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Effect of local distortions on magnetic and magnetoelectric properties
of paramagnetic Pr3Ga5SiO14 langasite
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Magnetic-field-induced electric polarization has been observed in trigonal noncentrosymmetric paramagnetic
Pr3Ga5SiO14 langasite. We detected quadratic electric polarization along the a axis in the basal ab plane for
various magnetic field orientations. Electric polarization along the c axis is only evident starting from the fourth
power of magnetic field, in accordance with the trigonal symmetry. The magnetic properties of Pr3Ga5SiO14

primarily stem from the local anisotropic magnetic moment of the two lowest Pr3+ singlets (quasidoublet) in the
crystal electric field. The random distribution of Ga/Si in the 2d positions leads to a local distortion of the C2

symmetry and to a distribution of the quasidoublet splitting. By considering the interactions of local moments
among different Pr3+ positions within a phenomenological approach for the allowed magnetoelectric coupling,
we derive the electric polarization in terms of symmetry-allowed combinations of local magnetic susceptibilities
and field components. The magnetic field dependence of electric polarization in the basal plane, Pa,b∗, is mainly
determined by the accumulation of effective local susceptibilities, exhibiting similar behavior in low fields, while
polarization along the c axis, Pc, arises from the nonequivalence of local effective magnetic susceptibilities in
different Pr3+ positions. Our findings suggest that the temperature dependencies of magnetic and magnetoelectric
susceptibilities are highly sensitive to the distribution of the quasidoublet splitting, which reflects the local
symmetry breaking.
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I. INTRODUCTION

The magnetoelectric effect, discovered over half a century
agо [1], continues to be a subject of significant interest [2,3].
This interest is not only rooted in fundamental research but
also stems from the potential applications of magnetoelectric
materials. For instance, integrating such materials into com-
puter memory components [4–7], where magnetic properties
can be controlled by an electric field, holds promise for sub-
stantial energy savings [8]. However, the interaction between
magnetic and electric subsystems often proves to be weak
[9], and materials exhibiting this interaction are relatively
rare. Consequently, the quest for new materials with strongly
interacting magnetic and electric subsystems, coupled with
investigations into the physics of the magnetoelectric effect,
remains a pressing challenge [10–13].

In this context, the langasite compounds (La3Ga5SiO14)
(LGS) have garnered attention in recent years. They possess a
noncentrosymmetric space group P321 and can exhibit mag-
netoelectric properties when magnetic ions are incorporated
within the lattice. For example, iron-containing langasites,
such as Ba3NbFe3Si2O14, undergo antiferromagnetic ordering
at TN ≈ 27 K, forming a triangular spiral structure with double
magnetic chirality [14,15], and display magnetoelectric prop-
erties in external magnetic fields [16–18,20]. On the other
hand, the complexity of these magnetic structures can com-

*Contact author: tikhanovskii@phystech.edu

plicate the investigation of the underlying magnetoelectric
mechanisms.

In rare-earth langasites R3Ga5SiO14 (R = Nd, Pr, . . .),
studying the microscopic mechanisms of the magnetoelectric
effect is more straightforward, as they remain paramagnetic
even at very low temperatures down to 30 mK [19,21,22].
This is partially due to a frustration of exchange interactions
in a crystal with a kagomelike lattice. The magnetic properties
of concentrated rare-earth langasites have been extensively
investigated [19,21–26]. Pr3Ga5SiO14 (PGS) has received
special attention due to efforts to identify a spin-liquid state
[25], although such a state has not been confirmed [26].

Despite the detailed investigation of magnetic properties in
concentrated rare-earth langasites, magnetoelectric properties
have only been observed in Nd3Ga5SiO14 (NGS) [27]. The
emergence of the electric polarization could be explained
considering the symmetry-allowed magnetoelectric coupling
in the spin Hamiltonian of the Nd3+ Kramers ion. In ad-
dition to NGS, the magnetoelectric effect has been studied
in (La0.985Ho0.015)3Ga5SiO14 langasite (HoLGS) doped with
non-Kramer ions Ho3+ [28]. The quasidoublet ground state of
the Ho3+ ion in the crystal field determines the macroscopic
magnetic and magnetoelectric properties of HoLGS. Similar
to ferro- and alumoborates [29–35] with a related space group
R32, the ground state of the rare-earth ion plays a crucial role
in the behavior of the magnetic and magnetoelectric properties
of rare-earth langasites [27,28].

Praseodymium (Pr3+) is a non-Kramers rare-earth ion, like
Ho3+. However, in PGS, Pr3+ substitutes every lanthanum
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FIG. 1. Crystal structure of PGS langasite seen (a) along the
c axis and (b) along the a + b direction. Various ions in differ-
ent sites are indicated by color spheres. Pr3+ ions in magnetically
nonequivalent sites are denoted by numbers, 1, 2, and 3. Thin black
lines indicate the unit cell with lattice parameters a = 8.0661 Å,
c = 5.0620 Å [36]. Random occupation of 2d sites by Ga or Si ions
distorts the local C2 symmetry of the 3e positions for neighboring
Pr3+ ions.

ion, resulting in a stronger manifestation of magnetoelectric
properties (see Fig. 1). The fundamental difference between
PGS and HoLGS is in the significantly larger crystal field
splitting between the two lowest singlets of the Pr3+, of ≈
18 K [26], compared to ≈ 3 K for Ho3+ [28]. The occupation
of Ga and Si in the same positions in the local environment of
the rare-earth ion breaks the local C2 symmetry and leads to a
distribution of crystal field splittings. Similar to HoLGS, the
crystal field splits the Pr3+ multiplet and defines the notable
distance between the two lowest energy levels (quasidou-
blet) from the excited states, resulting in significant magnetic
anisotropy of the Pr3+ ion. Moreover, the observation of a
superlattice in LGS [37,38] could result in the existence of
more favorable configurations (positions of Ga and Si) and
the emergence of more preferable directions of the easy mag-
netization axis of Pr3+.

