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Electrical non-Hermitian control of topological magnon spin transport
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Magnonic topological phases realize chiral edge spin waves that are protected against backscattering, poten-
tially enabling highly efficient spin transport. Here we show that the spin transport through these magnonic chiral
edge states can be electrically manipulated by non-Hermitian control. We consider the paradigmatic magnon
Haldane model and show that it is transformed into an effective non-Hermitian magnon Chern insulator by
including a sublattice-dependent spin-orbit torque. In linear spin-wave theory, this electrically induced torque
reduces the damping of the chiral edge magnons along certain edge directions, leading to an enhancement of
the spin-wave amplitude. This prediction is confirmed by numerical simulations based on the Landau-Lifshitz-
Gilbert equation. For a spin-wave transport setup, in which magnons are excited by a microwave field and
detected with a normal metal conductor, we find that the magnon amplification is remarkably robust against
disorder, establishing non-Hermitian control as a promising avenue for topological magnonics.
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I. INTRODUCTION

Magnonics is a promising platform for the transport and
manipulation of the spin degree of freedom, bypassing the
Joule heating associated with conventional electronic devices
[1]. To improve the efficiency of magnon spin transport, it
has recently been proposed to exploit magnonic topologi-
cal phases, such as magnon Chern insulators [2–9], magnon
spin Hall insulators [10–12], and magnon Dirac [13,14] and
Weyl [15,16] systems. In particular the magnon Chern insula-
tors, supporting one-dimensional chiral edge modes protected
against backscattering, can potentially enable highly efficient
spin transport [17,18].

Magnonic systems naturally couple to their environment,
such as through (non)local dissipation [19–23], nonreciprocal
couplings [24,25], and local pumping through spin-transfer
torques [26,27]. These couplings are a curse and a blessing at
the same time: although they provide additional functionality
[28], they are also responsible for magnon damping, limiting
propagation distances.

Herein, we show that the coupling to the environment can
also be harnessed to reduce magnon damping. Concretely, we
consider a magnon Chern insulator coupled to a metallic layer
in such a way that sublattice-dependent spin-orbit torques
(SOT) modulate the spin dynamics. We identify a protocol to
selectively reduce the damping of the topological chiral edge
states.

Furthermore, we study the magnon amplification in dis-
ordered systems, showing that the topological protection
of the edge states remains, thus allowing for long-distance
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amplification of spin transport with a much lower effective
damping of the edge mode. This is different from previous
works which modulate magnon spin transport [29–32], where
the spin transport is not topologically protected and thus sen-
sitive to disorder. In addition, we show that our setup realizes
a non-Hermitian topological phase, making the connection to
the wider field of non-Hermitian topology, where topological
features are studied in open systems [33–37]. The open char-
acter of non-Hermitian topological systems not only allows
for the fine control of topological features for applications, but
also gives rise to topologies not found in Hermitian systems
[38]. To realize non-Hermitian topology, magnonic systems
offer a promising platform [39–47], owing in large part to
the ease with which magnons couple to their environment,
in combination with the development of magnonic topolog-
ical phases in the past 15 years [48,49]. We believe that our
findings here demonstrate the versatility of non-Hermitian
topology in magnonic systems, opening a pathway towards
further on-chip manipulation of spin waves and offering an
efficient scheme for the direct electrical control of propagating
spin waves.

This article is organized as follows. In Sec. II we introduce
the non-Hermitian magnon Haldane model and introduce
the magnon amplification within linear spin-wave theory. In
Sec. III we demonstrate the magnon amplification of chiral
edge states using numerical Landau-Lifshitz-Gilbert simula-
tions. In Sec. IV we show that the magnon amplification leads
to a signature in the buildup of magnon density. In Sec. V we
consider a propagating spin wave experiment and demonstrate
that the amplification is robust against disorder. Finally, we
end with a conclusion and discussion of the experimental
realization in Sec. VI. Additionally, in Appendixes A to E we
show details regarding the hybrid skin effect, the calculation
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FIG. 1. Band structure for a zigzag (a) and armchair nanoribbon
(b). The color scale indicates the damping correction −Im[ε] induced
by the spin bias μ/J = 1. Note that a positive (negative) damping
correction corresponds to an overdamped (amplified) mode. The
damping of the left- and right-moving edge mode in the zigzag
nanoribbon is enhanced and reduced, respectively. The inset shows
the Haldane model used, including a positive and negative SOT on
theA and B sites, respectively.

of the magnon density, the numerical Landau-Lifshitz-Gilbert
simulations, the transport calculations, and the possibility of
an asymmetric spin-orbit torque.

