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Effective field theory of low-energy excitations (magnons) that describe antiferromagnets is mapped into
electrodynamics of a charged scalar field interacting with an external magnetic background. In this theory
magnons and antimagnons are described by a corresponding scalar field. If the external background is a constant
inhomogeneous magnetic field in the quantum version of the model, then there exists vacuum instability which
can be analyzed by an analogy with the scalar QED with electric potential steps. Here magnons and antimagnons
are treated as charged particles, whereas the magnetic moment plays the role of the electric charge such that
magnons and antimagnons differ from each other in the sign of this moment. The vacuum instability is related
to the magnon-antimagnon production from the corresponding vacuum by magnetic field inhomogeneities.
Characteristics of the vacuum instability can be calculated nonperturbatively using special exact solutions of
the Klein-Gordon equation. In particular, we consider examples of the magnetic field that correspond to some
regularizations of the Klein step. In the case of smooth-gradient steps, we have derived a universal behavior of
the flux density of created magnon-antimagnon pairs. It is noted that there exists an opportunity, for the first time,
to observe the Schwinger effect in the case of Bose particle creation. Moreover, it turns out that in the case of
the Bose statistics appears a new mechanism for amplifying the effect of pair creation, which we call statistically
assisted Schwinger effect.
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I. INTRODUCTION

Magnons, or quantized spin waves, occur in various types
of ordered magnets: antiferromagnet, ferromagnet, and ferri-
magnet. They present collective magnetic excitations of the
electron spin structure in a crystal lattice. The emerging field
of magnonics utilizes magnons for information processing;
see Ref. [1] for a review. Using magnons as information
carriers has various advantages, in particular, the low power-
consumption. Although spin systems are originally described
as lattice models, similar to Dirac models of nanostructures,
one can describe their low-energy dynamics based on a con-
tinuum field theory at energy scales much lower than the
inverse lattice spacing; see Ref. [2,3] and references therein.
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Descriptions based on effective field theories (EFT) of spin
systems at low energies also allow including external fields
in the model. The magnon EFT can incorporate various
symmetry-breaking terms. For example, it can be a Zeeman
term due to the coupling to an external magnetic field that
breaks the symmetry explicitly. It turn out that the magnon
EFT that describes antiferromagnets is relativisticlike. Our
special interest is the case of an inhomogeneous magnetic
field applied to an antiferromagnet in the collinear (homo-
geneous) ground state. It was recently shown [2] that the
magnon EFT with the easy-axis anisotropy can be mapped
into electrodynamics of a charged scalar field interacting with
an external electromagnetic potential. The mass of this field is
determined by the sum of the easy-axis potential and the ratio
of magnetization and condensation parameters. Magnetic mo-
ment plays here the role of the electric charge, and magnons
and antimagnons differ from each other in the sign of the
magnetic moment. In the framework of such a consideration,
it is important to take into account the vacuum instability (the
Schwinger effect) under the magnon-antimagnon production
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on magnetic field inhomogeneities. (an analog of particle-
antiparticle creation by constant inhomogeneous electriclike
fields). In this article, the leading imaginary part of the one-
loop effective action was calculated in the framework of the
semiclassical world-line formalism for the case of a linearly
varying magnetic field and agrees with the Schwinger’s for-
mula for a constant electric field [4]. In the presence of a
constant inhomogeneous external magnetic field, one can see
that the latter problem is technically reduced to the problem
of charged-particle creation from the vacuum by an electric
potential step. In this context, it is important to mention recent
works addressed the problem of magnon-antimagnon pair cre-
ation by a sufficiently high rectangular step (the Klein step)
and barrier, formed by magnetic field inhomogeneities. [5–8].
In these cases the world-line formalism does not work and
the problem is considered in the framework of the relativis-
tic quantum mechanics. In relativistic quantum mechanics,
problems of this type were considered in the relation to the
Klein paradox in the pioneer works [9–11] (a detailed histor-
ical review can be found in Refs. [12,13]). We note that to
avoid a confusion, the Klein paradox should be distinguished
from the Klein tunneling through the square barrier. This
tunneling without an exponential suppression occurs when
a particle is incident on a high barrier, even when it is not
high enough to create particles. It is known that attempts
to consider overlapping amplitudes as amplitudes of particle
transmission and reflection by the Klein step in the same
manner as in the relativistic quantum mechanics often leads
to contradictions and paradoxes. As it is known processes
with changing the number of particles have to be considered
in the framework of quantum field theory (QFT). Recently, a
consistent nonperturbative treatment of the vacuum instability
with respect to charged particle creation was developed in the
framework of strong-field quantum electrodynamics (QED)
with time-independent external electric potential steps (we
call them conditionally x steps) in Refs. [14–16]. In the case
of bosons, the latter nonperturbative treatment is based on
the existence of special exact solutions of the Klein-Gordon
equation with the corresponding x step. This enables the
consideration of pair creation by x steps of arbitrary form in-
cluding, in particular, the Klein step. We hope that the present
article will promote consistent application of strong field QED
methods in magnonics and will allow avoiding contradictions
and nonexistent paradoxes in the interpretation of the obtained
theoretical results.

In the present work we use the strong field QED to study
the magnon-antimagnon pair production on magnetic field in-
homogeneities.1 The article is organized as follows: In Sec. II
the EFT model describing the low-energy dynamics of antifer-
romagnetic magnons is mapped into scalar electrodynamics
with x steps. In Sec. III, we construct a Fock space realization
of the EFT model in the framework of strong-field QED with x
steps. Initial and final one-particle states are constructed with
the help of stationary plane waves satisfying the Klein-Gordon
equation. Initial and final vacua are defined and initial and
final states of the Fock space are constructed. Mean num-
bers of magnons and antimagnons created from the vacuum

1Here we are using the natural system of units h̄ = 1.

are expressed via overlap amplitudes of the stationary plane
waves. Observable physical quantities specifying the vacuum
instability are determined. We calculate and analyze the fluxes
of energy and magnetic moments of created magnons. In
Sec. IV, we present characteristics of the vacuum instability
obtained for some magnetic steps that allows exact solving the
Klein-Gordon equation. In particular, we consider examples
of magnetic steps with very sharp field derivatives ∂xU that
correspond to a regularization of the Klein step. In the case of
smooth-gradient steps, we describe a universal behavior of the
flux density of created pairs. In the last Sec. V, we summarize
the main results of the present work. Some details of the scalar
field quantization in the presence of critical potential steps are
placed in Appendix A. Examples of some exact solutions with
x steps are given in Appendix B.

II. EFT MODEL DESCRIBING LOW-ENERGY
DYNAMICS OF MAGNONS

The system under consideration consists of localized spins
which live on sites of a cubic-type lattice. These sites are num-
bered by the index n. The corresponding spin vector operators
are denoted by ŝn . It is assumed that the spins are involved
in the antiferromagnetic interaction. Its original SO(3) spin-
rotation symmetry is explicitly (but softly) broken due to an
external magnetic field B and an anisotropic interaction C
known as single-ion anisotropy. The Hamiltonian describing
such a system reads

Ĥspin =
∑

n

d∑
i=1

Jδabŝn
aŝn+ı̂

b −
∑

n

[
μBa(rn)ŝn

a + Cabŝn
aŝn

b

]
.

(1)

Here ŝn
a denote spin operator components on the site

n ([ŝn
a, ŝn

b] = iεc
ab ŝn

c ); J > 0 is the antiferromagnetic inter-
action coupling constant. To describe the nearest-neighbor
pairs, the direction ı̂ = 1, 2, . . . , d with a spatial dimension
d is introduced. The sum over ı̂ means summing over nearest
neighboring spins and the sum over n means summing over
sites n of a cubic-type lattice. Ba(rn) are external magnetic
field components on the site n, they depend on the coordi-
nates rn = (xn, yn, zn) of the site; μ > 0 is the modulus of
the magnetic moment projection onto the direction of the
magnetic field, which is called magnetic moment in what
follows; the single-ion anisotropic interaction is presented by
the term Cabŝn

aŝn
b, where the Cab is a constant symmetric rank-

two tensor. Here ı̂ is a vector of the length l (l is the lattice
spacing) pointing in the i direction. The Kronecker δ δab and
the Levi-Civita symbol εabc are used for the internal spin
indices, a, b = 1, 2, 3, and the summation over the repeated
indices is implied.

We only consider the simple cubic-type lattice and the
G-type antiferromagnet, in which the Néel order appears
along all the spatial directions. In the absence of explicit
symmetry-breaking terms (μBa = 0 and Cab = 0) Hamilto-
nian (1) enjoys SO(3) symmetry. We can study effects of
symmetry-breaking terms using the background field (spu-
rion) method if these terms are small enough compared to the
symmetric interaction (μBa, Cab � J).
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A continuum field-theoretical description of magnons is
given by a O(3) nonlinear sigma model, in which a three-
component unit vector n = (n1, n2, n3) with nana = 1 plays
a role as a dynamic degree of freedom. This unit vector ex-
presses the Néel order parameter. Taking the continuum limit
of the background field, Ba(rn) → Ba(r), and following the
way described in Ref. [2], one can construct a SO(3) gauge
invariant effective Lagrangian. The corresponding space-time
is parametrized by coordinates X = (t, r), t = X 0, r = X j =
(x, y, z), j = 1, 2, 3. The local SO(3) transformation simply
acts on the vector field n as n → g(X )n with g(X ) ∈ SO(3),
as in the lattice case. One can identify the background field Ba

as the SO(3) gauge field on which the local SO(3) transfor-
mation acts as follows:

Ba → g(X )Bag−1(X ) + g(X )∂0g−1(X ). (2)

The smallness of the terms μBa/J and Cab/J allows us to
neglect their higher orders in the future. The only effect of
the symmetry-breaking term μBa is that the constant piece of
Ba(r) is used to tune the collinear ground state. In this case,
as it will be seen further, the field Ba(x) can be treated as
zero component Aa

0(x) of the electromagnetic potential in the
theory of the charged scalar field. However, the constant part
of Ba(r) is a physical quantity.

In the leading order of the derivative expansion at low-
energies, namely, preserving derivatives only up to the second
order, the SO(3) gauge invariant effective Lagrangian can be
written as

L = f 2
t

2
(D0na)2 − f 2

s

2
(∂in

a)2 + rCabnanb, (3)

where the covariant derivative D0 with the SO(3) background
gauge field is defined as

D0na = ∂0na − εa
bc nbμBc, ∂0 = ∂

∂t
, (4)

and low-energy parameters ft , fs, and r can be determined
from the underlying lattice model by the matching condition.

Suppose that our spin system possesses a potential with
an easy-axis anisotropy and develops the collinear ground
state. We apply an inhomogeneous magnetic field along the
spin direction of the ground state. We assume that the mag-
netic field points to the direction of axis z and depends on
the coordinate x, Ba(x) = B(x)δa3, and the sign of the field
is positive, B(x) > 0. This field gives the collinear ground
state with the Néel vector pointing to the direction of axis z
as 〈n〉 = (0, 0, 1). Then one can introduce magnon complex
scalar fields �(X ) and �∗(X ) as fluctuations on the top of the
ground state, which parametrize the vector n as

n =
(

� + �∗
√

2
,
� − �∗

√
2i

,
√

1 − �∗�
)

, (5)

where the constraint nana = 1 is explicitly solved. Substitut-
ing this parametrization into Eq. (3), one obtains the effective
Lagrangian of magnons at the quadratic order of fluctuation
fields around the ground state in the following form:

L(2) = f 2
t (D0�

∗D0� − �2�∗�) − f 2
s δi j∂i�

∗∂ j�,

D0� = (∂0 + iU )�, D0�
∗ = (∂0 − iU )�∗, (6)

where the notation U = μB and rCab = 1
2 f 2

t �2δa3δb3 are
used. We see that the field-theoretical description of an-
tiferromagnetic magnons embedded into an external inho-
mogeneous magnetic field B can be realized in terms of
scalar electrodynamics where a charged complex field �(X )
(with μ playing the role of an electric charge) coupled
to the zero component of the electromagnetic potential
A0 = B. Here the constant vs = fs/ ft plays the role of
the speed of light and the energy gap � plays the role
of a mass term. We note that the constant vs is not re-
lated to the speed of the light c and is relatively small,
e.g., � ∼ 1meV and vs ∼ 60 m/s for antiferromagnetic
MnF2 [17].

It follows from the effective Lagrangian (6) that the corre-
sponding wave equation for the field �(X ) is a modification
of the Klein-Gordon equation,(

D2
0 − v2

s δ
i j∂i∂ j + �2)�(X ) = 0. (7)

Summarizing, we can say that in the example under con-
sideration, the EFT model describing low-energy dynamics of
antiferromagnetic magnons can technically be identified with
the theory of a charged scalar field interacting with an external
constant electric field, which in our terminology is an x step;
see Refs. [14–16]. In this theory, the wave equation describing
the corresponding charged particles has the form of Eq. (7). A
nonperturbative study (with respect to the interaction with the
external field) of various quantum effects in such a system,
in particular, the study of the vacuum instability, can use
the technique [with the necessary modifications due to the
specifics of the wave equation (7)] developed earlier by two
coauthors (Gavrilov and Gitman) for strong-field QED with
x-potential steps and presented in Refs. [14,15]. In the next
section, we study the vacuum instability in the system of
low-energy magnons following the formulated idea.