This work presents a detailed investigation of magnetic
properties of PGS and the first observation of the mag-
netoelectric effect in it. We experimentally studied the
magnetization with magnetic fields directed along the princi-
pal crystallographic axes (a, b∗, and c), as well as the magnetic
anisotropy in the ab, ac, and b∗c planes. It will be demon-
strated that the local environment, with broken symmetry due
to the equally probable occupation of Ga and Si ions at the 2d
sites, determines the ground state of the Pr3+ ions. We found
that the local magnetic susceptibilities of Pr3+ ions determine
the macroscopic electric polarization.

II. METHODS

The PGS crystal was grown by Balbashov and Egorov [39]
using the floating-zone method. We determined the quality
of the crystals by x-ray analysis and by scanning electron
microscopy in the z-contrast mode. In both samples, only
the langasite phase was detected. The magnetic properties of
the langasite samples were studied using a Magnetic Prop-
erty Measurement System (MPMS-50) by Quantum Design
in magnetic fields up to 5 T and at temperatures from 1.9 to
300 K. The pyroelectric studies were performed using a Keith-
ley 6517A electrometer in static fields up to 5 T within the

FIG. 2. Field dependencies of the magnetization of PGS for tem-
peratures from 1.9 to 60 K and (a) for H ‖ a and (b) for H ‖ c. Open
symbols represent experimental data; solid lines correspond to the
theory.

MPMS-50 using the original insert. The sample orientation
accuracy was around 2◦–5◦.

III. EXPERIMENT

A. Magnetic properties

We performed a comprehensive investigation of the mag-
netic and magnetoelectric properties of PGS including various
geometries of measurements. Angular dependencies of the
magnetization were measured in the ab∗, b∗c, and ac planes.
Additionally, we examined the field dependencies of the mag-
netization along the principal crystallographic directions at
various temperatures as well as the temperature dependencies
of the magnetic susceptibility along and perpendicular to the
trigonal axis over a wide temperature range.

The magnetization behavior is qualitatively similar for dif-
ferent field orientations. Below 10 K, it displays a nonlinearity
without saturation up to 5 T (Fig. 2). Strong anisotropy is
evident when the field is oriented in the basal plane (H ‖ a,
b∗) and perpendicular to it (H ‖ c). At Т = 1.85 K and μ0H =
5 T the angular dependence in the ac and bc planes reveals a
180◦ anisotropy with maxima along the c axis. Additionally, a
weak 60◦ anisotropy in the ab plane [Fig. 3(a)] with maxima
along the b∗ axis was observed. These angular dependencies
correspond to the expected trigonal symmetry. The observed
properties are attributed to the crystal field splitting of the
Pr3+ ground state, specifically resulting in anisotropy of the
magnetic moments (see Sec. IV, Theory).
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FIG. 3. Angular dependencies of magnetization of PGS in (a)
ab∗, (b) ac, and (c) b∗c planes at T = 1.85 K in external magnetic
field of μ0H = 5 T. Here, the angle ϕH or θH denotea rotations of
the magnetic field H = H (cos ϕH sin θH , sin ϕH sin θH , cos θH ) in the
ab∗ (θH = π/2), ac (ϕH = 0), and b∗c (ϕH = π/2) planes, respec-
tively. Open symbols represent the experimental data; solid lines are
theoretical fits with parameters given in Table I.

We measured the temperature dependencies of the mag-
netic susceptibilities in fields parallel (χ‖) and perpendicular
(χ⊥) to the trigonal c axis, over a temperature range from 1.9
to 300 K and in the magnetic field of μ0H = 0.1 T (Fig. 4).
Since below 300 K not all energy levels of the Pr3+ multi-
plet 3H4 are populated, the magnetic susceptibility cannot be
described by the usual Curie-Weiss law [19]. The suscepti-
bilities χ‖ and χ⊥ intersect at T ≈ 160 K (Fig. 4). At low
temperatures (T ≈ 2 K), the susceptibility shows the tendency
to saturate at a finite value.

B. Magnetoelectric properties

We measured the field-induced electric polarization in PGS
up to μ0H = 5 T and at temperatures from 1.9 to 160 K. The
measurements were conducted in the following geometries:
Pa(Ha), Pa(Hb∗) [Fig. 5(a)], Pa(Ha45b45◦c), and Pa(Ha45b135◦c)
[Fig. 5(b)]. In the two latter configurations [Fig. 5(b)], the field
is rotated from the c axis in the vertical plane by angles of 45◦
and 135◦, respectively. The rotation plane intersects the ab∗
plane at an angle of 45◦ to the a axis. For the polarization
along the c axis, the magnetic field H is rotated by 60◦ from
the c axis in the ac plane [Fig. 5(d)].