II. MODEL

We consider the magnon Haldane model, a prototypical
model of the magnon Chern insulator [7,8], with the inclusion
of a sublattice-dependent SOT, as shown in the inset of Fig. 1.
The spin dynamics are described by the Landau-Lifshitz-
Gilbert equation,

∂t Si = Si ×
(

−∂H
∂Si

− α

S
∂t Si + αsp

S
Si × μi

)
, (1)

where α ≡ α0 + αsp is the sum of the Gilbert damping α0

and the interfacial Gilbert damping enhancement αsp [20].
Throughout we set h̄ = 1. The Hamiltonian is given by

H = −1

2

∑
i j

[Ji jSi · S j − Di j ẑ · (Si × S j )] − H0

∑
i

Sz
i , (2)

where nearest neighbors experience an exchange coupling,
Ji j = J , and next-nearest neighbors are coupled through the
Dzyaloshinskii-Moriya interaction (DMI), Di j = −Dji = D.
The spins are aligned to an external magnetic field applied
in the z direction, contributing a Zeeman energy H0. Further-
more, μi = μi ẑ is the spin accumulation in the normal metal
attached to site i, taken such that

μi =
{+μ, i ∈ A,

−μ, i ∈ B (3)

changes sign between sublattices A and B. We refer to μ as
the spin bias throughout this work. For the magnon Haldane
model in Eq. (2) with its ground state spin texture oriented
out of the plane, the anomalous spin Hall effect [50,51] can
be used to create a spin accumulation at the normal metal to
ferromagnet interface. Other realizations of a magnon Chern
insulator, such as in-plane field-polarized Kitaev-Heisenberg
magnets [52], may require the spin Hall effect to induce the
spin bias.

We linearize the LLG equation (1) in deviations mi =
(Sx

i + iSy
i )/

√
2S from the uniform state Si = Sẑ, apply the

Fourier transform of the spin-wave operators, mA/B,i =√
2/N

∑
k eik·Ri mA/B,k, and obtain the equation of motion,

i(1 + iα)∂t�k =Hk�k, (4)

where we have introduced the effective non-Hermitian Hamil-
ton matrix

Hk = (H + 3JS)σ0 + hk · σ + iγ σz. (5)

Here �k = (mA,k, mB,k )T is the magnon state vector, σ is a
vector of Pauli matrices, and

hk = S
∑

i

⎛
⎝−J cos(k · δi )

J sin(k · δi )
2D sin(k · ρi )

⎞
⎠, (6)

where δi and ρi are the vectors connecting nearest and
next-nearest neighbors, respectively. Furthermore, we have
incorporated the SOT in the Hamiltonian, resulting in an ef-
fective imaginary mass iγ σz, with γ ≡ αspμ, which renders
the Hamiltonian non-Hermitian. The damping of a magnon
with frequency ω will then be given by the sum of (i) the
Gilbert damping, αω, and (ii) a damping correction due to
the spin-orbit torque, −Im[ε], where ε is the complex en-
ergy obtained from diagonalizing the effective non-Hermitian
HamiltonianHk.

The stability of this system can be determined by requiring
that Im[ωk] < 0 for all k. Thus, expanding ωk around k = 0,
we obtain

h̄ωk=0 = H + 3JS − iαH −
√

9J2S2 − γ 2. (7)

We obtain that the system is stable if γ 2 < 9J2S2. At γ 2 =
9J2S2 there is an exceptional point, signaling an instability
[40]. Additionally, at the Dirac points, K = (0, 4π/3

√
3a)

and K ′ = (2π/3a, 2π/3
√

3a), ω±
k is given by

h̄ω±
K = (H + 3JS ± 3

√
3DS)(1 − iα) ± iγ , (8)

h̄ω±
K ′ = (H + 3JS ± 3

√
3DS)(1 − iα) ∓ iγ , (9)

where ± refers to the upper and lower magnon band. We thus
obtain the additional stability requirement

γ /α < H + 3JS − 3
√

3|D|S. (10)

The Chern number Cn of the nth band is still well de-
fined in the presence of the imaginary mass γ and we find
C1 = −1 and C2 = 1, if D > 0 and |γ |/JS < 1 [53]. From
the bulk-boundary correspondence it thus follows that in the
topologically nontrivial phase there exist chiral edge modes
for open boundary conditions. However, the finite imagi-
nary mass iγ will lead to crucial modifications of the chiral
edge modes’ damping and localization, resulting in reduced
damping and localization of the modes on one side of the
sample [54].