III. CONSIDERATION IN THE FRAMEWORK
OF STRONG-FIELD QED

A. Solutions of the Klein-Gordon equation with critical x steps

Solutions of the Klein-Gordon equation with critical x
steps are known in the form of stationary plane waves. A
complete set of such solutions reads

φm(X ) = exp (−iεt + ip⊥r⊥)ϕm(x),

r⊥ = (0, y, z), m = (ε, p⊥). (8)

In fact these are stationary states with well defined the total
energy of a particle ε and with definite momenta p⊥ in the
perpendicular to the axis x directions. Substituting Eq. (8) into
Eq. (7), we obtain a second-order differential equation for the
function ϕm(x),{

v2
s ∂

2
x + [ε − U (x)]2 − π2

⊥
}
ϕm(x) = 0,

π⊥ =
√

v2
s p2

⊥ + �2, (9)

Before considering the case of inhomogeneous magnetic
field, where it is necessary to use the recently developed in
Refs. [14–16] approach to strong field QED with x steps, it
is useful to discuss a simple case of homogeneous magnetic
field with A0 = B = const > 0 such that U = μB < �. In this
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case, the field �(X ) is a free field satisfying equation (7)
with the constant U . A complete set of solutions of this equa-
tion reads

φ(±)
m (X ) = N (±) exp(−iε(±)t + ipr),

ε(±) − U = ±
√

v2
s p2 + �2, (10)

where N (±) is a normalization factor. A time-independent
inner product of solutions of the Klein-Gordon equation is
proportional to the matrix elements of a field charge given by
the following integral over a spatial volume:∫

{�∗(i∂0 − U )�′ + �[(i∂0 − U )�′]∗}dV. (11)

This integral is positive (negative) for any superpositions of
φ(+)

m (φ(−)
m ). The collective excitation described by the clas-

sical fields φ(+)
m and φ(−)

m are fluctuations of the Néel vector
on the top of the ground state, that is, semiclassically speak-
ing, these fields describe the fluctuations of the spin vector
with clockwise and counterclockwise rotation seen from the
north pole. The realization of the scalar field in a Fock space
implies that field quanta be boson particles (with the positive
frequency ε(+) and the effective charge μ) and antiparticles
(with the negative frequency ε(−) and the effective charge
−μ). In this case, the Hamiltonian of the quantum scalar
field is positive defined and the corresponding vacuum is the
uncharged Fock state with minimal energy. The normalized
plane waves φ(+)

m and φ(−)
m describe a single-particle state with

the energy ε(+) > 0 and a single-antiparticle state with the
energy −ε(−) > 0 as well as with Zeeman energy terms for
positive and negative projections of a single-magnon magnetic
moment,

±ε(±) =
√

v2
s p2 + �2 ± μB. (12)

This is a charge conjugation rule. It implies also the fol-
lowing interpretation of momentum quantum number: the
quantum number p is the physical momentum of a parti-
cle while the physical momentum of an antiparticle is −p.
One sees that ±(ε(±) − U ) are kinetic energies (the energy
gap � is included in the definition) of a particle and an
antiparticle, respectively. In this way, we establish a relation
between particle-antiparticle and quantum magnon interpreta-
tions. This reminds the electron-hole interpretation of states
in semiconductors. In the framework of the effective scalar
QED the collinear ground state with the given Néel vector
can be considered as a vacuum state. Then a single-particle
(antiparticle) is a quant of the quantum magnon field with pos-
itive (negative) magnetic moment projection μ (−μ) onto the
direction of the magnetic field, respectively. In which follows,
keeping in mind this particle-antiparticle interpretation, we’ll
call these quanta with opposite effective charges magnon and
antimagnon, respectively.

In general case with inhomogeneous x-dependent B field
of a step form, we chose the potential energy U (x) in the
form of a monotonically decreasing function, ∂xU (x) < 0. If
the field derivative ∂xU (x) is not very big, then the terms
±[ε − U (x)] can be considered as kinetic energies of particle
and antiparticle, respectively. One sees that the kinetic energy
of the particle (antiparticle) would grow monotonously along

(in inverse direction of) the axis x, that is, the magnon and
antimagnon accelerate under the influence of the field deriva-
tive ∂xU (x) in opposite directions and form a spin current.

If the field derivative ∂xU (x) (playing here the role of the
electric field in the scalar electrodynamics) acting on magnons
produces big enough work, then the magnon-antimagnon pair
production from the corresponding vacuum may take place.
We assume that the action of the field derivative contributes
significantly to mean numbers of created pairs in the restricted
region Sint between two planes x = xL and x = xR during the
sufficiently large (macroscopic) time period T . It is either
negligible or switches off in the macroscopic regions SL =
(xFL, xL] on the left of the plane x = xL and in SR = [xR, xFR )
on the right of the plane x = xR. We also assume that the
points xFL and xFR are separated from the origin by macro-
scopic but finite distances. In this way, the magnetic field
B plays the role of an electric potential step, which we call
shortly an x step. Its magnitude is

δU = UL − UR > 0, UL = U (−∞), UR = U (∞). (13)

We distinguish two types of x steps, noncritical δU < 2�,

and critical δU > 2�. The pair production from the vacuum
occurs due to the critical x step.

Nonperturbative calculations of the vacuum instability ef-
fects in the framework of strong-field QED with x steps are
possible if there are special complete sets of exact solutions
of the corresponding relativistic wave equations (solutions of
the Klein-Gordon equations in the case under consideration)
orthonormalized on a t-const. hyperplane; see Ref. [14]. In the
strong-field QED with x step, which acts during the macro-
scopic time T , one can construct such sets of solutions, see
below. In our work these solutions are chosen in the form of
stationary plane waves with given real longitudinal momenta
pL and pR in the regions SL and SR. Moreover, it is necessary
to construct two types of complete sets of solution in the
form of Eq. (8). The first one ζ φm(X ) is constructed with
the help of the functions ϕm(x) denoted as ζ ϕm(x) and the
second one, ζ φm(X ), with the help of functions ϕm(x) denoted
as ζ ϕm(x). Asymptotically, these functions have the following
forms:

ζ ϕm(x) = ζN exp[ipL(x − xL)], x ∈ SL,

ζ ϕm(x) = ζN exp[ipR(x − xR)], x ∈ SR,

pL = ζ

vs

√
[π0(L)]2 − π2

⊥,

pR = ζ

vs

√
[π0(R)]2 − π2

⊥, (14)

where ζ = ±, ζN and ζN are normalization constants
that shall be determined below. We introduce the quantities
π0(L/R) = ε − UL/R. Note that π0(R) > π0(L).

By analogy with how this is done in the time-independent
potential scattering due to noncritical steps, it is assumed
that there exist time-independent observables in the presence
of critical x steps. For example, it seems quite natural that
the pair-production rate and the flux of created particles are
constant during the macroscopic time T . This means that a
leading contribution to the number density of created particle-
antiparticle pairs is assumed to be proportional to the large

014410-4



SCHWINGER MECHANISM OF MAGNON-ANTIMAGNON PAIR … PHYSICAL REVIEW B 110, 014410 (2024)

dimensionless parameter
√

vs|∂xU |T and is independent from
switching-on and -off if this parameter satisfies inequality

T 
 (vs|∂xU |)−1/2 max{1,�2/vs|∂xU |}. (15)

It is clear that the process of pair creation is transient. Never-
theless, the condition of the smallness of backreaction shows
there is a window in the parameter range of ∂xU and T where
the constant field approximation is consistent [18].

For any two solutions �(X ) and �′(X ) of the Klein-
Gordon equation, the inner product on the hyperplane x =
const has the form of a longitudinal flux:

(�,�′)x = i
∫

[�′(X )∂x�
∗(X ) − �∗(X )∂x�

′(X )]dtdr⊥.

(16)

Note, that this flux is proportional to the effective charge
current. We consider the system under consideration in a large
space-time box that has a spatial area V⊥ = KyKz and the time
dimension T , where all Ky, Kz, and T are macroscopically
large. In general the wave packets �(X ) and �′(X ) can be
decomposed into plane waves φm(X ) and φ′

m(X ). Along with
the introduced plane waves, it is assumed that all the solu-
tions �(X ) are periodic under transitions from one box to
another. Then the integration in integral (16) over the trans-
verse coordinates runs from −Kj/2 to +Kj/2, j = y, z, and
over the time t from −T/2 to +T/2. We assume that the
macroscopic time T is the system surveillance time. Under
these suppositions, one can verify, integrating by parts, that
the inner product (16) does not depend on x.

Nontrivial solutions ζ φm(X ) and ζ φm(X ) exist only for the
quantum numbers m that obey the following relations:

[π0(L/R)]2 > π2
⊥ ⇐⇒

{
π0(L/R) > π⊥
π0(L/R) < −π⊥

. (17)

In the case of critical x steps and for 2π⊥ � δU there exist
five ranges �k , k = 1, ..., 5, of quantum numbers m,

π0(L) � π⊥ if m ∈ �1,

|π0(L)| < π⊥, π0(R) > π⊥ if m ∈ �2,

π0(L) � −π⊥, π0(R) � π⊥ if m ∈ �3,

π0(L) < −π⊥, |π0(R)| < π⊥ if m ∈ �4,

π0(R) � −π⊥ if m ∈ �5, (18)

where the solutions ζ φm(X ) and ζ φm(X ) have similar forms
and properties for a given π⊥. The manifold of all the quantum
numbers m is denoted by �, so that � = �1 ∪ · · · ∪ �5. In
the ranges �2 and �4 we deal with standing waves completed
by linear superpositions of solutions ±φm(X ) and ±φm(X )
with corresponding longitudinal fluxes that are equal in mag-
nitude for a given m. In fact, φm(X ) for m ∈ �2 are wave
functions that describe an unbounded motion in x → ∞ direc-
tion while φm(X ) for m ∈ �4 are wave functions that describe
an unbounded motion toward x = −∞. It was demonstrated
in the framework of strong-field QED with x steps; see Secs. V
and VII and Appendices C1 and C2 in Ref. [14], by using one-
particle mean currents and the energy fluxes that, depending
on the asymptotic behavior in the regions SL and SR, the plane

waves ±φm(X ) and ±φm(X ) are identified unambiguously as
components of the initial and final wave packets of particles
and antiparticles.

The plane waves are subjected to the following orthonor-
mality conditions:

( ζ φm, ζ ′φm′ )x = ζ δζ ,ζ ′δm,m′ ,

( ζ φm, ζ ′
φm′ )x = ζ δζ ,ζ ′δm,m′ . (19)

In fact, integrals (19) represent the flux densities of particles
with given m . The normalization factors with respect to the
inner product (16) are

ζN = ζCY, ζN = ζCY, Y = (V⊥T )−1/2,

ζC = |2pL|−1/2, ζC = |2pR|−1/2. (20)

In the Kj → ∞ and T → ∞ limits, one has to replace δm,m′

by the factor δ(ε − ε′)δ(p⊥ − p′
⊥) in the normalization condi-

tions (19) and then to set Y = (2π )−(d−1)/2.
Stationary plane waves of type (14) are usually used in

potential scattering theory, where they represent one-particle
states with corresponding conserved longitudinal currents. It
is clear that in the ranges �1 and �2 we have deal with states
of a particle whereas in the ranges �4 and �5 the plane waves
describe states of an antiparticle. In these ranges particles and
antiparticles are subjected to the scattering and the reflection
only. Such one-particle consideration does not work in the
range �3, where the many-particle quantum field theory con-
sideration is essential. Note that the range �3 is often referred
to as the Klein zone. In contrast to the case �1 (and �5),
where signs of π0(L) and π0(R) coincide, they are opposite in
the Klein zone. This reflects the fact that the interpretation of
overlapping between amplitudes ζ φm(X ) and ζ φm(X ) using
the quantities π0(L/R) by analogy with potential scattering
theory can be erroneous.

Indeed, it is known that attempts to consider the overlap-
ping amplitudes in the range �3 as amplitudes of particle
transmission and reflection as its works in the relativistic
quantum mechanics led (and often still lead researchers) to
contradictions and paradoxes, before the advent of consistent
consideration in the framework of QFT. Therefore, we will
discuss this issue again below.

It is assumed that each pair of solutions ζ φm(X ) and
ζ φm(X ) with given quantum numbers m ∈ �1 ∪ �3 ∪ �5 is
complete in the space of solutions with each given m. Due
to Eq. (19) the corresponding mutual decompositions of such
solutions have the form:

ζ φm(X ) = +φm(X )g(+|ζ ) − −φm(X )g(−|ζ ),

ζ φm(X ) = +φm(X )g(+|ζ ) − −φm(X )g(−|ζ ), (21)

where decomposition coefficients g are given by the relations:

(ζ φm, ζ ′
φm′ )x = δm,m′g(ζ |ζ ′

),

g(ζ
′ |ζ ) = g(ζ |ζ ′

)∗, m ∈ �1 ∪ �3 ∪ �5. (22)

Substituting Eq. (21) into the orthonormality conditions
(19), we derive the following unitary relations for the
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decomposition coefficients:

g(ζ
′ |+)g(+|ζ ) − g(ζ

′ |−)g(−|ζ ) = ζ δζ ,ζ ′ ,

g(ζ ′ |+)g(+|ζ ) − g(ζ ′ |−)g(−|ζ ) = ζ δζ ,ζ ′ . (23)

In particular, these relations imply that

|g(−|+)|2 = |g(+|−)|2, |g(+|+)|2 = |g(−|−)|2,
g(+|−)

g(−|−)
= g(+|−)

g(+|+)
. (24)

One can see that all the coefficients g can be expressed via
only two of them, e.g., via g(+|+) and g(+|−). However, even
the latter coefficients are not completely independent, they are
related as follows:

|g(+|+)|2 − |g(+|−)|2 = 1. (25)

Nevertheless, in what follows, we will use both coefficients
g(+|−) and g(+|+) in our consideration. This maintains a cer-
tain symmetry in important relations.

In canonical quantization of field theory, state vectors in
the Fock space are global objects, that is, the definition of
vacuum and particle (antiparticle) states has to be realized
in the whole space in a given time instant. To this end one
has to use a time-independent inner product of solutions of
the Klein-Gordon equation. In the case under consideration,
this inner product must be adopted for the stationary plane
waves (8). We recall that the inner product between two solu-
tions of the Klein-Gordon equation can be defined on t-const.
hyperplane as a charge (in the case under consideration, the
role of an effective charge plays the magnetic moment). Note
that physical states are wave packets that vanish on the remote
boundaries, that is why the effective charge of the scalar field
is finite. It allows one to integrate by parts in the inner product
neglecting boundary terms. The latter property provides the
inner product to be time independent. However, considering
the stationary plane waves (8) that are generalized states,
which do not vanish at the spatial infinity, one should take
some additional steps. In the case under consideration, the
motion of particles in the x direction is unlimited, therefore
the corresponding wave functions cannot be subjected to any
periodic boundary conditions in the x direction without chang-
ing their physical meaning. For this reason one has to use a
special kind of the volume regularization; see Sec. C2 and
Appendix B in Ref. [14] and Sec. 2.1 in Ref. [15] for details.
Following Refs. [14,15], we mean that the strong field ∂xU
under consideration is located inside the region Sint during
the time T . Consequently, causally related to the area Sint

can there be only such parts of the areas SL = (xFL, xL] and
SR = [xR, xFR), which are located from it at distances not
exceeding vsT . The field derivative ∂xU is either negligible
or switches off in these macroscopic regions. We assume that
there exist some macroscopic but finite parameters K (L/R) of
the volume regularization which are in spatial areas where
the contribution of the field ∂xU is negligible, |xFL| > K (L) 

|xL| > 0 and xFR > K (R) 
 xR > 0.