The electric polarization depends quadratically on the
field with slight deviations at low temperatures and high

FIG. 4. Temperature dependencies of the magnetic susceptibility
of PGS in an external field of μ0H = 0.1 T, oriented parallel (H ‖ a,
black) and perpendicular (H ‖ c, blue) to the basal plane. Open sym-
bols represent experimental data, while solid lines represent theory.
Additionally, the Van Vleck contribution (χ̂VV) and the contributions
from excited levels (χ3–9) to the susceptibility are shown. The inset
displays the temperature dependencies of the derivative of the mag-
netic susceptibility ∂χDC/∂T , demonstrating the same contributions
from the two lowest singlets for fields along the a and c axes; the
red line represents the derivative of Eq. (10) for H ‖ c (∂χ a

DC/∂T is
scaled by the factor 1.97).

fields [Figs. 5(a) and 5(b)]. Similar to rare-earth ferro- and
alumoborates [29–35], which also possess trigonal symmetry,
the quadric (with respect to H) magnetoelectric susceptibil-
ities α1,2

(2)(T ) ≡ α1,2(T ) determine the components of the
electric polarization in the ab∗ plane in quadratic approxima-
tion with the magnetic field: Pa ≈ α1Hb∗Hc + α2(Ha

2−Hb∗2)
and Pb∗ ≈ −α1HaHc − 2α2HaHb∗.

From the field dependencies of the polarization Pa, we
confirmed the expected relations Pa(Ha) = −Pa(Hb∗) and
Pa(Ha45b∗45◦c) = −Pa(Ha45b∗135◦c) within the temperature and
field range investigated and determined the quadratic mag-
netoelectric susceptibilities α1,2 [Fig. 5(c)] that decrease
rapidly with temperature. However, they remain finite in the
high-temperature regime. Below T = 50 K, the temperature
dependence of the magnetoelectric susceptibilities, like the
magnetic ones, is determined by the magnitude and disper-
sion of the splitting of the two lowest singlets (see Sec. IV,
Theory).

Measurements of Pc were conducted in a magnetic field
rotated in the ac plane by 60◦ from the c axis [inset in
Fig. 5(d)]. The lowest power in the magnetic field for the
induced Pc is four, and the corresponding term is expressed
as α(4)(T )HaHc(Ha

2−3Hb∗2). In the ac plane, it reaches a
maximum for the field oriented at 60◦ to the c axis (geometry
H ‖ a60◦c). In a weak magnetic field (μ0H < 1 T) or at
temperatures above 15 K, the polarization Pc varies approxi-
mately as H4T −3. As the field increases and the temperature
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FIG. 5. Field dependencies of the electric polarization Pa in PGS for (a) H ‖ a, b∗ and (b) H ‖ a45◦b45◦c, a45◦b135◦c at various
temperatures. The field is rotated from the c axis in the vertical plane by the angles of 45◦ and 135◦, respectively; the rotation plane intersects
the ab∗ plane at the angle of 45◦ to the a axis. (c) Temperature dependencies of the magnetoelectric susceptibilities α1,2(T ) obtained from
the field dependencies of Pa for H ‖ a, b∗, a45◦b∗ ± 45◦c. (d) Dependencies of the electric polarization Pc on the biquadratic field (μ0H )4 at
different temperatures. The magnetic field is rotated in the ac plane by 60◦ from the c axis. The inset shows the temperature dependence of
dP/dH4, demonstrating the deviation from the behavior α(4)(T ) ∼ T −3 at low temperatures. Symbols represent experimental data; solid lines
are theoretical fits with parameters given in Table I.

decreases, the field dependence of the polarization
deviates from the H4 dependence, similar to Pc in
(La1−xHox )3Ga5SiO14 (x ≈ 0.015) [28]. The magnetic
moments of Pr3+ ions remain unsaturated in the field range
investigated. However, the deviation from the Pc ∼ H4

behavior and the transition to the quasilinear dependence
indicate a tendency towards saturation in stronger magnetic
fields. At low temperatures, we also observed a deviation
of the magnetoelectric susceptibility α(4)(T ) from the T −3

dependence, which was not observed in HoLGS [28].

IV. THEORY

A. The ground state

In PGS, the Pr3+ magnetic ions occupy the three C2 low-
symmetry positions, where each local axis coincides with one
of the three second-order crystallographic axes (а, b, -a-b).
The Pr3+ ions remain paramagnetic down to low tempera-
tures. The random distribution of Ga and Si in the 2d positions
leads to a distortion of the local crystal field, breaking the
original C2 symmetry.
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FIG. 6. Schematic representation of the 2J ± 1 = 9 energy levels
of the Pr3+ ion ground multiplet 3H4 in PGS in the crystal magnetic
field. On the right, the Rayleigh function is shown that models the
splitting distribution of the two lowest singlets due to random local
distortions.

The crystal field Vcf of arbitrary symmetry (C1) splits
the ground multiplet 3H4 of the non-Kramers Pr3+ ion into
2J + 1 = 9 singlets. At low temperatures, the two lowest
energy levels (a quasidoublet), with a splitting value of �,
mainly determine the magnetic properties of the rare-earth
ion. Random distortions of the crystal field lead to spatial vari-
ation of �, which we characterize by the Rayleigh distribution
(Fig. 6):

ρ(�) = �

σ 2
e−�2

/2σ 2
. (1)

Equation (1) possesses only one parameter σ with a
mean value �̄c f = σ

√
π/2 and a variance D�̄ = σ

√
2−π/2.

In reality, the splitting distribution may differ from this
simple form; for example, the Voigt distribution is men-
tioned in Ref. [26]. Determining the distribution function
may require additional experiments or complex mathemat-
ical calculations; here we employ the simplest distribu-
tion that still adequately describes the experimental data
(see below).