In what follows, we set S = 1, H = 1.1, α0 = 5 × 10−3,
and αsp = 5 × 10−3. Furthermore, we set D/J = 0.2 and a =
3.5 Å, inspired by the candidate magnonic topological mate-
rial CrI3 [55].

We show in Fig. 1 the dispersion of a nanoribbon, cho-
sen with either zigzag or armchair edges along the periodic
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FIG. 2. (a) Rectangular system considered, where a spin wave
is excited with a pulse at frequency ω0 at the bottom right corner.
(b) The spin-wave amplitude, 1 − Sz

i , is shown, for sites “1” (solid),
“2” (dashed), and “3” (dotted) indicated in (a). The difference 	Sz ≡
Sz

i − Sz
i |μ=0 is shown below, i.e., the difference as the spin bias is

turned on. For μ > 0, the zigzag edge indicated by a solid/dashed
arrow amplifies/suppresses. The armchair edges neither amplify nor
suppress.

boundary conditions. The color scale indicates the damping
correction, where a positive (negative) damping correction
corresponds to an overdamped (amplified) mode. Note that
the total damping of each mode is positive, i.e., −Im[ε] < αω

for all modes, as required for stability. We emphasize that our
calculations include the fact that boundary spins have a lower
coordination number than the bulk spins, effectively reducing
the on-site potential on the edge [14,56].

For the zigzag edges, Fig. 1(a), the right-moving modes
have reduced damping, i.e., −Im[ε] < 0, because they have
support on the A sites, with a positive spin bias applied. In
contrast, the left-moving modes have an increased damping,
because of their support on the B sites, with a negative spin
bias applied. Right-moving edge modes are therefore ampli-
fied relative to left-moving edge modes. The bulk modes also
have damping corrections, but since these are not topologi-
cally protected, disorder will cut down their lifetime, while
the edge modes remain protected, as we will show below in
the context of spin transport.

For the armchair-terminated nanoribbon, Fig. 1(b), edge
modes are not amplified and the tiny damping corrections to
the bulk modes are too small to be visible on the chosen color
scale. Instead, for the armchair edges, the effect of the SOT
manifests itself as a hybrid skin effect, localizing the edge
modes on one side of the sample [53,54,57–59], as further
analyzed in Appendix A.

III. NUMERICAL LLG SIMULATIONS

Having established the magnon amplification within linear
spin-wave theory, we next confirm it by means of numerical
simulations of the full LLG in finite-size systems, as indicated
in Fig. 2(a). We initialize the system in the uniform state
Si = Sẑ and excite an edge mode at time t = 0 on the bottom
right corner, with a frequency ω0/J = 3.8 in the gap. We
track the spin-wave amplitude, defined as 1 − Sz

i , and the spin-
wave amplitude difference under bias, 	Sz ≡ Sz

i − Sz
i |μ=0, at

selected sites at the edge at a distance from the excitation
point. Below, we refer to these measuring points, denoted by

FIG. 3. Same as Fig. 2, but for a triangle configuration chosen
such that all edges are of the zigzag type and amplifying for μ > 0.

“1, 2, 3” in Fig. 2(a), as “detectors.” Further details of the
simulations are discussed in Appendix C.

The simulated system is a rectangle, with approximately
similar lengths of armchair and zigzag edges and we show the
detected signal in Fig. 2(b). The excited edge mode travels
around the system, arriving at detector “1” after a charac-
teristic time determined by its group velocity. As the edge
mode has traveled through a zigzag edge, its signal is either
amplified or suppressed, depending on the sign of the spin
bias μ [compare green and blue lines in Fig. 2(b)], leading
to a signature in 	Sz

i . Next, going from detector “1” to “2,”
the mode passes through an armchair edge, which does not
amplify the mode. Thus, while the signal at detector “2” is
reduced by Gilbert damping, 	Sz

i stays nonzero. Finally, the
modes arrive at detector “3” after traveling through a zigzag
edge with an opposite termination to the first zigzag edge.
Therefore, the modes that were previously amplified are now
suppressed, and vice versa, as quantified by a zero 	Sz

i in
Fig. 2(b).