Following Refs. [14,15] we propose the time-independent
inner product between two solutions �(X ) and �′(X ) of the

Klein-Gordon equation on t-const. hyperplane as

(�,�′) = 1

v2
s

∫
V⊥

dr⊥
∫ K (R)

−K (L)

†(X )σ1
(X )dx,


(X ) =
(

i∂0 − U (x)
1

)
�(X ), (26)

where the integral over the spatial volume V⊥ is completed
by an integral over the interval [K (L), K (R)] in the x direction
and σ1 is a Pauli matrix. The parameters K (L/R) are assumed
sufficiently large in final expressions. First, we note that states
with different quantum numbers m are independent, therefore
decompositions of wave packets � into the plane waves (8) in
Eq. (26) do not contain interference terms. That is why it is
enough to consider Eq. (26) only for a particular case of plane
waves ζ φm and ζ φm with equal m. Assuming that the areas SL

and SR are much wider than the area Sint,

K (L) − |xL|, K (R) − xR 
 xR − xL, (27)

and the potential energy U (x) is a continuous function, the
principal value of integral (26) is determined by integrals
over the areas x ∈ [−K (L), xL] and x ∈ [xR, K (R)], where the
field derivative ∂xU is negligible small. Thus, it is possible
to evaluate integrals of the form of Eq. (26) for any form of
the external field, using only the asymptotic behavior (14)
of functions in the regions SL and SR where particles are
free. The form of the field ∂xU in the area Sint affects only
coefficients g entering into the mutual decompositions of the
solutions given by Eq. (21). One can see that the norms
of the plane waves ζ φm and ζ φm with respect to the inner
product (26) are proportional to the macroscopically large
parameters τ (L) = K (L)/vL and τ (R) = K (R)/vR, where vL =
v2

s |pL/π0(L)| > 0 and vR = v2
s |pR/π0(R)| > 0 are absolute

values of the longitudinal velocities of particles in the regions
SL and SR, respectively; see Sec. IIIC.2 and Appendix B in
Ref. [14] for details.

It was shown (see Appendix B in Ref. [14]) that the fol-
lowing couples of plane waves are orthogonal with respect to
the inner product (26),

(ζ φm,−ζ φm) = 0, m ∈ �1 ∪ �5; (ζ φm,ζ φm) = 0, m ∈ �3,

(28)

if the parameters of the volume regularization τ (L/R) satisfy
the condition

τ (L) − τ (R) = O(1), (29)

where O(1) denotes terms that are negligibly small in compar-
ison with the macroscopic quantities τ (L/R). One can see that
τ (R) and τ (L) are macroscopic times of motion of particles and
antiparticles in the areas SR and SL, respectively, and they are
equal,

τ (L) = τ (R) = τ. (30)

It allows one to introduce an unique time of motion τ for
all the particles in the system under consideration. This time
can be interpreted as a system monitoring time during its
evolution. Under condition (29) the norms of the plane waves
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on the t-const. hyperplane are

(ζ φm, ζ φm) = (ζ φm, ζ φm) = κMm, κ =
{

1, m ∈ �1

−1, m ∈ �5
,

(φm, φm) = Mm, m ∈ �2 ; (φm, φm) = −Mm, m ∈ �4,

(ζ φm, ζ φm) = −(ζ φm, ζ φm) = Mm, m ∈ �3,

Mm = 2
τ

T

⎧⎨⎩|g(+|+ )|2, m ∈ �1 ∪ �5

1, m ∈ �2 ∪ �4

|g(+|− )|2, m ∈ �3

; (31)

see Appendix B in Ref. [14] for details. The ± signs of
integrals in Eq. (31) correspond to the signs of the effective
charge (magnetic moment) of a particle; see Appendix A) for
details.

Thus, there are constructed two linearly independent cou-
ples of complete on the t-const. hyperplane states with a given
m that are either initial (“in”) or final (“out”) states,

in states : φ(in,+)
m1

= +φm1 , φ(in,−)
m1

= −φm1 ;

φ(in,+)
m5

= +φm5 , φ(in,−)
m5

= −φm5 ;

φ(in,+)
m3

= −φm3 , φ(in,−)
m3

= −φm3 ;

out states : φ(out,−)
m1

= −φm1 , φ(out,+)
m1

= +φm1 ;

φ(out,−)
m5

= −φm5 , φ
(out,+)
m5

= +φm5 ;

φ(out,+)
m3

= +φm3 , φ(out,−)
m3

= +φm3 , mk ∈ �k .

(32)

Note that standing waves φm(X ) for m ∈ �2 ∪ �4 are the
same for initial and final sets. In the ranges �1 and �2 we have
deal with states of a particle whereas in the ranges �4 and
�5 the plane waves describe states of an antiparticle. In these
cases, description of the one-particle scattering and reflection
in the framework of strong-field QED is the same as in the
framework of the potential scattering. In particular, the sign
of the flux density, given by Eq. (19), allows one to determine
initial and final states, this fact was already used above. In
doing so we take into account the charge conjugation, which
implies that the physical longitudinal momentum of an an-
tiparticle differs in sign from the quantum numbers pL and
pR; see Appendix A for more details. We also note that in the
range �3 the choice of initial and final states is not so obvious
and will be justified below.

B. Quantization in terms of particles

In the absence of an explicit time evolution of physical
quantities presented by the stationary plane waves (8), an
interpretation of these plane waves as states of initial and
final particle or antiparticle in the Klein zone �3 requires
consideration the process of breaking vacuum stability, taking
into account the effects of switching on and off. It is clear
that the effect of pair creation is transient and therefore must
be limited in time. However, it can be assumed that moderate
intensity of pair creation one can neglect backreaction and that
the external field remains unchanged for some macroscopic
period of time T . Then physically it make sense to believe that
the field of the x step, ∂xB(x), should be considered as a part of

a time-dependent inhomogeneous field Epristine directed along
the x direction, which was switched on at the time instant
t1 sufficiently fast before the time instant tin, by this time it
had time to spread to the whole area Sint and disappear in the
macroscopic regions SL and SR. Thus, in the region Sint a time-
independent field configuration Epristine = ∂xB(x) is formed,
whereas in the two regions SL and SR the field ∂xB(x) is zero.
However, there are two different uniform fields B(xL) �= 0
in SL and B(xR) �= 0 in SR; μ[B(xL) − B(xR)] = δU . Such a
field configuration remains unchanged for quite a long time
T . Then at time instant t2 the field Epristine is switched off
sufficiently fast just after the time instant tout = tin + T . The
main effect of the pair creation occurs in the region Sint during
the time period T . However, the switching on and off of an
external field Epristine may also lead to a pair creation. We
believe that its contribution is much less then the one in the
region Sint. The created magnons and antimagnons enter in the
regions SL and SR, respectively, already as free particles and
remain there separately after switching off the field Epristine.
Thus, by observing over a long period of time T fluxes of cre-
ated particles crossing the boundaries of the field at the planes
x = xL and x = xR, respectively, it is possible to determine the
parameters of these fluxes without waiting for switching off
the field Epristine. This can be done using stationary plane wave
solutions of the Klein-Gordon equation in the framework of
approach presented in Ref. [14]. (We note that some relevant
details of scalar field quantization in the presence of critical
potential steps is given in Appendix A).

Now you can set a quantitative criterion that allows one
to evaluate the accuracy of the approximation in which the
effects of switching on and off are neglected. Let N true be
the total number of pairs created from the vacuum due to
field Epristine from the time it is turned on t1 to the time it is
turned off t2, and Ncr be the total number of pairs created from
the vacuum by the field ∂xB(x) from a moment tin > t1 to a
moment tout = tin + T .

According to a widely accepted formulation of QED with
a strong background there exist initial |0, true in〉 and final
|0, true out〉 vacua of free particles related by an unitary trans-
formation under the condition that N true is finite; see, e.g.,
Refs. [19,20]. In the Heisenberg representation these vacua
are null vectors for particle number operators N̂ (t1) and N̂ (t2),

N̂ (t1)|0, true in〉 = 0, N̂ (t2)|0, true out〉 = 0, (33)

where N̂ (t1) is free particle number operator at the time t1
and N̂ (t2) is free particle number operator at the time t2. The
difference of the true final vacuum from the initial one can
be specified by the total number of pairs created from the
vacuum,

N true =
∑

m

N true
m = 〈0, true in|N̂ (t2)|0, true in〉, (34)

and N true
m are differential mean numbers of created from the

vacuum pairs with given quantum numbers m. If there exists
a complete set of solutions of the Klein-Gordon equation with
the background under consideration, then one can find all
the numbers N true

m . From general considerations, it is possi-
ble to establish some properties of these numbers without
knowing their form explicitly. It seems quite natural that
the pair-production rate and the flux of created particles are
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constant during the macroscopic time T . It means that a lead-
ing contribution to the number density N true is assumed to be
proportional to the large dimensionless parameter

√
vs|∂xU |T

and is independent from switching-on and -off if this parame-
ter satisfies inequality (15). In this case, the numbers N true can
be approximated by Ncr,

N true = Ncr{1 + O([
√

vs|∂xU |T ]−1)},
Ncr =

∑
m∈�3

Ncr
m , (35)

where the terms Ncr
m = N true

m if m ∈ �3 appear due to the
time-independent part of the field Epristine = ∂xB(x) and do
not depend on the oscillations related to fast switching-on
and -off of the field Epristine. This possibility does exist due to
the fact that both fast switching-on and -off produce particle-
antiparticle pairs with quantum numbers in a tiny range of the
kinetic energy, such that one can neglect the corresponding
contributions to total characteristics of vacuum instability that
are determined by sums over all the kinetic energies; see
Ref. [15] for more details.

The numbers Ncr
m can be found by using the decomposition

coefficients g, given by Eq. (22). Here one interprets stationary
plane wave solutions of the Klein-Gordon equation as states
of initial and final particle or antiparticle in the Klein zone �3.

Neglecting effects of fast switching-on and -off, one can
use instead of the true vacua |0, true in〉 and |0, true out〉 some
states |0, in〉 and |0, out〉, respectively. Namely, we choose
these states as ones with minimum kinetic energies (kinetic
energies of the states |0, in〉 and |0, out〉 are the same) and
such that the leading contribution to the quantity N true is de-
termined by the number Ncr. In the Heisenberg representation
these vacua are null vectors of the particle number operators
N̂ (in) and N̂ (out),

N̂ (in)|0, in〉 = 0, N̂ (out)|0, out〉 = 0. (36)

The difference between these vectors is determined by the
total number of created pairs,

Ncr = 〈0, in|N̂ (out)|0, in〉. (37)

In what follows, the number operators N̂ (in) and N̂ (out)
will be expressed via corresponding annihilation and creation
operators and the states |0, in〉 and |0, out〉 are called the
initial and the final vacua, respectively. Accordingly, magnon
and antimagnon excitations over these vacua are called initial
and final particles, respectively. Mean fluxes of the effec-
tive charge and the energies of the vacuum states |0, in〉 and
|0, out〉 are quite distinct. That allows us to define unambigu-
ously these vacua and to construct initial and final states in a
Fock space, using the plane waves (8); see Appendix A for
details.

One can decompose the Heisenberg operators of the scalar
fields �̂(X ) and �̂(X )† into solutions of either the initial
or final complete sets (32). It is useful to represent �̂(X )
(and �̂(X )†, respectively) as sums of five operators, �̂(X ) =∑5

k=1 �̂k (X ), where the operators �̂k (X ) are defined in the
ranges �k; see Eqs. (A13) and (A14) in Appendix A for de-
tails. The operators �̂k (X ), k = 1, 2, are decomposed via the
creation and annihilation operators a and a† of the magnons,
while the operators �̂k (X ), k = 4, 5, are decomposed via the

creation and annihilation operators b and b† of antimagnons.
In the range �3 the operators �̂3(X ) and �̂

†
3(X ) are decom-

posed via creation and annihilation operators of both magnons
and antimagnons,

�̂3(X ) =
∑

m∈�3

M−1/2
m [ −am(in) −φm(X ) + −b†

m(in) −φm(X )]

=
∑

m∈�3

M−1/2
m [+am(out)+φm(X) + +b†

m(out) +φm(X )].

(38)

Here Mm are normalization factors given by Eq. (31). All
the operators labeled by the argument “in” are interpreted as
the operators of the initial particles, whereas all the operators
labeled by the argument “out” are interpreted as the operators
of the final particles. This identification can be confirmed
as follows. The equal-time commutation relations given by
Eq. (A3) in Appendix A yield the standard commutation rules
for the creation and annihilation in- or out-operators intro-
duced. The vacuum vectors |0, in〉 and |0, out〉 are null vectors
for all annihilation operators a and b given by Eq. (A14) in
Appendix A. In particular, in the range �3 nonzero commuta-
tors are

[∓am(in/out), ∓a†
m′ (in/out)]

= [∓bm(in/out), ∓b†
m(in/out)] = δm,m′ , (39)

and one-particle states of initial (final) magnon and anti-
magnon have the form

∓a†
m′ (in/out)|0, in/out〉, ∓b†

m(in/out)|0, in/out〉. (40)

Using the both alternative decompositions (38) for �̂3(X )
and the orthonormality conditions (19), one can find the
following linear canonical transformation between the intro-
duced in- and out-creation and annihilation operators

+am(out) = g(−|+)−1g(−|−) −am(in) − g(−|+)−1 −b†
m(in),

+b†
m(out) = −g(−|+)−1 −am(in) + g(−|+)−1g(−|−) −b†

m(in).

(41)

One can verify that the transformation is unitary; see
Sec. VII D in Ref. [14]. The inverse transformation reads

−am(in) = g(+|−)−1g(+|+) +am(out) + g(+|−)−1 +b†
m(out),

−b†
m(in) = g(+|−)−1 +am(out) + g(+|−)−1g(+|+) +b†

m(out).

(42)

The ± sign of integrals in Eq. (31) corresponds to the sign
of the effective charge (magnetic moment) of a particle, which
justifies the above interpretation of states as magnons and
antimagnons in the ranges �k, k = 1, 2, 4, 5. In the ranges
�1 and �5 the flux densities of particles through the surfaces
x = xL and x = xR given by Eq. (19) allow one to define initial
and final states of particles. In particular, it can be seen that the
sign of the flux densities of magnons with a given m is equal
to ζ in the range �1, while the sign of the flux densities of an-
timagnons with a given m is equal to −ζ in the range �5. The
corresponding reasons in the framework of QFT are presented
in Appendix A. One can see that the partial vacua in the Fock
subspaces with a given m are stable in �k, k = 1, 2, 4, 5. In
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the ranges �1 and �5 we meet a realization of rules of the
potential scattering theory in the framework of QFT and see
that relative probabilities of reflection and transmission (under
the condition that the vacuum remain the vacuum),

|Rm|2 = |g(+|+)−1g(−|+)|2, |Tm|2 = |g(+|+)|−2, (43)

coincide with mean currents of reflected particles JR = |Rm|2
and transmitted particles JT = |Tm|2. The correct result JR +
JT = 1 follows from the unitary relation (25).

In contrast to the ranges �1 and �5, one can see from
Eq. (31) that in the range �3 the magnetic moment of the
particle states ζ φm is positive while the magnetic moment of
the particle states ζ φm is negative. This allows us to use the
magnon/antimagnon classification for the creation and anni-
hilation operators in Eq. (38). Considering diagonalized forms
of the kinetic energy and magnetic moment operators given
by Eq. (A21) in Appendix A, we see that such identification
is also confirmed in the framework of QFT. In particular, we
see that the spectrum of the kinetic energy operator is posi-
tively defined and one-particle states ζ φm represent magnons
with the kinetic energy ζ Em > 0 and the magnetic moment
μ, whereas one-particle states ζ φm are antimagnons with the
kinetic energy − ζ Em > 0.