B. Magnetization

To describe the magnetic properties of PGS and to account
for the effect of an external magnetic field H on the Pr3+
rare-earth ion, we use the perturbation theory with the Zeeman
term V̂ = μBgLĴH similar to the approach in Ref. [28]. Here,
μB and gL = 4/5 are the Bohr magneton and the Landé fac-
tor, respectively. By projecting the Hamiltonian Ĥ = V̂c f + V̂
onto the subspace of the two lowest singlets of Pr3+, we ob-
tain the 2 × 2 matrix Ĥ (within the second-order perturbation
theory with respect to V̂ ):

〈l|Ĥ |m〉 = 1

2
(−1)lElm + 〈l|V̂ |m〉 −

∑
k �=1,2

〈l|V̂ |k〉〈k|V̂ |m〉
Ek − (El − Em)/2

,

(2)
where l , m = 1, 2 denote the levels |1〉 and |2〉 (see Fig. 6)
of the quasidoublet, and k = 3, . . . , 9 represent the excited

levels. The influence of the excited levels leads to the dis-
placement of the ground doublet as a whole (Van Vleck
contribution to magnetization).

The effective spin Hamiltonian for the Zeeman energy,
and for the Van Vleck contribution, which accounts for the
splitting of the two lowest singlets in the crystal field, is given
by

Heff
(q) = �σ

(q)
ζ − μqHσ (q)

η − 1
2 Hχ̂

(q)
VV H, (3)

where σ
(q)
η = (0 −i

i 0 ), σ
(q)
ζ = (1 0

0 −1) are the Pauli matri-

ces of the position q, μqH =μ0nqH = −iμBgJ〈1|ĴqH|2〉, nq

represents an arbitrarily oriented easy axis, H denotes the
external magnetic field, and χ̂

(q)
VV stands for the Van Vleck

local susceptibility.
The energy levels of the Pr3+ lowest singlets in a position

q, obtained by diagonalizing the Hamiltonian in Eq. (3), are
given by

E (±)
q (H,�) = −εVV ± �q, (4)

where εVV = 1
2 Hχ̂VV H is the displacement of the two sin-

glets’ “center of mass” due to the admixture of excited states

in the field and �q =
√

(μqH )2 + �2 denotes the effective
field splitting. Considering the excited levels k = 3, . . . , 9, de-
scribed by the “center of mass” �cf2 (Fig. 6) with degeneracy
g = 7, we introduce the statistical sum Zq of the ion at position
q,

Zq(H, T,�) = e− E (+)
q (H,�)

kBT + e− E (−)
q (H,�)

kBT + ge− �c f 2
kBT , (5)

and the free energy of the system per single magnetic ion,

f (H, T ) = −1

6
kBT

∑
q

∫
(ln Zq(H, T,�))ρ(�)d�, (6)

where kB is the Boltzmann constant and T denotes the tem-
perature.

Differentiating Eq. (6) with respect to the field H , we
obtain the magnetization:

M(H, T ) ≈ 1

6Z (0)(T )

∑
q

μq(μqH )χq(H, T ) + χ̂vv(T )H

+ χ̂3−9(T )H, (7)

where Z (0) = 1 + ge− �cf2
kBT /2 reflects the change in the popu-

lation of excited levels. This is determined by the magnitude
of their “center of mass” �cf2 ≈ 260 ± 50 K (derived from
the fit of the magnetic susceptibility at high temperatures),
χ̂vv = ∑

q χ̂
(q)
VV /6Z (0)(T ) with

χq(H, T ) =
∫

1

�q
th

(
�q

kBT

)
ρ(�)d� (8)

representing the effective local magnetic susceptibility of
the Pr3+ ground quasidoublet in a position q. The integra-
tion in Eq. (8) takes into account the crystal field splitting
distribution arising from the random filling of the 2d po-
sitions by Ga and Si. The last two terms in Eq. (7) give
the Van Vleck contribution and the contribution arising from
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transitions between excited states k = 3, . . . , 9: χ̂3−9(T ) =
gμ̂2

eff e
− �cf2

kBT /2kBT Z (0)(T ), respectively. The tensor μ̂2
eff is de-

termined by the squared effective matrix elements along,

(μ‖
eff )

2
, and perpendicular to (μ⊥

eff )
2
, the c axis.

The random filling of the 2d positions by Ga and Si ions
results in a large number of inequivalent positions and, in
general, leads to a distribution of the orientations of the easy
axes. We assign arbitrary orientations to the local axis of
the rare-earth ion n1+(ϕ, θ ) = (cos ϕ sin θ, sin ϕ sin θ, cos θ )
(where ϕ and θ are azimuthal and polar angles, respectively)
due to the lack of symmetry in the local environment. How-
ever, according to x-ray diffraction studies [19] and to the
angular dependencies of magnetization (see Sec. III, Exper-
iment), the global symmetry P321 of rare-earth langasites
remains preserved. This preservation allows us to connect the
nonequivalent positions of magnetic ions through symmetry
operations C2 and C3. The C2 ‖ a ‖ x symmetry transforms
the n1+ local axis to n1−, where the components are n(x)

1+ =
n(x)

1−, n(y)
1+ = −n(y)

1−, n(z)
1+ = −n(z)

1−. Additionally, the rotations by
+120◦ and −120◦ connect the position “1±” with “2±” and
“3±”, respectively (n2±,3± = Ĉ±

3 n1±, where Ĉ±
3 are rotation

matrices). Thus, the easy axes in positions “1±”, “2±”, and
“3±” restore the P321 symmetry, despite this symmetry being
locally broken.

