling J ∼ 50 kHz [139,140].
Furthermore, any noise that results in a Gaussian distribu-
tion of energy will behave as fluctuations due to an effective
temperature. For systems with an energy gap Egap, the first
order temperature correction to the entanglement entropy S
has been derived and scales as S ∼ exp(−Egap/kBT ) at kBT <

Egap [141]. As any finite size system has an energy gap
proportional to the energy scale of the Hamiltonian J , our
previously mentioned schemes to implement stronger inter-
actions between spin centers will also increase the resilience
of the simulator against noise. As such, our simulator and
solid-state quantum simulators in general are expected to be
exceptionally robust against noise.

V. CONCLUSIONS

We propose a solid-state quantum simulator based on a
1D chain of spin centers implanted in SiC or diamond. We
show that, by considering the magnetic dipole-dipole inter-
action between S = 1 spin centers and an applied magnetic
field, we are able to obtain an effective S = 1

2 interacting
spin chain defining our quantum simulator. Most importantly,
we show that the corresponding effective Hamiltonian can
be tuned with different values of magnetic field and with
the angle θ between the direction of the spin center array
and the spin center main symmetry axis. These enable our
quantum simulator to be mapped to both the isotropic Heisen-
berg model in the presence of a longitudinal field and spin
chains in the universality class of the transverse-field Ising
model. Furthermore, between these regimes, we find a line
of enhanced entanglement entropy that presents a number of
interesting behaviors, namely critical floating phases charac-
terized by incommensurate spin density waves and associated
Pokrovsky-Talapov and Berezinskii-Kosterlitz-Thouless tran-
sitions. There has been much interest in realizing floating
phases and studying commensurate-to-incommensurate phase
transitions [65,142,143], both with corresponding experi-
ments based on cold atoms [144] and experimental proposals
using Rydberg-atom arrays [145]. This is a proposal of a quan-
tum simulator based on spin centers in solid-state materials
for realizing floating phases, where PT transitions between
the commensurate AFM phase and incommensurate floating
phases can be probed experimentally. Furthermore, this pro-
posal sets the stage for future work with solid-state quantum
simulators, where higher dimensional spin arrays provide a
promising platform for the study of spin dynamics such as
spintronics [146–148] and topological solitons [149,150].
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FIG. 6. Results for an even number of sites N = 256. (a) The filled contour plot shows the entanglement entropy SvN in the hz–θ plane.
(b) The filled contour plot shows the staggered magnetization per site along the crystal z axis mz

stag. (c) The spin density profile is plotted at
θ = 0.42π and hz = 1.0 on the yellow entanglement plateau in (a). The domain wall forms due to boundary effects with an even number of
sites.

APPENDIX A: EFFECTIVE SPIN- 1
2 HAMILTONIAN

FROM SPIN CENTERS

In the NV− centers, if the levels | − 1〉 and |0〉 are nearly
degenerate, to the first-order approximation, we just need
to keep the submatrix elements of spin-1 operators associ-
ated with the two states; then Sx

S=1 → √
2Sx

S=1/2, Sy
S=1 →√

2Sy
S=1/2, and Sz

S=1 → Sz
S=1/2 − 1/2. The effective spin-1/2

Hamiltonian is

H

J
=

N−1∑
i=1

{
[3 sin2(θ ) − 1]Sx

i Sx
i+1 − Sy

i Sy
i+1

+ 3 cos2(θ ) − 1

2

(
Sz

i Sz
i+1 + 1

4

)

+ 3 sin(2θ )

2
√

2

(
Sx

i Sz
i+1 + Sz

i Sx
i+1

)}

−
N∑

i=1

[
hz

ex + 3 cos2(θ ) − 1

2
Sz

i + 3 sin(2θ )

2
√

2
Sx

i + hz
ex

4

]

+
[

3 cos2(θ ) − 1

4

(
Sz

1 + Sz
N

) + 3 sin(2θ )

4
√

2

(
Sx

1 + Sx
N

)]
.

(A1)

After leaving out the boundary terms and the constants, which
do not change the criticality, and replacing the spin-1/2 oper-
ators by Pauli matrices, we obtain Eq. (6).

APPENDIX B: ROTATION OF THE SPIN- 1
2 HAMILTONIAN

Rotating the Hamiltonian Eq. (7) around the y axis by an
angle α, the new spin operators change as follows:

σ x → eisyασ xe−isyα = cos(α)σ x + sin(α)σ z, (B1)

σ z → eisyασ ze−isyα = cos(α)σ z − sin(α)σ x. (B2)

Then the new Hamiltonian can be written as

H̃ =
∑

i

(
Jxσ

x
i σ x

i+1 + Jzσ
z
i σ z

i+1 − σ
y
i σ

y
i+1

)

+
∑

i

Jxz
(
σ x

i σ z
i+1 + σ z

i σ x
i+1

)

−
∑

i

(
�zσ

z
i + �xσ

x
i

)
, (B3)

where

Jx = A − B

2
cos (2α) − C sin (2α) + A + B

2
, (B4)