Since transformations (41) and (42) entangle annihilation
and creation operators, the vacua |0, in〉 and |0, out〉 are
essentially different. The total vacuum-to-vacuum transition
amplitude cv is formed due to the vacuum instability in the
range �3. Differential mean numbers Na

m(out) and Nb
m(out),

m ∈ �3, of the magnons and antimagnons, respectively, cre-
ated from the vacuum are equal, Nb

m(out) = Na
m(out) = Ncr

m ,
and have the forms

Na
m(out) = 〈0, in| +a†

m(out) +am(out)|0, in〉
= |g(+|−)|−2,

Nb
m(out) = 〈0, in| +b†

m(out) +bm(out)|0, in〉
= |g(−|+)|−2, (44)

where the coefficients g are given by Eq. (22).
To distinguish initial and final states in the range �3, one

needs to consider one-particle mean values of the operators of
the fluxes, of the energy and the effective charge (that is, the
magnetic moment current) through the surfaces x = xL and
x = xR, given by Eqs. (A11) and (A12) in Appendix A. In the
beginning we note that in the range �3 the spatial distribution
of physical states, presented by wave packets of plane waves,
is the same as in the ranges �2 and �4. Therefore, it can be
shown that particles (magnons) can be situated only in the
region SR, whereas antiparticles (antimagnons) can be situated
only in the region SL. The field ∂xU (x) does not allow particles
to penetrate through the region Sint, and turns them in the
opposite direction. For the plane waves such a behavior can be
easily seen in the case of weak external fields (but still strong
enough, δU > 2π⊥, to provide the existence of the �3-range)
using a semiclassical approximation. If Ncr

m tends to zero,
then |g(+|−)|2 → ∞ and, at the same time, |g(+|+)|2 → ∞
in accordance to relation (25). Relations (21) imply that for
an arbitrary m ∈ �3 the magnon densities | ζ φm(X )|2 are
concentrated in the region SR, whereas the antimagnon densi-
ties | ζ φm|2 are concentrated in the region SL.

In the general case when the quantities Ncr
m are not small, it

is natural to expect a similar behavior, namely: the region SL is
not available for magnons, and the region SR is not available
for antimagnons. However, when the quantities Ncr

m are not
small, the latter property may hold only for the corresponding
wave packets, but not for the separate plane waves. That
means that these plane waves may be different from zero in
the whole space. Namely, this fact leads often to a misin-
terpretation, since the behavior of these plane waves looks
like the one in the ranges �1 and �5, where they represent
one-particle densities both in the region SL and SR. However,
this similarity is misleading. Indeed, within our context it is
assumed that the magnons and antimagnons in one of cor-
responding asymptotic regions may occupy quasistationary
states, i.e., they should be described by wave packets that
pertain their form a sufficiently long time in these regions.
Note, that in the ranges �1 and �5, the sign of the longitudinal
momentum pL/R is related to the sign of the mean energy
flux in the region SL/R. In the range �3 the magnon states
ζ φm are states with a definite quantum number pL, whereas
the antimagnon states ζ φm are states with a definite quantum
number pR. This fact together with relation (21) implies, for
example, that a partial wave +φm of a magnon, in the region
where this particle can really be observed, i.e., in the region
SR, is always a superposition of two waves +φm and −φm

with opposite signs of the quantum number pR. Thus, the
sign of the mean energy flux in the region SR cannot be
related to the sign of an asymptotic momentum in this region.
Similarly, one can see, for example, that the partial wave +φm

of an antimagnon, in the region SL, is always a superposition
of two waves with quantum number pL of opposite signs
and, therefore, the sign of the mean energy flux cannot be
related to the sign of an asymptotic momentum in the region
where this particle can really be observed. However, as it will
be demonstrated, these are states with well-defined asymptotic
energy flux and, therefore, with a corresponding well-defined
asymptotic field momentum. Namely, these properties of the
constituent plane waves are responsible for the fact that stable
magnon wave packets can exist only in the region SR, whereas
stable antimagnon wave packets can exist only in the region
SL; see Appendix D in Ref. [14] for details.

Taking into account such a space separation of the
magnons and antimagnons one can use the one-particle mean
values of fluxes, of the kinetic energy, and the magnetic mo-
ment, given by Eq. (A23) in Appendix A, to differ initial and
final states in the range �3. So if the flux of the magnetic
moment and the kinetic energy in the region SR coincides with
the acceleration direction of a magnon in the region Sint, then
the state under consideration is a final state of the magnon,
since such a particle can only move away from the region
Sint (x → ∞). And viceversa, if these fluxes are opposite to
the acceleration direction of a magnon in the region Sint, then
the state under consideration is an initial state of the magnon,
since such a particle can only move to the region Sint . In the
case of antimagnons, the direction of the flux of the kinetic
energy coincides with the direction of the flux density, but is
opposite to the direction of the flux of the magnetic moment.
The antimagnons do exist in the region SL only. Therefore, if
the direction of the flux of the kinetic energy in the region SL

coincides with the acceleration direction of the antimagnon
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in the region Sint , then the state under consideration is the
final state of an antimagnon. And viceversa, if the direction
of the flux of the kinetic energy in the region SL is opposite
to the acceleration direction of an antimagnon in the region
Sint , then the state under consideration is an initial state of an
antimagnon. Namely, in such a manner initial and final states
in Eq. (32) are defined.

C. Observable physical quantities specifying
the vacuum instability

Above, using representations (44) only differential mean
number of magnon-antimagnon pairs created from the vac-
uum were calculated. However, one can obtain additional
characteristics of the vacuum instability. This section is de-
voted to their study.

The probability of the transition from the vacuum |0, in〉 to
the vacuum |0, out〉,

Pv = |cv|2, cv = 〈0, out |0, in〉, (45)

is related to the mean numbers Ncr
m as

ln Pv =
∑

m∈�3

ln pm, pm = (
1 + Ncr

m

)−1
; (46)

see Appendix A in Ref. [14] for details. However, this proba-
bility can be represented via the imaginary part of a one-loop
effective action S by the seminal Schwinger formula [4],

Pv = exp (−2ImS). (47)

A relation of this representation with the one that fol-
lows from the locally constant field approximation for the
Schwinger’s effective action was found in Ref. [21]. The prob-
abilities of the magnon reflection and the magnon-antimagnon
pair creation can be expressed via the mean numbers Ncr

m as
follows:

P(+|+)m,m′ = |〈0, out| +am(out) −a†
m(in)|0, in〉|2

= δm,m′ (1 + Ncr
m )−1Pv,

P(+ − |0)m,m′ = |〈0, out| +am(out) +bm(out)|0, in〉|2

= δm,m′Ncr
m

(
1 + Ncr

m

)−1
Pv. (48)

The probabilities of the antimagnon reflection and the
magnon-antimagnon pair annihilation coincide with the quan-
tities P(+|+) and P(+ − |0), respectively. In the case of
bosons in a given state m any number of pairs can be created
from the vacuum and from the one particle state. By this
reason probabilities (48) are not representative if the mean
numbers Ncr

m are large. In the partial state with a given m
the probability of the creation of any pairs with given m is
1 − pm where pm is the probability that the partial vacuum
state remains a vacuum, given by Eq. (46). If all the mean
numbers Ncr

m are sufficiently small, Ncr
m � 1, then the simple

relations pm ≈ 1 − Ncr
m and 1 − Pv ≈ Ncr � 1 hold true in

the leading approximation. In this case P(+|+)m,m ≈ 1 and
P(+ − |0)m,m ≈ Ncr

m . Therefore, information about the quan-
tity Pv allows one to estimate the total number Ncr. It is in
this case that the Schwinger’s effective action approach [4]
to calculating Pv turns out to be useful. We note that this
approach is a base of a number of approximation methods;

see, e.g., Ref. [22] for a review. In this relation, it should be
noted that the probability Pv by itself is not very useful in the
case of strong fields when Pv � 1.

Taking into account Eq. (44), the total number of pairs
created from the vacuum reads

Ncr =
∑

m∈�3

Ncr
m =

∑
m∈�3

|g(+|−)|−2. (49)

Magnons and antimagnons created with quantum numbers m
leaving the area Sint enter the areas SL and SR, respectively. At
the same time, the magnons continue to move in the x direc-
tion with a constant velocity vR. The motion of the magnons
forms the flux density

〈 jx〉m = Ncr
m (TV⊥)−1, (50)

in the area SR, while the antimagnon motion in the opposite
direction with the constant velocities −vL forms the flux
density −( jx )m in the area SL. Here it is taken into account
that differential mean numbers of created magnons and anti-
magnons with a given m are equal. The total flux densities of
the magnons and the antimagnons are

〈 jx〉 =
∑

m∈�3

〈 jx〉m = Ncr (TV⊥)−1 (51)

and −〈 jx〉, respectively. The effective charge (the magnetic
moment) current density of both created magnons and anti-
magnons is Jcr

x = μ〈 jx〉. This corresponds to the spin current
〈 jx〉. It is conserved in the x direction.

During the time T, the created magnons carry the mag-
netic moment μ〈 jx〉mT over the unit area V⊥ of the surface
x = xR. This magnetic moment is evenly distributed over the
cylindrical volume of the length vRT . Thus, the magnetic
moment density of the magnons created with a given m is
μ j0

m(R), where j0
m(R) = 〈 jx〉m/vR is the number density of

the magnons. During the time T, the created antimagnons
carry the magnetic moment μ〈 jx〉mT over the unit area V⊥
of the surface x = xL. Taking into account that this magnetic
moment is evenly distributed over the cylindrical volume of
the length vLT , we can see that the magnetic moment density
of the antimagnons created with a given m is −μ j0

m(L), where
j0
m(L) = 〈 jx〉m/vL is the number density of the magnons. The

total magnetic moment density of the created particles reads

ρcr (x) = μ

{−∑m∈�3
j0
m(L), x ∈ SL∑

m∈�3
j0
m(R), x ∈ SR

. (52)

Due to a relation between the velocities vL and vR, the total
number densities of the created magnons and antimagnons are
the same, ∑

m∈�3

j0
m(L) =

∑
m∈�3

j0
m(R). (53)

We also note that the created magnons and antimagnons are
spatially separated and carry magnetic moments that tend to
smooth out the inhomogeneity of the external magnetic field.

In the same manner, one can derive some representation for
the nonzero components of EMT of the created particles:

T 00
cr (x) =

{∑
m∈�3

j0
m(L)|π0(L)|, x ∈ SL∑

m∈�3
j0
m(R)π0(R), x ∈ SR

,
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T 11
cr (x) =

{∑
m∈�3

〈 jx〉m|pL|, x ∈ SL∑
m∈�3

〈 jx〉m|pR|, x ∈ SR
,

T kk
cr (x) =

{∑
m∈�3

〈 jx〉m(pk )2/|pL|, x ∈ SL∑
m∈�3

〈 jx〉m(pk )2/
∣∣pR
∣∣, x ∈ SR

, k = 2, 3,

T 10
cr (x) =

{− 1
vs

∑
m∈�3

〈 jx〉m|π0(L)|, x ∈ SL

1
vs

∑
m∈�3

〈 jx〉mπ0(R), x ∈ SR
. (54)

Here T 00
cr (x) and T kk

cr (x), k = 1, 2, 3, are energy density and
components of the pressure of the particles created in the areas
SL and SR, respectively, whereas T 10

cr (x)vs, for x ∈ SL or x ∈
SR, is the energy flux density of the created particles through
the surfaces x = xL or x = xR, respectively. In a strong field,
or in a field with the sufficiently large potential step δU , the
energy density and the pressure along the direction of the axis
x are near equal.

Let us consider effects of the backreaction on the ex-
ternal field due to the vacuum instability, to establish the
so-called consistency conditions. We assume that the volume
V = V⊥(xR − xL) contains the area Sint = (xL, xR ). The total
energy of the created particles in the volume V is given by the
corresponding volume integral of the energy density T 00

cr (t, x).
The corresponding energy conservation low reads

∂

∂t

∫
V⊥

dr⊥
∫ xR

xL

T 00
cr (t, x)dx = −

∮
�

vsT
k0

cr (x)dfk, (55)

where � is a surface surrounding the volume V and dfk ,
k = 1, 2, 3, are the components of the surface element df .
Taking into account that T 00

cr (t, x) does not depend on the
transversal coordinates, and T k0

cr (x) = 0 for k �= 1, we find
using Eq. (54) that the rate of the energy density change of
the created particles in the region Sint per unit of the spatial
area V⊥ is

∂

∂t

∫ xR

xL

T 00
cr (t, x)dx = vs

[
T 10

cr (x)
∣∣
x∈SL

− T 10
cr (x)

∣∣
x∈SR

]
= −δU jx. (56)

It characterizes the loss of the energy that the created particles
carry away from the region Sint. At the same time, the constant
rate (56) determines the power of the constant effective field
Epristine = ∂xU (x) spent on the pair creation. Integrating this
rate over the time duration of the field from tin to tout, and
using the notation

�T 00
cr (x) = −

∫ tout

tin

∂

∂t
T 00

cr (t, x)dt,

we find the total energy density of created pairs per unit of the
area V⊥ as ∫ xR

xL

�T 00
cr (x)dx = δU

Ncr

V⊥
. (57)

In strong-field QED it is usually assumed that just from the
beginning there exists a classical effective field having a given
energy. The system of particles interacting with this field is
closed, that is, the total energy of the system is conserved.2

It is clear that due to pair creation from the vacuum, the
constant effective field Epristine = ∂xU (x) is losing its energy
and should depleted with time. Thus, the applicability of the
constant field approximation, which is used in the formulation
of strong field QED with x step, is limited by the smallness
of the backreaction. The relation (57) allows one to find
conditions that provide this smallness, we call these relations
the consistency conditions. These conditions can be obtained
from the requirement that the energy density given by Eq. (57)
is essentially smaller than the energy density of the constant
effective field per unit of the area V⊥.

Note that the presence of the matter in the initial state
increases the mean number of created bosons. It is an ob-
vious consequence of the Bose-Einstein statistics. In the
case of fermions, the presence of the matter at the initial
state prevents the pair creation. Assuming that N (+)

m (in) and
N (−)

m (in) are the mean numbers of particles and antiparticles
with quantum numbers m at the initial time instant, one ob-
tains that the differential mean numbers of final particles and
antiparticles are

N (ζ )
m = (

1 + Ncr
m

)
N (ζ )

m (in) + Ncr
m

[
1 + N (−ζ )

m (in)
]
, (58)

respectively. The differential mean numbers of particles and
antiparticles created by the external field are given by an
increment �N (ζ )

m = N (ζ )
m − N (ζ )

m (in). One can see that the in-
crements of the numbers of particles and antiparticles are
equal,

�N (+)
m = �N (−)

m = �Nm,

�Nm = Ncr
m [1 + N (+)

m (in) + N (−)
m (in)]. (59)

In contrast to the previously used methods for studying the
production of bosonic pairs by external fields, our approach
allows us to consider the case of special inhomogeneous
external fields supporting the spatial separation of particles
and antiparticles (in the case under consideration, these are

2One can, however, imagine an alternative situation when these
effective charges are getting out of the regions SL and SR with the
help of the work done by an external storage battery. For example,
dealing with graphene devices, it is natural to assume that the con-
stant electric strength on the graphene plane is due to the applied
fixed voltage, i.e., we are dealing with an open system of fermions
interacting with a classical electromagnetic field. In that case there
would be no backreaction problem. Note that the evolution of the
mean electromagnetic field in the graphene, taking into account
the backreaction of the matter field to the applied time-dependent
external field, was considered in Ref. [26].