The absence of a saturation in the magnetization curves at
fields up to 5 T at low temperatures point toward significant
splitting between the two lowest singlets of the Pr3+ ion. Con-
sequently, the weak influence of the easy axes’ distribution
on the experimental angular dependencies of magnetization
suggests that it is sufficient to use only the average directions
of easy axes (i.e., without considering their distribution) to
describe the magnetic and magnetoelectric properties.

Based on the above-formulated model for the Pr3+ en-
ergy spectrum and its magnetic structure, we performed a
consistent modeling of the magnetization for different field
dependencies (Fig. 2), angular dependencies (Fig. 3), and
temperature dependencies (Fig. 4). This modeling enabled us
to determine the magnetic moment of the Pr3+ quasidoublet
as μ0 = (2.34◦ ± 0.07◦) μB and the local easy axis orien-
tation ϕ̄ = −90◦ ± 1◦ and θ̄ = 45.5◦ ± 1.0◦ (in the “1+”
position). Since the averaged easy axes lie in the b∗c plane,
nq+ and nq− are equivalent (Fig. 7); we denote them as nq

henceforth.
The theoretical angular dependence of magnetization in

the b∗c plane exhibits a pronounced asymmetry with re-
spect to the b∗ axis. The first feature arises at 44.5◦ from
the c axis, when the field is orthogonal to n1. The mini-
mum of the angular dependence occurs when the magnetic
field approaches the direction orthogonal to the axes n2,3.
The small difference between experimental and theoretical
curves in angular dependencies in the b∗c plane [Fig. 3(c)]
could be associated with neglect of the easy axes’ distri-
bution within the simplified model. The distribution of the
anisotropy axes’ orientations may lead to the smoothing out of
the angular dependencies and to a reduction of its asymmetry
with respect to the b∗ axes. We cannot exclude that such
a distribution could be observed in higher magnetic fields
or in local susceptibility measurements by polarized neutron
scattering.

FIG. 7. Schematic representation of the Pr3+ easy axis direc-
tions in PGS. The axes in local positions are oriented at angles
ϕ̄ = −90◦ ± 1◦ (in the b∗c plane and equivalent planes) and θ̄ =
45.5◦ ± 1.0◦ (average azimuthal and polar angles). The C2 and C3

symmetry operations connect the magnetization axes, which restores
the global P321 symmetry.

C. Temperature dependence of magnetic susceptibility

We performed simulations of the magnetic susceptibility
of PGS over a wide temperature range and determined the
parameter σ , which characterizes the crystal field splitting
distribution resulting from the local symmetry breaking.

The expansion of the effective local susceptibility, Eq. (8),
with respect to a weak magnetic field (μqH )  kbT, � takes
the form:

χq(H, T ) =
∫

1

�
th

(
�

kBT

)
ρ(�)d�

+
∫

1

2�

[
�

kBT
cosh−2

(
�

kBT

)

− th

(
�

kBT

)](
μqH

�

)2

ρ(�)d�. (9)

The first term is independent of the magnetic field and it
determines the contribution from the two lowest singlets to the
temperature dependence of the magnetic susceptibilities and
the polarization in the ab∗ plane (see below). The second term
depends on the orientation of the local easy axis with respect
to the magnetic field. At high temperatures, it is proportional
to ∼ T −3 and it determines the magnetoelectric susceptibility
along the c axis (see below).

Below 50 K, only the two lowest singlets determine the
temperature behavior of the magnetic susceptibility. Using
the expansion from Eq. (9) for the magnetization described
in Eq. (7), one can isolate the main contribution to the total
magnetic susceptibility along applied field in this temperature
region:

χH (T ) = dM(H, T )

dH

∣∣∣∣
H→0

= 1

6

∑
q

(μqH )2

H2

∫
1

�
th

(
�

kBT

)
ρ(�)d� + χ̂vv.

(10)

The temperature dependence of the derivative dχH (T )/
dT = −∑

q

∫
(μqH )2ρ(�)d�/6H2kBT 2cosh2�/kBT has

only one free parameter σ and it is determined by the
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TABLE I. The list of values of magnetic and magnetoelectric model parameters with their errors. The magnetic parameters are σ , parameter
of distribution function [Eq. (1)] with mean value �̄c f ; μ0, magnetic moment of the Pr3+ quasidoublet; ϕ̄ and θ̄ , azimuthal and polar angles
of the local easy axis in the “1+” position; χVVa, χVVb∗, and χVVc, the Van Vleck susceptibilities; �cf2, the “center of mass” of excited levels;
μ

‖
eff ≈ μ⊥

eff , effective magnetic moment of excited levels; Li, magnetoelectric phenomenological constants; and αVV
1/2, magnetoelectric Van

Vleck contributions. Braces define the temperature range where the magnetic parameters are significant.