Jz = −A − B

2
cos (2α) + C sin (2α) + A + B

2
, (B5)

Jxz = A − B

2
sin(2α) + C cos(2α), (B6)

�z = (
hz

ex + 2B
)

cos(α) + 2C sin(α), (B7)

�x = −(
hz

ex + 2B
)

sin(α) + 2C cos(α), (B8)

for A, B, C, and α defined in Sec. II C.
Letting Jxz = 0, we can solve for α such that the σ x

i σ z
i+1 +

σ z
i σ x

i+1 terms are eliminated. The solution is given by
tan(2α) = 2C/(B − A) if θ �= arcsin(2/3) or α = π/4 if θ =
arcsin(2/3), where θ = arcsin(2/3) is the angle for A = B.
Notice that the arctan function returns values between −π/2
and π/2, so there is a discontinuity in α when B − A becomes
negative from positive as we increase θ . We can let α ∈
[0, π/2]; then we obtain an expression of α as a continuous
function of θ in Eq. (11).

APPENDIX C: DMRG SPECIFICATIONS

Our DMRG calculations are performed with ITENSOR JU-
LIA LIBRARY [151]. When searching for the ground state, we
gradually increase the maximum bond dimension D during
the variational sweeps until the truncation error ε is below
10−10. Some high-precision calculations have truncation er-
rors between 10−11 and 10−12 to ensure that the largest bond
dimension of the sweeps reaches �100. DMRG sweeps are
terminated once the ground-state energy changes less than
10−11 and the von Neumann entanglement entropy changes
less than 10−8 between the last two sweeps. In this work, the
largest bond dimension in the final sweeps for ε = 10−10 is
about D = 350 for N = 1025, θ = 0.27π , and hz = hc, where
hz

c is a solution for the �x = 0 line. All results shown use open
boundary conditions (OBCs).

APPENDIX D: EFFECTS OF ODD AND EVEN
NUMBER OF SITES

On the boundary sites, because the interaction only comes
from one side in the bulk, they often prefer some particular
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FIG. 7. Entanglement entropy scaling for the Ising ring when θ = 1.4. (a) The entanglement entropy SvN plotted as a function of hz for
different system sizes. (b) The peak positions of SvN vs 1/N are extrapolated to the thermodynamic limit where 1/N = 0. (c) SvN as a function
of ln(N ) is fit to Eq. (E1) to extract the central charge c = 0.50(3).

states favored by the external field. Near the AFM transition
at the ring in our phase diagram, if we have an even number
of sites, the AFM state will have opposite spin states on the
boundary sites. This is not favored by a uniform external
field, so a state with a domain wall in the center may exist
near the phase transition. Figure 6(a) shows that there exists a
high entanglement plateau before the transition into the AFM
phase, which is due to the domain-wall state that introduces
a large entanglement constant. The constant will not scale
with the system size, so it will not change the critical point.
This high plateau may overwhelm the entanglement scaling
at small system sizes, so we use an odd number of sites to
remove the domain-wall state. In the domain-wall state, there
is a reflection symmetry; each half of the chain has a nonzero
staggered order, but the staggered order is zero for the whole
system. One can see from Fig. 6(b) that the circle of nonzero
staggered order is smaller than the one for an odd number of
sites N = 257 shown in Fig. 4(a). Figure 6(c) shows the AFM
state with a domain wall at θ = 0.42π and hz = 1.0 on the
yellow entanglement plateau.

APPENDIX E: ADDITIONAL DATA FOR ISING RING

This section shows data and the process used to confirm
that the phase transition at θ = 1.4 ≈ 0.45π belongs to the
Ising universality class. Similarly to Sec. III B, in Fig. 7(a) we

show the entanglement entropy SvN for several system sizes
N , as hz is tuned across the phase transition. This clearly
shows that, for different system sizes, the entanglement en-
tropy peaks for different values of hz, which indicates that
the phase transition occurs at different hz. For each system
size we use interpolation to precisely find hz at the peak and
plot these values of hz vs 1/N in Fig. 7(b), where the data is
fit to a high degree polynomial and extrapolated to 1/N = 0
to find that the phase transition occurs at hz

c = 0.6298(12) in
the thermodynamic limit. Equation (15) from CFT predicts
that, at a critical point such as this, the entanglement entropy
should scale linearly with ln(N ) in the thermodynamic limit.
However, finite-size effects cause this to be a poor fit for our
data in Fig. 7(c), which shows the scaling of entanglement
entropy SvN as a function of ln (N ). This is corrected by adding
a term to the fit function that goes to 0 as N goes to infinity,
but greatly improves the quality of the fit. The data in Fig. 7(c)
is fit to

SvN = s0 + c

6
ln(N ) + K e−N (E1)

for the nonuniversal constants s0 and K to find the central
charge c = 0.50(3), which confirms that this transition and all
transitions on the Ising ring are of the Ising universality class
where c = 1/2.
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