014410-11



ADORNO, GAVRILOV, AND GITMAN PHYSICAL REVIEW B 110, 014410 (2024)

magnons and antimagnons) in the Klein zone. In such a way,
one can see that the equal increments of mean numbers of
particles in the area SR and antiparticles in the area SL do
not depend on the symmetry between the mean numbers of
particles and antiparticles in the initial state. For example,
assuming the absence of the initial antiparticles, N (−)

m (in) = 0,
with the number of initial particles being not zero in the Klein
zone, N (+)

m (in) �= 0, one can see that the number of created
antiparticles is growing in comparison with the one created
from the vacuum, �Nm = Ncr

m [1 + N (+)
m (in)]. Therefore, the

flux of created antiparticles in the area SL is growing pro-
portionally to the flux of coming particles from the area SR.
Such a behavior can be called statistically assisted Schwinger
effect.

That is why operating with the concept of probability turns
out to be unfruitful in the case when the mean number Ncr

m
is not relatively small. In our considerations the presence of
particles in the initial state implies that these are ingoing
particles and the mean numbers N (ζ )

m (in) are proportional to
densities of ingoing fluxes,〈

j (ζ )
x (in)

〉
m

= N (ζ )
m (in)(TV⊥)−1. (60)

Densities of outgoing fluxes are〈
j (ζ )
x

〉
m = N (ζ )

m (TV⊥)−1. (61)

Both ingoing and outgoing magnons are situated in the area
SR while both ingoing and outgoing antimagnons are situated
in the area SL. For example, assuming the absence of initial
antiparticles, N (−)

m (in) = 0, the presence of particles in the
initial state, N (+)

m (in) �= 0, leads to the fact that the density of
the outgoing particle flux turns out to be more than the density
of incoming particle flux,

〈 j (+)
x 〉m|/〈 j (+)

x (in)〉m = 1 + Ncr
m (1 + 1/N (+)

m (in)). (62)

Thus, the flux proportional to Ncr
m of particles born from the

vacuum is added to the total flux of reflected particles. A
similar picture is observed for antiparticle fluxes in the case
when N (+)

m (in) = 0 while N (−)
m (in) �= 0. In the areas of �3

adjoining the borders of the ranges �2 and �4, the pair cre-
ation is absent, Ncr

m → 0, and the only the total reflection takes
place. However, in general, in the Klein zone, fluxes due to the
total reflection cannot be separated from the fluxes due to the
pair creation, that is one more reason not to use probabilities
of the reflection.

IV. EXAMPLES OF EXACT SOLUTIONS WITH X STEPS

In this section, we present a collection of external magnetic
fields that allow calculating magnon pair production charac-
teristics based on exact solutions of Eq. (9). For the sake of
convenience, we discuss examples separately and list perti-
nent results only. Further details are placed in Appendix B.

A. Differential quantities

1. L-constant step

The L-constant magnetic step is a model of magnetic field
inhomogeneity that grows linearly with x within Sint and is
constant outside of it, B(x)|x�xL �= B(x)|x�xR . We call this
field “L-constant” magnetic step due to its analogy with the

“L-constant electric field,” which is a type of electric field
that creates electron-positron pairs from the vacuum if it is
strong enough; see Ref. [31] for a discussion. The field has
the following form:

B(x) =

⎧⎪⎨⎪⎩
B′L/2, x ∈ SL = (−∞,−L/2],

−B′x, x ∈ Sint = (−L/2, L/2),

−B′L/2 x ∈ SR = [L/2,+∞),

(63)

where B′ > 0, L > 0, and we set xL = −L/2 = −xR for
simplicity.

Beyond the intermediate interval potential energies are
constants, UL = +μB′L/2 and UR = −μB′L/2, and exact so-
lutions to Eq. (9) are plane waves, classified according to
Eqs. (14). As for the intermediate interval, Sint, we perform
a change of variable

ξ (x) = ε + μB′x√
vsμB′ , (64)

to rewrite Eq. (9) as(
d2

dξ 2
+ ξ 2 − λ

)
ϕm(ξ ) = 0, λ = π2

⊥
vsμB′ . (65)

This is Weber’s parabolic cylinder differential equation [32],
whose independent sets of solutions are Dν[(1 − i)ξ ],
D−ν−1[(1 + i)ξ ], or Dν[−(1 − i)ξ ], and D−ν−1[−(1 + i)ξ ],
where ν = −iλ/2.

With the aid of the exact solutions (B1) and the coefficient
(B5) discussed in Appendix B, the differential mean numbers
of magnon-antimagnon pairs created from the vacuum by the
external field (44) has the form

Ncr
m = 8e−πλ/2√

ξ 2
1 − λ

√
ξ 2

2 − λ

| f (−)
1 (ξ2) f (−)

2 (ξ1)

− f (−)
2 (ξ2) f (−)

1 (ξ1)|−2. (66)

Here, ξ1 = ξ (xL), ξ2 = ξ (xR), and

f (±)
1 (ξ ) =

(
1 ± i√

ξ 2 − λ

d

dξ

)
D−ν−1[±(1 + i)ξ ],

f (±)
2 (ξ ) =

(
1 ± i√

ξ 2 − λ

d

dξ

)
Dν[±(1 − i)ξ ]. (67)

Optimal conditions for the magnon pair production occur
when step (63) is high enough and stretches over a wide region
of the space, characterized by the inequalities√

|μB′|
vs

L 
 max

{
1,

�2

vsμB′

}
. (68)

If these conditions are met and
√

λ is fixed, in the sense that√
λ < K⊥, where K⊥ is a reasonably large number obeying the

conditions
√|μB′|/vsL/2 
 K2

⊥ 
 max{1,�2/vsμB′}, then
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|ξ1| and ξ2 are large

ξ2 �
√

|μB′|
vs

L

2
, −

√
|μB′|
vs

L

2
� ξ1 � −K,

K2
⊥ < K �

√
|μB′|
vs

L

2
, (69)

which means that we can use asymptotic representations
of Weber parabolic cylinder functions (WPCFs) given by
Eqs. (1)–(3) in Sec. 8.4 of Ref. [32], to show that the mean
numbers acquire the form

Ncr
m = exp (−πλ)

[
1 + O(|ξ1|−3) + O

(
ξ−3

2

)]
. (70)

In the limit where the inhomogeneity of the field spreads over
the entire x axis, i.e., when L → ∞ (thus |ξ1| → ∞, ξ2 →
∞), we obtain

Ncr
m → Nuni

m = exp (−πλ). (71)

This is a well-known expression that was originally ob-
tained in the context of electron-positron pair creation from
the vacuum by a constant uniform electric field [34]. Its max-
imum value max Nuni

m = Nuni
m |p⊥=0 becomes pronounced if the

derivative B′ is of the order of the critical value B′
c = �2/vsμ,

which plays the role of the Schwinger’s critical field [4] in the
case under consideration.

Another configuration of the external field worth of discus-
sion is when its spacial inhomogeneity varies “abruptly” along
the x direction. We call this configuration “sharply varying” or
“steep” field configuration. A steep L-constant magnetic step
is characterized by the set of inequalities,

δU = |μB′|L = const > 2�, δUL/vs � 1, (72)

which, in turn, implies in the conditions

max

(
|π0(L)| L

vs
, π0(R)

L

vs

)
� 1, (73)

as quantum numbers are bounded in the Klein zone �3. As
a result, coefficients involving asymptotic momenta are also
small since |pL/R| < |π0(L/R)|. In this case, the argument of
the WPCFs are sufficiently small in �3 and we may use the
power-series expansion to show that

Ncr
m ≈ 4|pL||pR|

||pL| − |pR| + iσ |2 ,

σ =
[
|pL||pR| + (i + λ)

|μB′|
vs

]
L. (74)

Notice that the limit L → 0 is admissible provided the dif-
ference ||pL| − |pR|| is larger compared |σ |. In particular, if

||pL| − |pR|| 
 |σ |, then the mean number (74) admits form

Ncr
m ≈ 4k

(1 − k)2 , (75)

where k = |pR|/|pL|. It is in agreement with results obtained
at p⊥ = 0 in Refs. [9,10,12,13] for the case of the Klein step
formed by an electric field. Additionally, Eq. (75) can also be
reproducible by other magnetic steps, as shall be seen below.

2. Sauter-like step

The Sauter-like magnetic step3—a more realistic,
smoothed version of the L-constant magnetic step—is another
example of magnetic field inhomogeneity for which exact
solutions of Eq. (9) are known. The Sauter (or Sauter-like)
electric field is a popular example of an electric field that may
violate the vacuum stability; see Ref. [14] for an extensive
discussion of the phenomenon in QED with x steps.

In the present case, the Sauter-like magnetic step has the
form:

B(x) = −B′LS tanh (x/LS), B′ > 0, LS > 0. (76)

At remote regions x → ∓∞, the magnetic field is constant
B(∓∞) = ±B′LS, which means that UL = μB′LS = −UR.
Therefore, the magnitude of the potential step (13) in this case
is δU = UL − UR = 2μB′LS.

Performing the change of variable

χ (x) = 1
2 [1 + tanh (x/LS)], (77)

and seeking for solutions in the form

ϕm(x) = χ−iLS|pL|/2(1 − χ )iLS|pR|/2 f (χ ), (78)

allows us to express Eq. (9) in the same form as the differential
equation for the Gauss hypergeometric function [32],

χ (1 − χ ) f ′′ + [c − (a + b + 1)χ ] f ′ − ab f = 0, (79)

provided

a = 1

2

⎡⎣iLS(|pR| − |pL|) + 1 + i

√(
LSδU

vs

)2

− 1

⎤⎦,

b = 1

2

⎡⎣iLS(|pR| − |pL|) + 1 − i

√(
LSδU

vs

)2

− 1

⎤⎦,

c = 1 − iLS|pL|. (80)

Using the exact solutions (B8) and (B9) and the coefficient
(B11) discussed in Appendix B, we find that

|g(+|−)|−2 = sinh(πLS|pR|) sinh(πLS|pL|)
sinh2 [πLS(|pR| − |pL|)/2] + cosh2

(
π
2

√
(LSδU/vs)2 − 1

) . (81)

3We name the field (76) “Sauter-like,” in reference to F. Sauter [11], who first solved relativistic wave equations for a charged particle with a
potential step of the form −αE tanh(x/α).
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Result (81) holds in the ranges �1, �5, and �3. Tak-
ing into account relation (25), one finds |g(+|+)|2. Using
these coefficients in Eq. (43), one can calculate the rela-
tive probabilities of the reflection, |Rm|2 = 1 − |Tm|2, and
the transmission, |Tm|2 = [1 + |g(+|−)|2]−1 in the ranges �1

and �5. In the range �3 according to relation (44) the co-
efficient |g(+|−)|−2 gives the differential mean numbers of
the magnon-antimagnon pairs created from the vacuum, Ncr

m .
In particular, for any π⊥ �= 0, one of the following limits
holds true:

|g(+|−)|−2 ∼ |LS pR| → 0, |g(+|−)|−2 ∼ |LS pL| → 0.

(82)

This means that in the range �3, the mean numbers tend to
zero, Ncr

m → 0, while in the ranges �1 and �5 the relative
probability of the transmission reads |Tm|2 → 0 if m tends to
the boundary with either the range �2 (|pL| → 0) or the range
�4 (|pR| → 0).

In cases where the magnetic step is high enough and
stretches over a wide region of the space, such that
LSδU/vs 
 1, the mean number of created pairs can be ap-
proximated as

Ncr
m ≈ Nas

m = e−πτ , τ = LS(2|μB′|LS/vs − |pR| − |pL|).
(83)

When LSδU/vs → ∞, one obtains Ncr
m → Nuni

m where Nuni
m is

given by Eq. (71).
Sharp-gradient configuration

δU = |μB′|LS = const > 2�, δULS/vs � 1, (84)

corresponds to a very sharp field derivative ∂xU , highly con-
centrated near the origin x = 0, described by a very “steep”
potential step. This configuration has a special interest be-
cause it corresponds to a regularization of the Klein step
(originally an electric step potential)

U (x) =
{

UL if x < 0
UR if x > 0 , (85)

where UR and UL are constants, and may be useful in
a discussion of the Klein paradox. In the ranges �1 and
�5 the energy |ε| is not restricted from the above, that
is why in what follows we consider only the subranges,
where max{LS|pL|, LS|pR|} � 1. Note that in these ranges
||pL| − |pR|| > δU , then the parameter k = |pR|/|pL| does
not achieve the unit value, k �= 1. Then one has

|g(+|−)|−2 ≈ 4k

(1 − k)2 (86)

and obtains the transmission coefficient as

|Tm|2 ≈ 4k

(1 + k)2 , (87)

that is in agreement with results of the nonrelativistic consid-
eration obtained in any textbook for one-dimensional quantum
motion. In the range �3 for any given π⊥ the absolute values
of |pR| and |pL| are restricted from above,

0 � ||pL| − |pR|| �
√

δU (δU − 2π⊥). (88)

As it follows from Eq. (81), in the range �3 the differential
mean numbers of created magnon-antimagnon pairs read

Ncr
m = |g(+|−)|−2 ≈ 4|pL||pR|(

δU 2LS
2v2

s

)2 + (|pL| − |pR|)2
. (89)

They have a maximum at k = 1 that can be quite large,

max Ncr
m = 4

(LSδU/vs)2

[
1 −

(
2π⊥
δU

)2
]
. (90)

The limit LS → 0 in Eq. (89) is possible only when the differ-
ence |pL| − |pR| is not very small, namely when(

δU 2LS

2v2
s

)2

� (|pL| − |pR|)2. (91)

Only under the latter condition one can neglect an LS -
depending term in Eq. (89) to obtain the form given by
Eq. (75). Thus, we have an another example of the regular-
ization of the Klein step.

3. Exponential step

We present here an example of the magnetic field inho-
mogeneity whose analytical form is a piecewise, continuous
exponential functions of x. In this case we have a possi-
bility to consider various asymmetric peak configurations.
The electric-analog of this field in QED was considered in
Ref. [33]. The magnetic step has the form

B(x) = B′
{

k−1
1 (1 − ek1x ), x ∈ I = (−∞, 0]

k−1
2 (e−k2x − 1), x ∈ II = (0,+∞)

, (92)

where k j , j = 1, 2, are positive constants that characterizes
how steep or smooth the field decays from x = −∞ to
x = +∞. Similar to the preceding examples, the exponential
magnetic step (92) reaches constant values at remote regions
which means that UL = μB′k−1

1 and UR = −μB′k−1
2 . As a

result, the magnitude of the potential step is δU = UL − UR =
μB′(k−1

1 + k−1
2 ).