Parameters Value ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T > 50 K

σ 11.5 ± 1.0 K
14.4 ± 1.4 K

�̄c f 18(3) K [26]
20 K [36]

μ0 (2.34 ± 0.07) µB

Magnetic ϕ̄ −90◦ ± 1◦

θ̄ 45.5◦ ± 1.0◦

χVVa, = χVVb∗ (2.4 ± 0.5) × 10−5 cm3/g
χVVc (1.7 ± 0.3) × 10−5 cm3/g
�cf2 260 ± 50 K

μ
‖
eff = μ⊥

eff (0.7 ± 0.1) µB

⎤
⎥⎥⎥⎦T > 50 K

L1 38 ± 1 µC/(m2 T)
L2 14 ± 1 µC/(m2 T)

Magnetoelectric L3 123 ± 1 µC/(m2 T)
L4 −7 ± 1 µC/(m2 T)

αVV
1 0.14 ± 0.02 µC/(m2 T2)

αVV
2 0.19 ± 0.02 µC/(m2 T2)

two lowest singlets. Here, the Van Vleck contribution
does not depend on temperature. For H ‖ c, the sum
over projections of the magnetic moments onto the
field is

∑
q (μqH )2/H2 ≈ 3μ2

z . For H ‖ a, it equals∑
q (μqH )2/H2 ≈ 1.5μ2

y . The ratio of two terms is equal
to cos2θ̄/ sin θ̄ ≈ 1.97 (where θ̄ is determined from the
angular dependencies) and serves as the proportionality
coefficient between the temperature dependencies of the
magnetic susceptibilities’ derivatives (inset in Fig. 4).
The behavior of both is identical and is well described
by σ = 11.5 ± 1.1 K, in the distribution ρ(�), which
corresponds to the variance D�̄ = σ

√
2−π/2 = 7.5 ± 0.7 K.

The mean value �̄c f = σ
√

π/2 = 14.4 ± 1.4 K indicates
an average energy splitting between the two lowest singlets,
which is in good agreement with 18(3) K and 20 K observed
by muon spin relaxation [26] and by specific-heat [36]
experiments, respectively.

At higher temperatures (T > 50 K), the contributions from
the Van Vleck term and from the transitions between excited
levels of Pr3+ (k = 3, . . . , 9) significantly contribute to the
temperature dependence of χ . As the temperature increases,
the population of the two lowest singlets decreases, leading
to a decrease in χVV (Fig. 4). The refined Van Vleck suscep-
tibilities are equal to χVVa = (2.4 ± 0.5) × 10−5 cm3/g and
χVVc = (1.7 ± 0.3) × 10−5 cm3/g for the field in the basal
plane and perpendicular to it, respectively. From this, the
effective contributions to the magnetic moment are obtained
as μa,b∗

vv = (1.7 ± 0.3) µB and μvv
c = (1.4 ± 0.3) µB (Table I).

At high temperatures, T > 120 K, the transitions within
the excited levels make the notable nonmonotonic contri-
bution to the magnetic susceptibility, which we effectively
account for in Eq. (7) (Fig. 4). An estimate of the effective

magnetic moment of excited levels is

μ
‖
eff ≈ μ⊥

eff = (0.7 ± 0.1) µB.

In general, the local symmetry breaking, that leads to a
distribution of the crystal field splitting, influences not only
the magnetic properties but also the electric polarization.

D. Polarization

We consider the influence of both magnetic H and electric
E fields [28] on Pr3+ ions to describe the magnetoelectric
properties of PGS. In this case, the expression V̂ = −d̂E +
μBgLĴH describes the perturbation operator V̂ , where the
first term is the interaction of the effective dipole moment
d̂ with the electric field and the second term represents the
Zeeman interaction, mentioned earlier. As previously shown
in Eq. (2), we construct the second-order perturbation theory
matrix of the total energy in the space of the two lowest states
of Pr3+ and determine the magnetoelectric part of the spin
Hamiltonian of the qth position in the local coordinate system
(denoted by a prime):

H ′
ME

(q) = −E ′
qĝMEH ′

qση. (11)

At arbitrary local symmetry (C1), the tensor of microscopic
(local) magnetoelectric interactions ĝME has all nine compo-
nents.

Using the magnetoelectric part of the spin Hamilto-
nian, Eq. (11), and the definition of the magnetic moment
of the quasidoublet μ′H ′

q = μ0n′H ′
q = −iμBgJ〈A|Ĵ′H ′

q|B〉,
we obtain the magnetoelectric contribution to the splitting

�′
q =

√
(μH ′

q + E ′
qĝMEH ′

q)2 + �2. Here the local coordi-

nate system is chosen such that n′ = (1, 0, 0). In this case,
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TABLE II. Irreducible representations of the P321 space group and transformation properties of the magnetic field H components,
nonlinear susceptibilities χ , χ123, and χ23, and electric field E.

Matrices of the

representations of the group H components Magnetic susceptibility Irreducible combinations

Representation E C2 2a Hζ H2
ζ χ (H ) of χ and H components E

�1 1 1 1 H2
a + H2

b∗ ; H2
c χ

�2 1 1 −1 Hc χ23Hb∗ Hc − χ123(−HaHc ) Ec

χ23(H2
a −H2

b∗ ) − χ123(−2HaHb∗ )

�3 1

(−1/2 −√
3/2√

3/2 −1/2

) (
1 0
0 −1

) (
Ha

Hb∗

) (
Hb∗ Hc

−HaHc

) (
H2

a −H2
b∗

−2HaHb∗

) (
χ123

χ23

)
χ

(
Hb∗ Hc

(−HaHc )

)
; χ

(
(H2

a −H2
b∗ )

(−2HaHb∗ )

)
;

(
Ea

Eb∗

)

the free energy of the qth position is given by f ′
q =

− 1
6 kBT

∫
ln(2 cosh �′

q)ρ(�)d� and the local electric polar-
ization is obtained by

P
′
q = − ∂ f

′
q/∂E

′
q = ĝMEμ0H

′
q(n′H

′
q)χq, (12)

where χq is the effective local magnetic susceptibility, Eq. (8).
Here, we omitted the contribution from the excited states in
the statistical sum. As a result, the superposition of the local
electric polarizations P′

q from nonequivalent positions, trans-
formed into the crystallographic coordinate system by the
transformation matrix Ŝ′

q, forms the macroscopic polarization
P = ∑

qŜ′
qP′

q = ∑
qPq.