To solve Eq. (9) with this field, we perform the change of
variables

η1 = ih1ek1x, h1 = 2μB′

k2
1vs

, x ∈ I,

η2 = ih2e−k2x, h2 = 2μB′

k2
1vs

, x ∈ II, (93)

and represent the scalar functions in the form

ϕm(x) = e−η j/2η
ν j

j R j (η j ),

ν1 = i|pL|
k1

, ν2 = i|pR|
k2

, (94)

to learn that the functions Rj (η j ) obey the confluent hyperge-
ometric equations

η jR
′′
j + (c j − η j )R

′
j − a jR j = 0, (95)
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provided

c j = 2ν j + 1,

a1 = ν1 + 1

2
+ iπ0(L)

k1vs
,

a2 = ν2 + 1

2
− iπ0(R)

k2vs
. (96)

Fundamental pairs of solutions to Eq. (95) with special
asymptotic properties at remote regions are proportional
to confluent hypergeometric functions �(aj, c j ; η j ) and

η
1−c j

j eη j �(1 − a j, 2 − c j ; −η j ).
Using exact solutions and their connection via g coeffi-

cients discussed in Appendix B, we find

|g(+|−)|−2 = 4|pL||pR|
exp

[−π
(
k−1

1 |pL| − k−1
2 |pR|)]

×
∣∣∣∣(k1h1y2

1
d

dη1
y1

2 + k2h2y1
2

d

dη2
y2

1

)∣∣∣∣
x=0

∣∣∣∣−2

.

(97)

Taking into account relation (25) one finds |g(+|+)|2. In the
ranges �1 and �5 use of these coefficients in Eq. (43) gives
the relative probabilities of the reflection, |Rm|2, and the trans-
mission, |Tm|2. In the range �3 according to relation (44) the
coefficient (97) gives the differential mean numbers of pairs
created from the vacuum, Ncr

m . In particular, if either |pR| or
|pL| tends to zero for any π⊥ �= 0, then one of the following
limits holds true:

|g(−|+)|−2 ∼ |pR| → 0, |g(+|−)|−2 ∼ |pL| → 0. (98)

If the step is high enough and stretches over a wide region
of the space, so that the conditions are satisfied,

min (h1, h2) 
 max

{
1,

�2

vsμB′

}
,

k1

k2
= fixed, (99)

then it is possible to show based on the results of Ref. [33] that
the mean numbers of created pairs, given by Eq. (97), admit
simpler forms,

Ncr
m = |g(−|+)|−2

≈
{

exp
{− 2π

k1
[|π0(L)| − |pL|]}, 0 � ε < UL − π⊥,

exp
{− 2π

k2
[π0(R) − |pR|]}, UR + π⊥ � ε < 0.

(100)

When h1, h2 → ∞, one obtains Ncr
m → Nuni

m .
One can consider an essentially asymmetric configuration

with k1 
 k2.
By choosing large parameters k1, k2 → ∞ with a fixed

ratio k1/k2, one can obtain sharp gradient fields that exist only
in a small area in a vicinity of the origin x = 0. We assume
that the corresponding asymptotic potential energies UR and
UL define finite magnitudes of the potential steps �U1 and
�U2 for increasing and decreasing parts,

UL = �U1, UR = −�U2, (101)

respectively, and satisfy the following inequalities:

�U1/k1 � 1, �U2/k2 � 1. (102)

This case corresponds to a very sharp peak with a given step
magnitude δU = �U1 + �U2. In the ranges �1 and �5 the
energy |ε| is not restricted from the above, that is why in what
follows we consider only the subranges, where

max (|π0(L)|/k1, |π0(R)|/k2) � 1. (103)

In these ranges taking into account that ||pL| − |pR|| > δU we
obtain that the |g(+|−)|−2 and the transmission coefficient can
be presented by the functions (86) and (87) of the parameter
k = |pR|/|pL|.

In the range �3 the difference ||pL| − |pR|| are restricted
from above by Eq. (88) and can tend to zero. That is why the
differential mean number of pairs created is

Ncr
m ≈ 4|pL||pR|

(|pL| − |pR|)2 + b2
,

b = 2�U1

k1

[
�U1

4
+ |π0(L)|

]
+ 2�U2

k2

[
�U2

4
+ π0(R)

]
.

(104)

It has a maximum at k = 1 that can be large, Ncr
m =

4|pL||pR|/b2. Under the condition b2 � (|pL| − |pR|)2 one
can verify that the mean number Ncr

m is given by Eq. (75).
Thus, we have additional example of the regularization of the
Klein step.

4. Inverse-square step

As a last example, we present below a model of the
magnetic field inhomogeneity that is also a piecewise and
a continuous function of x. In QED, we call the electric
field corresponding to the potential step inverse-square elec-
tric field, whose solutions to relativistic wave equations were
found by us recently in Ref. [35]. The magnetic step has the
form:

B(x) = B′
{

�1[1 − (1 − x/�1)−1], x ∈ I = (−∞, 0]

�2[(1 + x/�2)−1 − 1], x ∈ II = (0,+∞)
,

(105)

where � j , j = 1, 2, are positive constants that characterize
how the field grows/decays along the x axis. The magnitude of
the potential step for this field is δU = UL − UR = μB′(�1 +
�2).

By performing the change of variables

z1(x) = 2i|pL|�1(1 − x/�1), x ∈ I,

z2(x) = 2i|pR|�2(1 + x/�2), x ∈ II, (106)

we may write the second-order differential equation (9) as(
d2

dz2
j

− 1

4
+ κ j

z j
+ 1/4 − μ2

j

z2
j

)
ϕm(x) = 0, (107)

whose solutions are proportional to the Whittaker functions
Wκ j ,μ j (z j ) and W−κ j ,μ j (e

−iπ z j ), provided the parameters κ j
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and μ j have the form

κ1 = −i
μB′�2

1

vs

π0(L)/vs

|pL| , κ2 = i
μB′�2

2

vs

π0(R)/vs

|pR| ,

μ1 = −
√

1

4
−
(

μB′�2
1

vs

)2

, μ2 =
√

1

4
−
(

μB′�2
2

vs

)2

.

(108)

Using the exact solutions (B18), (B21) and coefficient
(B24) that connects different solutions as is discussed in Ap-
pendix B, we obtain

Ncr
m = |pL||pR|

∣∣∣∣[∣∣∣∣pL|w2
1 (z2)

d

dz1
w1

2 (z1)

+ w1
2 (z1)|pR| d

dz2
w2

1 (z2)

]∣∣∣∣
x=0

∣∣∣∣−2

. (109)

Finally, considering cases where the step is sufficiently
high and stretches over a wide region of the space, specified
by the conditions

min (UL�1, |UR|�2) 
 max

{
1,

�2

vsμB′

}
,

�1

�2
= fixed,

(110)

it is possible to demonstrate based on our previous results [35]
that the mean numbers (109) admit the asymptotic forms

Ncr
m ≈

{
exp(2πω+

1 ), 0 � ε < UL − π⊥,

exp(2πω−
2 ), UR + π⊥ � ε < 0,

(111)

where

ω±
1 = ±i(κ1 ± μ1)

= UL�1

vs

⎡⎣√1 −
(

2UL�1

vs

)−2

± π0(L)/vs

|pL|

⎤⎦,

ω±
2 = ∓i(κ2 ± μ2)

= |UR|�2

vs

⎡⎣√1 −
(

2|UR|�2

vs

)−2

± π0(R)/vs

|pR|

⎤⎦. (112)

When UL�1, |UR|�2 → ∞, we have Ncr
m → Nuni

m where Nuni
m .

One can see that all of the above presented examples in the
model of smooth-gradient step can be seen as regularizations
of linearly growing magnetic field.

Another field configuration worthy of discussion is the case
where the step is still sufficiently high but the field inho-
mogeneity is concentrated in a narrow region of the x axis,
characterized by the inequality

max

(
UL�1

vs
,
|UR|�2

vs

)
� 1,

�1

�2
fixed. (113)

In the range �3, the most significant contribution to the mean
numbers (35) comes from values for |ε| that are sufficiently
away from the borders with �2 and �4, in the sense that the
supplementary inequalities

max

( |π0(L)|�1

vs
,
π0(R)�2

vs

)
� 1,

�1

�2
fixed (114)

are also satisfied. In this case, the argument of the Whit-
taker functions (B18) are also small, which means that one
can use the connection formulas given by Eqs. (119) in
Ref. [35] and expand the Whittaker functions Mκ j ,μ j (z j )
around the origin, i.e., Mκ j ,μ j (z j ) = zμ j+1/2[1 − zκ j/(2μ j +
1) + O(z2)], to show that the differential mean numbers of
magnon-antimagnon pairs created from the vacuum is approx-
imately given by the equations

Ncr
n ≈ 4|pL||pR|

(|pL| − |pR|)2 + d2
,

d = π0(L)

UL
|pL|2�1 + π0(R)

UR
|pR|2�2. (115)

Similar to the previous examples, the limit in which the field is
infinitely steep, given by �1 → 0 and �2 → 0, is admissible as
long as the difference ||pL| − |pR|| is larger compared to |d|.
If, in particular, ||pL| − |pR|| 
 |d|, then we find the same
expression obtained for the Klein step, given by Eq. (75). In
addition to the previous examples, the compatibility between
Eq. (115) and (75) shows that the field (105) is also a regular-
ization of the Klein step.

B. Integral quantities

According to the discussion in preceding section, the total
number of the magnon-antimagnon pairs produced from the
vacuum by magnetic steps is a sum of the differential numbers
over the quantum numbers within the Klein zone �3, given
by Eq. (49). The created magnons continue to move in the
x direction and form the flux density jx, given by Eq. (51),
in the area SR, while the antimagnon motion in the opposite
direction form the flux density − jx in the area SL. These flux
densities can be represented in an integral form as

jx = 1

(2π )3

∫ UL−π⊥

UR+π⊥
dε

∫
dp⊥Ncr

m . (116)

In general, analytical integration in Eq. (116) is impossible.
Nevertheless, due to the analogy between QED with x steps
and the present study, we may use universal expressions in
a strong electric field from Ref. [21] to conclude that if
the magnetic step is sufficiently high but evolves gradually
along the x axis (smooth-gradient step), one can approximate
Eq. (116) as

jx ≈ j̃x = 1

(2π )3

∫ xR

xL

dx U ′(x)
∫

dp⊥Nuni
n (x),

Nuni
n (x) = exp

[
−π

π2
⊥

vsU ′(x)

]
, (117)

where the prime over the potential denotes differentiation with
respect to x, U ′(x) = μdB(x)/dx. The quantity Nuni

n (x) has
a universal form which can be used to calculate any total
characteristic of the pair creation effect. Integrating the latter
expression over dp⊥ one obtain the final form,

jx ≈ j̃x = 1

(2π )3

∫ xR

xL

dxU ′(x)2 exp

[
−π

�2

vsU ′(x)

]
. (118)

For the examples discussed in Secs. IV A 1–IV A 4, the
total density of the magnon pair production has the following
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form:

j̃x = rcr δU

|μB′|

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, for L-constant step

δ̃/2, for Sauter-like step

G
(
2, π �2

vs|μB′|
)
, for exponential step

1
2 G
(

3
2 , π �2

vs|μB′|
)
, for inverse-square step

,

(119)

where δU = UL − UR is the magnitude of the step in all the
examples,

rcr = |μB′|2
(2π )3

exp

(
−π

�2

vs|μB′|
)

, (120)

and

δ̃ =
∫ ∞

0
dtt−1/2(1 + t )−5/2 exp

(
− πt�2

vs|μB′|
)

= √
π


(
1

2
,−2; π

�2

vs|μB′|
)

,

G(α, z) =
∫ ∞

1

ds

sα+1
e−x(s−1) = exxα�(−α, x). (121)

Here 
(α, β; z) and �(β, z) denote a confluent hypergeomet-
ric function and an incomplete � function, respectively.

From the general expression for the vacuum-to-vacuum
transition probability, given by Eq. (46), the universal form of
the vacuum-to-vacuum transition probability for the present
case reads

Pv ≈ exp

{
− V⊥T

(2π )3

∞∑
l=1

(−1)l−1
∫ xR

xL

dx
U ′(x)2

l2

× exp

[
−π

l�2

vsU ′(x)

]}
. (122)

Representation (122) coincides with the vacuum-to-vacuum
transition probabilities obtained from the imaginary part of
an effective action in the locally constant field approximation
[23,24]. In this approximation, the effective action S is ex-
panded about the constant field case, in terms of derivatives of
the background field strength Fμν ,

S = S(0)[Fμν] + S(2)[Fμν, ∂μFνρ] + ..., (123)

where S(0) involves no derivatives of the background field
strength Fμν (that is, S(0) is a locally constant field approxi-
mation for S that has a form of the Heisenberg-Euler action),
while the first correction S(2) involves two derivatives of the
field strength, and so on; see Ref. [25] for a review. Using
representation (47), one can see that in the locally constant
field approximation the probability Pv is given by Eq. (47)
where the action S is replaced by S(0).

V. CONCLUSION

In this work we present a Fock space realization of the
effective field model describing low-energy dynamics of the
antiferromagnetic magnons. Mapping the model to the theory
of a charged scalar field interacting with an external constant
electric field we apply recently developed approach of the

strong-field QED with step potentials to study the Schwinger
effect of the magnon-antimagnon pair production on magnetic
field inhomogeneities. Initial and final one-particle states are
constructed from stationary plane waves satisfied the Klein-
Gordon equation. Initial and final vacua are defined and initial
and final states of the Fock space are constructed. Mean num-
bers of magnons and antimagnons created from the vacuum
are expressed via overlap amplitudes of the stationary plane
waves. Observable physical quantities specifying the vacuum
instability are determined. The fluxes of energy and magnetic
moments of created magnons are analyzed. Characteristics of
the vacuum instability obtained for the number of magnetic
steps that allows exact solving the Klein-Gordon equation are
presented. In the case of a smooth-gradient step, universal
behavior of the flux density of created pairs is described and
the relation to the imaginary part of a one-loop effective
action S in a locally constant field approximation is estab-
lished. The results are quite general and are not limited to
the simple cubic-type lattice and the G-type antiferromagnet.
The presented study demonstrates a consistent application
of strong field QED methods in magnonics avoiding contra-
dictions and nonexistent paradoxes in the interpretation of
the obtained theoretical results. As a result, one can now
apply many of the results known from strong-field QED in
magnonics.