The symmetry operations C2 and C3 connect the nonequiv-
alent local positions of Pr3+, establishing correlations be-
tween local magnetic susceptibilities, Eq. (8). For example,
a C2 symmetry operation relates χ1+ and χ1−. Therefore, their
sum is invariant with respect to C2, while their difference
changes sign. Similarly, C3 connects χ2± and χ3± with χ1±;
their combinations may belong to different representations of
the space group. However, as we concluded from the analysis
of the magnetic properties, it is sufficient to use average direc-
tions of the local anisotropy axes, which lie in the b∗c plane
and satisfy the C2 symmetry (χq+ = χq−). This allows us to
reduce the number of irreducible combinations of the effective
local magnetic susceptibilities to three:

χ = 1

3
(χ1 + χ2 + χ3), χ123 = 1

3
(2χ1 − χ2 − χ3),

χ23 =
√

3

3
(χ2 − χ3). (13)

The total magnetic susceptibility χ reflects the collective
response of the magnetic subsystem. It is finite for H → 0
and decreases with increasing field due to the saturation of
magnetic moments. On the other hand, the combinations χ123

and χ23 equal zero for H → 0. As the field strength increases,
various positions will react in different ways, leading to devi-
ation of χ123 and χ23 from zero. This process continues until
the moments reach saturation.

Table II presents the transformation properties of irre-
ducible combinations χ , χ123, and χ23, and the magnetic
and electric fields. We derive the relevant combinations of
susceptibilities and the components of the magnetic field be-
longing to the same representations as the electric field E. We
note that there is no saturation of magnetic moments up to
5 T. Therefore, the microscopic features of the polarization

do not become relevant, and a phenomenological approach
with a limited number of magnetoelectric terms remains
sufficient. More specifically, the symmetrized combinations
of the effective local magnetic susceptibilities, Eq. (13), with
quadratic combinations of the magnetic field components, de-
fine the electric polarization. Thus, the field dependence of the
in-plane components Pa,b∗ and the out-of-plane component Pc

is solely described by two phenomenological constants, L1,2

and L3,4.
The magnetoelectric part of the thermodynamic potential

�ME(H, T ), obtained by combining the electric field in the
ab∗ plane (Ea,b∗) with irreducible combinations of local effec-
tive susceptibilities and magnetic field components belonging
to �3, is given by

�ME(H, T )

= − L1μ0

Z (0)(T )
(EaHb∗Hc − Eb∗HaHc)χ (H, T )

− L2μ0

Z (0)(T )

(
Ea

(
H2

a − H2
b∗

) − 2Eb∗HaHb∗
)
χ (H, T )

− αvv
1

Z (0)(T )
(EaHb∗Hc − Pb∗HaHc)

− αvv
2

Z (0)(T )

(
Ea

(
H2

a − H2
b∗

) − 2Eb∗HaHb∗
) + · · · . (14)

Here we consider the symmetry-allowed Van Vleck contri-
bution, as well as the temperature dependence of the statistical
sum Z (0) due to increasing population of the excited states.

The combinations of χ123 and χ23 with quadratic com-
ponents of the magnetic field [such as Ea(χ123Hb∗Hc −
χ23(−HaHc)) + Eb∗ (−χ123(−HaHc) − χ23Hb∗Hc)] also be-
long to the �3 representation. However, their lowest order is
H4, indicating that these components only weakly influence
the planar polarization in the parameter range of interest.

As a result, the a and b∗ components of the polarizations
are given by

Pa(H, T ) = α1(H, T )Hb∗Hc + α2(H, T )
(
H2

a − H2
b∗

)
,

Pb∗ (H, T ) = α1(H, T )(−HaHc) + α2(H, T )(−2HaHb∗ ),
(15)

where α1,2(H, T ) = (L1,2μ0χ (H, T ) + αVV
1,2 )/Z (0)(T ) are the

quadric magnetoelectric susceptibilities. Considering the con-
nection between the local polarization of the qth position
and the macroscopic polarization P = ∑

qŜ′
qP′

q, the compo-
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nents of the microscopic tensor ĝME, Eq. (12), define the
phenomenological constants L1,2.

Using the expressions above, we carried out modeling
of the field dependencies of Pa at various temperatures
(Fig. 5). For T < 50 K and H → 0, the main contribution to
the magnetoelectric susceptibilities, α1,2(T ) = L1,2μ0χ (T ) +
αVV

1,2 , comes from the temperature-dependent effective local
magnetic susceptibility, Eq. (8) [Fig. 5(c)] with parameters
μ0, ϕ̄, θ̄ , and σ received from the magnetic data (Table I). For
higher temperatures, the Van Vleck contribution is important
and Z (0)(T ) have to be taken into account in α1,2(H, T ).
Thus, phenomenological constants L1,2 and αVV

1,2 (Table I) are
obtained from consistent modeling of Pa.

It is worth mentioning that, throughout the entire range of
temperatures and magnetic fields, the relationships Pa(Ha) =
−Pa(Hb∗) and Pa(Ha45b∗45◦c) = −Pa(Ha45b∗135◦c) hold, which
follows from Eq. (15) and the expansion of χ .