Condensed matter systems provide a possibility for ex-
perimental verification of quantum vacuum effects stimulated
by strong fields, in particular, a laboratory observation the
Schwinger effect of the violation of the vacuum instability due
to particle-antiparticle pair production, previously considered
possible only in supercritical fields in astrophysical situations.
This is due to the fact that in many cases low energy dynam-
ics of quasiparticle excitations in condensed matter systems
can be described by the Dirac model in which quasiparticles
are virtually massless. That is why external field intensities
needed for breaking the vacuum stability are relatively small
and can be observed in the laboratory conditions. Usually the
literature discusses the possibility to observe effects related to
the electron-hole creation from vacuum in the case of Dirac
and Weyl semimetals, such as the graphene and topological
insulators, where the low energy excitations are fermions; see,
e.g., Refs. [22,27,28] for the review. Since, the low-energy
magnons are bosons with small effective mass, then for the
first time it becomes possible to observe the Schwinger effect
in the case of the Bose statistics, in particular, the bosonic
Klein effect in laboratory conditions. As was already men-
tioned above, in the case of the Bose statistics appears a
new mechanism for amplifying the effect of the pair cre-
ation, which we call statistically assisted Schwinger effect. A
possible way to detect the Schwinger mechanism of antifer-
romagnetic magnons in experiments is discussed in Ref. [2].
For example, one can experimentally confirm this mechanism
by detecting the spin (the magnetic moment) current using an
inverse spin Hall effect.
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APPENDIX A: SOME DETAILS OF SCALAR FIELD
QUANTIZATION IN THE PRESENCE OF CRITICAL

POTENTIAL STEPS

The Heisenberg operator of the Klein-Gordon field �̂(X ) is
assigned to the scalar field �(X ). It is convenient to consider
the canonical pair of the field operator �̂(X ) and its canonical
momentum �̂(X ) as a column 
̂(X ),


̂(X ) =
(

i�̂†(X )
�̂(X )

)
. (A1)

The latter satisfies both the Klein-Gordon equation (7) given
in the Hamiltonian form,

[i∂0 − U (x)]
̂(X ) = Hkin
̂(X ),

Hkin =
(

0 −v2
s δ

i j∂i∂ j + �2

1 0

)
, (A2)

and the equal time canonical commutation relations

[
̂(X ), 
̂(X ′)]−|t=t ′ = 0,

[
̂(X ), 
̂†(X ′)]−|t=t ′ = δ(r − r′)σ1, (A3)

where Hkin is the one-particle kinetic energy operator; see,
e.g., Refs. [29,30]. It follows from Eq. (A2) that

i�̂†(X ) = [i∂0 − U (x)]�̂(X ), (A4)

The Hamiltonian Ĥ of the quantized scalar field has the
form

Ĥ = Ĥkin − 1

v2
s

∫

̂†(X )σ1U (x)
̂(X )dr,

Ĥkin =
∫

T̂ 00dr − H0,

T̂ 00 = 1

v2
s


̂†(X )σ1[i∂0 − U (x)]
̂(X ), (A5)

where Ĥkin is a kinetic energy operator, which, just from the
beginning, we write in a renormalized form with a constant
(in general, infinite) term H0 that corresponds to the kinetic
energy of vacuum fluctuations. In the case under consider-
ation, in the similar manner as discussing the inner product
(26), it is possible to evaluate integrals (A5) for arbitrary field
U (x), using only the asymptotic behavior (14) of functions in
the regions SL and SR where particles are free. Decomposing
the field 
̂(X ) over the complete set (8), and dividing inte-
gral (A5) in three integrals within the regions SL, Sint , and
SR, we reduce calculating the quantity (A5) to calculating
its one-particle matrix elements in the regions SL and SR;
see Sec. IVB.1 and Appendix B in Ref. [14] for details.
One can see that the matrix elements of the Hamiltonian
Ĥ depends on the total energy of a particle ε. However,
probabilities of the magnon scattering, reflection, and the
magnon-antimagnon pair production depend on the kinetic
energy terms π0(L/R) = ε − UL/R, which is a combination
of ε and UL/R. This is due to the fact that not the field U (x)
itself, acting on the magnons, does the work, but its derivative

∂xU (x). That is why in the field-theoretical description of
magnons embedded into an external inhomogeneous magnetic
field namely eigenvalues of the operator Ĥkin define vacuum
states and other state vectors in the Fock space.4

The formal expression of the effective charge (magnetic
moment) operator Q̂ is

Q̂ =
∫

ρ̂dr, ρ̂ = μ

2v2
s

[
̂†(X )σ1, 
̂(X )]+, (A6)

where [A, B]+ = AB + BA stands for the anticommutator. The
eigenvalues of the operator Ĥkin, together with one-particle
mean values of the effective charge, allow one to distinguish
particles and antiparticles.

Before proceeding to the definition of the operators of
interest (operators of fluxes), which usually are not considered
in QFT, it is useful to note that even in the framework of the
corresponding classical field theory an observable F can be
realized as an inner product of type (26) of localizable wave
packets �(X ) and F̂�′(X ),

F (�,�′) = (�, F̂�′), (A7)

where F̂ is a differential operator, whereas �(X ) and �′(X )
are solutions of the Klein-Gordon equation. Assuming that
an observable F (�,�′) is time-independent during the time
T one can represent it in the form of an average over the
period T ,

〈F〉 = 1

T

∫ +T/2

−T/2
F (φ, φ′)dt . (A8)

In general, the wave packets �(X ) and �′(X ) can be decom-
posed into plane waves φm(X ) and φ′

m(X ),

�(X ) =
∑

m

αmφm(X ), �′(X ) =
∑

m

α′
mφ′

m(X ), (A9)

where φm(X ) and φ′
m(X ) are superpositions of the solutions

ζ φm(X ) and ζ φm(X ). Taking into account the orthogonality
relation (19), one finds that the corresponding decomposition
of 〈F〉 does not contain interference terms,

〈F〉 =
∑

m

F (αmφm, α′
mφ′

m). (A10)

A physical quantity useful for the further analysis is the av-
erage over the period T of the effective charge current through
the surface x = const. Since the regions SL and SR supposed
to be macroscopic and the particles that come there are
free, then such a semiclassical statement of the problem seems
to be justified. Moreover, this is how the problem statement
is formulated in the theory of the potential scattering. The
corresponding QFT operator of the effective charge (magnetic
moment) current is proportional to the inner product on this

4In QED, where UL/R are potentials of an electromagnetic field,
the operator Ĥkin is gauge invariant, which implies that it is an
observable physical quantity in contrast with the Hamiltonian Ĥ. In
the case under consideration the constant values UL/R are physical
quantities and are used to tune the collinear ground state within the
regions SL and SR.
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surface given by Eq. (16),

Ĵ = 1

T

∫
Ĵxdtdr⊥,

Ĵx = μi

2
{[�̂(X ), ∂x�̂

†(X )]+ − [�̂†(X ), ∂x�̂(X )]+}. (A11)

Here Ĵx is the longitudinal component of the operator of the
effective current density Ĵ. Note that by virtue of Eq. (7) the
latter operator and the operator of the effective charge density
ρ̂ satisfy the continuity equation ∇Ĵ + ∂t ρ̂ = 0.

In what follows, we consider the energy flux of the scalar
field through the surface x = const. Its QFT operator has the
form

F̂ (x) = 1

T

∫
vsT̂

10dtdr⊥,

T̂ 10(x) = −[∂x�̂
†(X )]�̂†(X ) − �̂(X )∂x�̂(X ), (A12)

where T̂ 10 is the component of the operator of the energy
momentum tensor; see Refs. [14,15] for more details.

One can decompose the operator �̂(X ) into solutions of
the either initial or final complete sets (32) to construct in-
and out-states in an adequate Fock space:

�̂(X ) =
∑

m

M−1/2
m

[
Am(in)φ(in,+)

m (X ) + B†
m(in)φ(in,−)

m (X )
]

=
∑

m

M−1/2
m

[
Am(out)φ(out,+)

m (X )

+ B†
m(out) φ(out,−)

m (X )
]
. (A13)

The operator-valued coefficients can be determined with the
help of the inner product (26),

Am(in) = M1/2
m

(
φ(in,+)

m , �̂
)(

φ
(in,+)
m , φ

(in,+)
m

) ,

B†
m(in) = M1/2

m

(
φ(in,−)

m , �̂
)(

φ
(in,−)
m , φ

(in,−)
m

) ,

Am(out) = M1/2
m

(
φ(out,+)

m , �̂
)(

φ
(out,+)
m , φ

(out,+)
m

) ,

B†
m(out) = M1/2

m

(
φ(out,−)

m , �̂
)(

φ
(out,−)
m , φ

(out,−)
m

) ,

where Mm are normalization factors given by Eq. (31). These
operators define annihilation and creation operators of initial
or final particles in each the range �k (mk ∈ �k) as follows:

Am1 (in) = +am1 (in), B†
m1

(in) = −am1 (in);

Am1 (out) = +am1 (out), B†
m1

(out) = −am1 (out);

Am2 (in) = Am2 (out) = am2 , B†
m2

(in) = B†
m2

(out) = 0 ;

Am3 (in) = −am3 (in), B†
m3

(in) = −b†
m3

(in);

Am3 (out) = +am3 (out), B†
m3

(out) = +b†
m3

(out);

Am4 (in) = Am4 (out) = 0, B†
m4

(in) = B†
m4

(out) = b†
m ;

Am5 (in) = +b†
m5

(in), B†
m5

(in) = −b†
m5

(in);

Am5 (out) = +b†
m5

(out), B†
m5

(out) = −b†
m5

(out). (A14)

Here a and b are annihilation and a† and b† are creation
operators, the operators a and a† describe magnons and the
operators b and b† describe antimagnons. The vacuum vectors
|0, in〉 and |0, out〉 are null vectors for all the annihilation
operators a and b. Operators labeled by the argument “in”
are interpreted as initial particle operators, whereas operators
labeled by the argument “out” are interpreted as final particle
operators. Indeed, the commutation relations (A3) yield the
standard commutation rules for the introduced creation and
annihilation in- or out-operators. One-particle states of initial
(final) magnon and antimagnon are

a†
m(in/out)|0, in/out〉, b†

m(in/out)|0, in/out〉, (A15)

where a†
m(in/out) and b†

m(in/out) are given by Eq. (A14) for
each the range �k . The unitary transformation (21) implies a
canonical transformations between the in and out-operators.

Interpretation of the magnons and the antimagnon states
which follows from in Eqs. (A14) is consistent with a spec-
trum analysis of the kinetic energy operator Ĥkin and the
effective charge operator Q̂. Inserting decompositions (A13)
in Eqs. (A5) and (A6), we obtain diagonal representations for
these operators in terms of the introduced creation and annihi-
lation operators. The operators Ĥkin and Q̂ can be represented
as sums of five contributions, each one in the range �k ,

Ĥkin =
5∑

k=1

∑
m∈�k

Ĥm, Q̂ =
5∑

k=1

∑
m∈�k

Q̂m. (A16)

Note that a stationary state


m(X ) =
(

[εm − U (x)]φm(X )

φm(X )

)
, (A17)

where φm is one of the solutions from Eq. (32), satisfies the
following eigenvalue problem:

Hkin
m(X ) = [εm − U (x)]
m(X ). (A18)

This implies that the kinetic energy term of the one-particle
state reads

Em = ( φm, φm)−1
∫

V⊥
dr⊥

∫ K (R)

−K (L)

†

m(X )σ1

× [εm − U (x)] 
m(X )dx, (A19)

where the quantities ( φm, φm) are positive for m ∈ �1 ∪ �2

and are negative for m ∈ �4 ∪ �5. In the range �3 we have
that ( ζ φm, ζ φm) > 0, while ( ζ φm, ζ φm) < 0. Note that the
kinetic energy terms ζ Em corresponding to the states ζ φm and
the terms ζ Em corresponding to the states ζ φm are different
in the general case. The principal value of integral (A19) is
determined by integrals over the areas x ∈ [−K (L), xL] and
x ∈ [xR, K (R)], where the field derivative ∂xU is negligible
small. Thus, it is possible to evaluate integrals (A19) for any
form of the external field, using only the asymptotic behavior
(14) of functions in the regions SL and SR where particles are
free; see Sec. IV and Appendix B in Ref. [14] for details. Note
that εm − U (x) = π0(L/R) in the regions SL/SR, respectively.

It can be easily seen from Eq. (A16) that in the range
�1 ∪ �2 a one-particle state is the state of a magnon with the
kinetic energy Em > 0 and the magnetic moment μ whereas
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in the range �4 ∪ �5 a one-particle state is the state of an an-
timagnon with the kinetic energy −Em > 0 and the magnetic
moment −μ.

Inserting decompositions (A13) in operators (A11) and
(A12), we obtain a renormalized (with respect to the corre-
sponding vacua) in- and out-operators of the effective charge
(magnetic moment) current and energy flux flowing through
the surfaces x = xL and x = xR, respectively,

Ĵ (in) = Ĵ − 〈0, in|Ĵ |0, in〉,
Ĵ (out) = Ĵ − 〈0, out|Ĵ |0, out〉,
F̂ (x|in) = F̂ (x) − 〈0, in|F̂ (x)|0, in〉,

F̂ (x|out) = F̂ (x) − 〈0, out|F̂ (x)|0, out〉. (A20)

The one-particle mean values of the fluxes, the kinetic
energy, and the effective charge through the surfaces x = xL

and x = xR, given by Eqs. (A20), are proportional to the inner
product on these surfaces given by Eq. (19), that is, these
fluxes are proportional to the flux densities of the particles
with given m. Of course, in the range �2 ∪ �4 the flux densi-
ties of particles, given by standing waves, are zero.

With account taken of the charge conjugation, it can be
seen that the sign of the flux densities of magnons with given
m is equal to ζ in the range �1, whereas the sign of the flux
densities of antimagnons with given m is equal to −ζ in the
range �5 . In the ranges �1 and �5 an initial state may be
localized both in the regions SL and SR. This follows from the
way of choosing initial conditions. Taking into account direc-
tions of motion of magnons and antimagnons in the regions
SL and SR, we define initial and final states as it is done in
Eqs. (A14) and (32).

In the Klein zone �3 the identification of states demands a
special consideration. To this end, we represent explicitly the
operators Ĥm and Q̂m as follows:

Ĥm =+ Em +a†
m(out) +am(out)

−+ Em
+b†

m(out) +bm(out)

=− Em −a†
m(in) −am(in)

−− Em −b†
m(in) −bm(in);

Q̂m = μ[+a†
m(out) +am(out)

−+ b†
m3

(out) +bm3 (out)]

= μ [−a†
m3

(in) −am3 (in)

−− b†
m3

(in) −bm3 (in)], m ∈ �3. (A21)

Here ζ Em and ζ Em are principal values of integral (A19) for
ζ
m and ζ
m, respectively. They read

ζ Em=π0(R) + δU

2
|g(+|−)|−2,

ζ Em = π0(L) − δU

2
|g(+|−)|−2. (A22)

Thus, we see that in the range �3 the one-particle state ζ
m

is the magnon state with the kinetic energy ζ Em > 0 and
the magnetic moment μ whereas the one-particle state ζ
m is
the antimagnon state with the kinetic energy − ζ Em > 0 and
the magnetic moment −μ.