At low temperatures and in strong magnetic fields up to
5 T, slight deviations between theoretical predictions and ex-
perimental observations are seen. In this regime, additional
contributions to the polarization coming from χ123 and χ23

become relevant. These contributions arise from the nonequiv-
alence of different positions under an external magnetic field,
resulting in a correction to the in-plane polarization (Pa,b∗).
On the contrary, in the Pc component, these effects become
apparent even at fields below 5 T.

The polarization along the trigonal axis, Pc, transforms ac-
cording to the one-dimensional representation �2 of the P321
group. This representation incorporates combinations starting
from the fourth power of the field HxHz(H2

x −3H2
y ) and does

not include quadratic terms. In our case, the quadratic com-
binations of magnetic field components with susceptibilities
χ123 and χ23 determine the polarization Pc, which can be
represented as follows (see Table II):

Pc(H, T ) = L3μ0(χ23Hb∗Hc − χ123(−HaHc))

+ L4μ0
(
χ23

(
H2

a − H2
b∗

) − χ123(−2HaHb∗ )
)
.

(16)

In the regime of small fields and high temperatures,
μqH  kBT, �, only one phenomenological constant deter-
mines the polarization Pc ∼ H4:

Pc(H, T ) = − α(4)(T )HaHc
(
H2

a − 3H2
b∗

)
,

α(4)(T ) =
[

1

2
L3n2

y + 2L4nynz

]

×
∫

μ3
0

2�3

[
�

kBT
cosh−2

(
�

kBT

)
− th

(
�

kBT

)]
× ρ(�)d�, (17)

where the expansion, Eq. (9), for effective local susceptibili-
ties was used in symmetrized combinations, Eq. (13), along
with the definition n(θ̄ ) = (0, ny, nz ) = (0, sin θ̄ , cos θ̄ ).
The estimation of the phenomenological constant is 1

2 L3n2
y +

2L4nynz ≈ 24 µC/(m2 T). The integrand determines the tem-
perature dependence of the magnetoelectric susceptibility
α(4)(T ) [see inset in Fig. 5(d)]. At temperatures T > 15 K the
α(4)(T ) is proportional to T −3. However, at low temperatures
the distribution of the crystal field splitting becomes crucial,

which leads to a slightly slower temperature dependence for
α(4)(T ). This is similar to the behavior of the magnetic,
Eq. (10), and quadratic magnetoelectric, α1,2, susceptibilities.

In magnetic fields around 5 T and at low temperatures
(T < 5 K), the polarization shows a tendency for linear
behavior [Fig. 5(d)], and the quadratic expansion of the mag-
netic susceptibilities is insufficient to describe Pc. The field
dependencies of the susceptibilities χ123 and χ23 are cal-
culated in Eq. (16), and, taking into account the value of
1
2 L3n2

y + 2L4nynz, we obtain the phenomenological constants
as L3 = 123 ± 1 µC/(m2 T) and L4 = −7 ± 1 µC/(m2 T)
(Table I).

As mentioned above, the phenomenological constants Li

are determined by combinations of microscopic parameters
with components of the local magnetization in a distorted
local environment. Due to the large value of �̄c f , the mi-
croscopic features associated with strong anisotropy of the
Pr3+ ion are weak up to fields of 5 T. To describe them
quantitatively and to establish the relationship between the
phenomenological constants and the microscopic parameters,
measurements of electric polarization in stronger magnetic
fields are necessary.

V. CONCLUSION

Here we present a comprehensive experimental and
theoretical investigation of magnetic and magnetoelectric
properties of Pr3+-doped langasite. We observe the magnetic-
field-induced electric polarization in this material and provide
an explanation for this phenomenon.

Our experimental efforts involved detailed measurements
of magnetization along the principal crystallographic axes,
angular dependencies in various planes, and magnetic sus-
ceptibility. Notably, we found that the component of induced
polarization in the basal ab∗ plane (Pa) exhibits a quadratic
dependence on the magnetic field, while the polarization along
the trigonal axis (Pc) shows only the fourth power of the field
(H4), with a tendency to become quasilinear in fields close to
5 T.

To give insight to these phenomena, we suggest a model
assuming a quasidoublet ground state of the Pr3+ ion in the
crystal field. The random occupation of the 2d positions by
Ga and Si ions in PGS leads to a breaking of the local C2 sym-
metry, resulting in a distribution of the quasidoublet splitting
and of the orientations of the local anisotropy axes. How-
ever, the C2 symmetry and the rotation around the trigonal
c axis connects these local axes in different crystallographic
positions, thus restoring the global P321 symmetry of the
crystal.

From fitting of the experimental data, we demonstrated that
the average anisotropy axes of Pr3+ lie in the b∗c plane, while
the behavior of magnetic susceptibility at low temperatures
is strongly influenced by the distribution of the crystal field
splitting.

Furthermore, we developed a phenomenological approach
to describe the field-induced electric polarization, demon-
strating that the polarization in local positions depends on
effective local magnetic susceptibilities. The macroscopic po-
larization is determined by a superposition of these local
contributions. In particular, irreducible combinations of local
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effective susceptibilities allow us to take into account both the
global symmetry and the specific features of the Pr3+ ground
state.

The sensitivity of the temperature dependence of magnetic
and magnetoelectric susceptibilities allowed us to estimate the
average magnitude and dispersion to the crystal field distri-
bution. Our findings have implications beyond PGS langasite,
suggesting that the influence of local distortions on the ground
state and on magnetic and magnetoelectric properties may
also manifest itself in other langasite materials doped with
different rare-earth ions.

This work unveils the intricate interplay between crystal
structure, local symmetry, and magnetoelectric properties in
langasites, paving the way for further investigations.
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