Let us find one-particle mean values of fluxes of the kinetic
energy and the effective charge through the surfaces x = xL

and x = xR, given by Eqs. (A20), in the range �3. With the
help of Eq. (19) we obtain:

Ja
m(in) = 〈0, in| −am(in)Ĵ (in) −a†

m(in)|0, in〉 = −μ(MmT )−1,

Ja
m(out) = 〈0, out| +am(out)Ĵ (out) +a†

m(out) |0, out〉 = μ(MmT )−1,

Jb
m(in) = 〈0, in| −bm(in)Ĵ (in) −b†

m(in)|0, in〉 = −μ(MmT )−1,

Jb
m(out) = 〈0, out| +b†

m(out)Ĵ (out) +b†
m(out)|0, out〉 = μ(MmT )−1;

F a
m (in) = 〈0, in| −am(in)F̂ (xR, out) −a†

m(in)|0, in〉 = −(MmT )−1π0(R),

F a
m (out) = 〈0, out| +am(out)F̂ (xR, out) +am(out)|0, out〉 = (MmT )−1π0(R),

F b
m (in) = 〈0, in| −bm(in)F̂ (xL, in) −b†

m(in)|0, in〉 = (MnT )−1|π0(L)|,
F b

m (out) = 〈0, out| +b†
m(out)F̂ (xL, out) +b†

m(out)|0, out〉 = −(MnT )−1|π0(L)|. (A23)

Taking into account the space separation of magnons and
antimagnons in the region SR and SL, one can use the mean
values (A23) to distinguish initial and final states in the
range �3.

The QFT operators of the effective charge (magnetic mo-
ment) current density Ĵx and energy flux density vsT̂ 10 flowing
through the surfaces x = xL and x = xR, that were introduced
above in the framework of the approximation under consid-
eration, are time-independent. It is clear that these operators
are defined up to certain C-numbers, which may affect explicit

forms of the corresponding vacuum means. This circumstance
allows one to relate matrix elements of these operators with
matrix elements of the corresponding exact strong-field QED
operators (which are time-dependent in the presence of the
time-dependent field Epristine). This can be done based on
the following physical considerations: Let us consider a re-
lation of the time-independent quantity Jcr

x , obtained in the
framework of approximation under consideration, to the ma-
trix elements of the time-dependent longitudinal component
Ĵ true

x (t ) of an exact current density operator of the strong-field
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QED. According to the general theory the difference δJ true
x

of the true final vacuum from the initial one is due to the
contribution of the current density of the created particles and
antiparticles,

δJ true
x = 〈0, true in|[Ĵ true

x (t2) − Ĵ true
x (t1)

]|0, true in〉, (A24)

where t1 < tin and t2 > tout are the time instants of switching
on and off of the field Epristine, respectively. Assuming that
effects of fast switching-on and -off are small, we can use
approximation (35) for the total number of created pairs. In
this case we obtain

δJ true
x = Jcr

x {1 + O([
√

vs|∂xU |T ]−1)}. (A25)

We see that the quantity Jcr
x can be represented as the follow-

ing mean value with respect to the |0, in〉 vacuum:

Jcr
x ≈ 〈0, in|[Ĵ true

x (t2) − Ĵ true
x (t1)]|0, in〉. (A26)

With the help of this result we may find a relation of the op-
erators Ĵ true

x (t2) and Ĵ true
x (t1) with the time-independent current

density operator Ĵx given by Eq. (A11). In particular, we see
that the difference Ĵ true

x (t2) − Ĵ true
x (t1) can be approximated by

a C-number,

Ĵ true
x (t2) − Ĵ true

x (t1) ≈ Jcr
x . (A27)

Then, for example, the current density operator Ĵ true
x (t1) can be

approximated by the time-independent current density opera-
tor Ĵx, Ĵ true

x (t1) ≈ Ĵx. In this case, we have Ĵ true
x (t2) ≈ Ĵx + Jcr

x ,
therefore the normal form of both Ĵ true

x (t1) and Ĵ true
x (t2) with

respect to the in- and out-operators of creation and anni-
hilation are the same. Thus, calculating one-particle mean
values of the effective charge current in Eq. (A23) one can
use the operator Ĵx. In a similar way, one can relate the
time-independent operator T̂ 10(x) to time-dependent compo-
nents of the exact operator EMT, for example, T̂ 10

true(t1, x) ≈
T̂ 10(x) and T̂ 10

true(t2, x) ≈ T̂ 10(x) + T 10
cr (x). In addition, calcu-

lating one-particle mean values of fluxes of the kinetic energy
in Eq. (A23) one can use the operator T̂ 10(x).

APPENDIX B: EXAMPLES OF EXACT SOLUTIONS WITH X STEPS

In this Appendix, we provide additional information on the computation of differential quantities that are relevant to the
investigation of magnon pair production stimulated by the external fields mentioned in Sec. IV. We present results only and refer
the reader to Refs. [14,31,33,35] for more comprehensive discussions.

For the L-constant magnetic step (63), solutions of Eq. (9) to all intervals can be expressed in the form

−ϕm(x) = Y

⎧⎪⎪⎨⎪⎪⎩
+C exp[i|pL|(x − xL)]g(+|−) − −C exp[−i|pL|(x − xL)]g(−|−), x ∈ SL,

−C{b1Dν[−(1 − i)ξ ] + b2D−ν−1[−(1 + i)ξ ]}, x ∈ Sint,

−C exp[−i|pR|(x − xR)], x ∈ SR,

(B1)

+ϕm(x) = Y

⎧⎪⎪⎨⎪⎪⎩
+Cg(+|+) exp[i|pL|(x − xL)] − −Cg(−|+) exp[−i|pL|(x − xL)], x ∈ SL,

+C{b′
1Dν[(1 − i)ξ ] + b′

2D−ν−1[(1 + i)ξ ]}, x ∈ Sint,

+C exp[i|pR|(x − xR)], x ∈ SR,

(B2)

where b j , b′
j , g(ζ |ζ ′ ), g(ζ |ζ ′

) are constants, which can be obtained via the continuity conditions:

+
−ϕm(xL/R − 0) = +

−ϕm(xL/R + 0),

d

dx
+
−ϕm(xL/R − 0) = d

dx
+
−ϕm(xL/R + 0). (B3)

By demanding continuity of the above functions and their derivatives at x = xR we find

b j = (−1) j+1 exp

[
iπ

2

(
ν + 1

2

)]√
ξ 2

2 − λ

2
f (−)

j (ξ2),

b′
j = (−1) j+1 exp

[
iπ

2

(
ν + 1

2

)]√
ξ 2

2 − λ

2
f (+)

j (ξ2), (B4)

where λ = π2
⊥/vsμB′ and f (±)

j (ξ ) were defined before; see Eqs. (67). Now, by imposing the continuity of the functions and
derivatives at x = xL we obtain the coefficients g(+|+) and g(+|−):

g(+|−) = e
iπ
2 (ν+ 1

2 )

√√√√√
ξ 2

1 − λ

√
ξ 2

2 − λ

8
[ f (−)

1 (ξ2) f (−)
2 (ξ1) − f (−)

2 (ξ2) f (−)
1 (ξ1)], (B5)
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g(+|+) = e
iπ
2 (ν+ 1

2 )

√√√√√
ξ 2

1 − λ

√
ξ 2

2 − λ

8
[ f (+)

1 (ξ2) f̃ (−)
2 (ξ1) − f (+)

2 (ξ2) f̃ (−)
1 (ξ1)], (B6)

where

f̃ (±)
1 (ξ ) =

(
1 ± i√

ξ 2 − λ

d

dξ

)
D−ν−1[∓(1 + i)ξ ],

f̃ (±)
2 (ξ ) =

(
1 ± i√

ξ 2 − λ

d

dξ

)
Dν[∓(1 − i)ξ ]. (B7)

For the Sauter-like magnetic step (76), solutions of Eq. (9) and (79) with real asymptotic momenta (14) in remote regions
x → ∓∞ read

ζ ϕm(x) = ζN exp(iζ |pL|x)[1 + exp (2x/LS)]−iLS(ζ |pL|+|pR |)/2
ζ um(x),

ζ ϕm(x) = ζN exp(iζ |pR|x)[1 + exp (−2x/LS)]iLS(|pL|+ζ |pR |)/2 ζ um(x), (B8)

where

−um(x) = F (a, b; c; χ ),

+um(x) = F (a + 1 − c, b + 1 − c; 2 − c; χ ),
−um(x) = F (a, b; a + b + 1 − c; 1 − χ ), (B9)
+um(x) = F (c − a, c − b; c + 1 − a − b; 1 − χ ),

where χ (x) is the change of variable defined in Eq. (77) and a, b, c are given by Eqs. (80). Using the above solutions and
Kummer’s connection formulas [32]

(1 − χ )c−a−b +um(x) = �(c + 1 − a − b)�(1 − c)

�(1 − a)�(1 − b) −um(x) + �(c + 1 − a − b)�(c − 1)

�(c − a)�(c − b)
χ1−c +um(x),

−um(x) = �(a + b + 1 − c)�(1 − c)

�(a + 1 − c)�(b + 1 − c) −um(x) + �(a + b + 1 − c)�(c − 1)

�(a)�(b)
χ1−c +um(x), (B10)

we conclude that

g(+|+) =
+N
+N

�(c + 1 − a − b)�(c − 1)

�(c − a)�(c − b)
,

g(+|−) =
−N
+N

�(a + b + 1 − c)�(c − 1)

�(a)�(b)
. (B11)

For the exponential step (92), general solutions of Eq. (9) with such a field can be presented as a linear combination of two
functions, y j

1(η j ) and y j
2(η j ),

y j
1(η j ) = e−η j/2η

ν j

j �(a j, c j ; η j )

= eη j/2η
ν j

j �(c j − a j, c j ; −η j ),

y j
2(η j ) = eη j/2η

−ν j

j �(1 − a j, 2 − c j ; −η j )

= e−η j/2η
−ν j

j �(a j − c j + 1, 2 − c j ; η j ), (B12)

where η j (x) are defined in Eqs. (93) and the parameters a j , c j by Eqs. (96). In particular, solutions with special asymptotic
properties in remote regions x → ∓∞ are classified as

+ϕm(x) = +N e−iπν1/2y1
1(η1),

−ϕm(x) = −N eiπν1/2y1
2(η1),

+ϕm(x) = +N eiπν2/2y2
2(η2), (B13)

−ϕm(x) = −N e−iπν2/2y2
1(η2).
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With the aid of this classification, we may express solutions to all intervals in the form

+ϕm(x) =
{

+ϕm(x)g(+|+) − −ϕm(x)g(−|+), x ∈ I,
+N eiπν2/2y2

2(η2), x ∈ II,
(B14)

−ϕm(x) =
{

+ϕm(x)g(+|−) − −ϕm(x)g(−|−), x ∈ I,
−N e−iπν2/2y2

1(η2), x ∈ II,
(B15)

where I = −∞ < x � 0, and II = 0 < x < +∞. To calculate the decomposition coefficients g(ζ |ζ ′
), g(ζ |ζ ′ ), we impose conti-

nuity of the functions and their derivatives at x = 0:
ζ ϕm(x − 0) = ζ ϕm(x + 0),

d

dx
ζ ϕm(x − 0) = d

dx
ζ ϕm(x + 0). (B16)

In particular, the coefficients g(+|−) and g(+|+) have the form

g(+|+) = −exp
[

iπ
2 (ν1 + ν2)

]
2
√

|pL||pR|

(
k1h1y2

2
d

dη1
y1

2 + k2h2y1
2

d

dη2
y2

2

)∣∣∣∣
x=0

,

g(+|−) = −exp
[

iπ
2 (ν1 − ν2)

]
2
√

|pL||pR|

(
k1h1y2

1
d

dη1
y1

2 + k2h2y1
2

d

dη2
y2

1

)∣∣∣∣
x=0

. (B17)

Last, exact solutions to Eq. (9) with inverse-square magnetic steps (105) can be represented as a linear combination of
Whittaker functions Wκ j ,μ j (z j ), W−κ j ,μ j (e

−iπ z j ),

w
j
1(z j ) = e−iπκ j/2Wκ j ,μ j (z j ),

w
j
2(z j ) = e−iπκ j/2W−κ j ,μ j (e

−iπ z j ), (B18)

where the variables z j (x) are given by Eqs. (106) and the parameters κ j , μ j by Eqs. (108). Their Wronskian determinant W
reads [36]

W = w
j
1(z j )

d

dz j
w

j
2(z j ) − w

j
2(z j )

d

dz j
w

j
1(z j ) = 1. (B19)

Sometimes, it is convenient to represent the set of solutions (B18) in terms of confluent hypergeometric functions

w
j
1(z j ) = exp

[
− iπ

2

(
κ j − μ j − 1

2

)]
e−z j/2|z j |c j/2
(ã j, c̃ j ; z j ),

w
j
2(z j ) = exp

[
− iπ

2

(
κ j + μ j + 1

2

)]
ez j/2|z j |c j/2
(c̃ j − ã j, c̃ j ; e−iπ z j ), (B20)

in which ã j = μ j − κ j + 1/2, c̃ j = 1 + 2μ j .
Based on asymptotic properties of the Whittaker functions with large argument [36], solutions with real asymptotic momenta

(14) in remote regions x → ∓∞ are classified as follows:

+ϕm(x) = +Nw1
1 (z1), −ϕm(x) = −Nw1

2 (z1),
+ϕm(x) = +Nw2

2 (z2), −ϕm(x) = −Nw2
1 (z2). (B21)

Thanks to the above classification, we may represent solutions valid at all x in two equivalent forms:

+ϕm(x) =
{

+ϕm(x)g(+|+) − −ϕm(x)g(−|+), x ∈ I,
+Nw2

2 (z2), x ∈ II,
(B22)

−ϕm(x) =
{

+ϕm(x)g(+|−) − −ϕm(x)g(−|−), x ∈ I,
−Nw2

1 (z2), x ∈ II.
(B23)

Demanding continuity of the solutions and their derivatives at x = 0 (B16) we discover that g(+|+) and g(+|−) admit the
forms

g(+|+) = 1√
|pL||pR|

[
|pL|w2

2 (z2)
d

dz1
w1

2 (z1) + |pR|w1
2 (z1)

d

dz2
w2

2 (z2)

]∣∣∣∣
x=0

,

g(+|−) = 1√
|pL||pR|

[
|pL|w2

1 (z2)
d

dz1
w1

2 (z1) + w1
2 (z1)

∣∣pR
∣∣ d

dz2
w2

1 (z2)

]∣∣∣∣
x=0

. (B24)
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