It is also possible to design a triangle oriented such that
all of its edges are of the zigzag type and terminated pre-
dominantly by A sites. Therefore, each edge amplifies the
mode, resulting in a recurrent amplification as the mode trav-
els around the system. This setup is shown in Fig. 3, where
the splitting is present at all detectors. Note however that,
due to the finite Gilbert damping in the system, the growth
is bounded.

IV. MAGNON DENSITY

The identified magnon amplification leads to a signa-
ture in the average magnon density 〈ni〉. To show this, we
add a stochastic magnetic field hi to the LLG equation (1)
that enforces the quantum-mechanical thermal population of
magnons [60–62]. We set μ/J = ±0.002, such that the spin
accumulation in the attached normal metal is smaller than
the lowest magnon band (|μ| 	 H) and also small compared
to the temperature, which we expect to apply to any real
system at room temperature. For the case where |μ| ≈ H ; see
Appendix B.

In Fig. 4 we show the relative change in the magnon occu-
pation, δ〈n〉, between the cases with and without spin bias, for
a nanoribbon of length d/a = 43. Depending on the sign of
the spin bias μ, the magnon density increases (δ〈n〉 > 0, red)
or decreases (δ〈n〉 < 0, blue) on opposite corners of the lattice
[compare Figs. 4(a) and 4(b)], which is a direct result of the
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FIG. 4. Relative change in magnon occupation, δ〈n〉, for opposite
values of the spin bias μ/J: (a) −0.002 and (b) +0.002, summed
over a hexagon containing three A and three B sites. The sign of
spin bias determines the localization of the edge modes on the top or
bottom zigzag edge. The total length of the nanoribbon is d/a = 43
and we only show the outermost hexagons.

amplification of the zigzag edges that transport spin towards
these corners. As shown in Appendix B, the modulus of δ〈n〉
is smaller for systems with shorter zigzag edges and saturates
around d∗/a = 50, since for zigzag edges much shorter than
the magnon relaxation length, a single magnon spends as
much time on the top as on the bottom zigzag edge, thereby
not experiencing a net amplification effect. This interpretation
is further supported by the observation that d∗ decreases for
increasing Gilbert damping (i.e., for a decreasing relaxation
length), as further discussed in Appendix B.

We conclude that the magnon density is a good measure
of the amplification, especially since the spin accumulation
can be electrically controlled—allowing a single experimental
setup, potentially using nitrogen-vacancy magnetometry [63],
to switch between the cases presented in Figs. 4(a) and 4(b).

V. TRANSPORT

Since the chiral edge magnons are robust against elastic
back scattering, they are particularly interesting for highly
efficient spin transport [17]. Below, we show that the topo-
logical edge spin transport can be electrically controlled in
disordered systems with zigzag termination. We consider a
propagating spin wave experiment as shown in Fig. 5(a).
Magnons are excited with a microwave antenna—modeled by
a local excitation field for sites i below the antenna, hexc

i =
h [cos(ω0t ), sin(ω0t ), 0] with strength h and frequency ω0—
and detected with a normal metal strip, into which they inject
spin. The spin bias is nonzero only between the injector and
the detector [see green region in Fig. 5(a)], such that detection
and excitation are performed in the Hermitian part of the
system. We include disorder as random on-site magnetic fields
drawn from a uniform distribution in the interval [−δ/2, δ/2].
We consider a nanoribbon of length d , zero temperature, and
a finite disorder level of δ/J = 1 (such that, since H = 1.1,
all magnon energies remain positive). For further technical
details of the transport calculation, and results for varying
levels of disorder, see Appendix D.

The resulting spin current injected in the right lead is
shown in 5(b) for μ/J = ±1 and μ = 0, for the topological
trivial (D = 0) and nontrivial (D/J = 0.2) system. First, we
observe that, in the topologically trivial case, D = 0, there is

FIG. 5. (a) Transport setup considered. Magnons are excited with
a transversely oscillating magnetic field in the left antenna and are
detected through spin pumping into a normal metal lead on the
right. We consider the transport through zigzag edges, which exhibit
amplification. (b) The injected spin current in the right lead, I (ω0),
as a function of excitation frequency ω0, at a fixed distance d/a =
200 comparing the topologically trivial (D = 0) and topologically
nontrivial (D/J = 0.2) case and the effects of μ. The shaded area
indicates the topological magnon gap supporting the chiral edge
states. The bulk transport is suppressed by the presence of disorder
in these calculations.

no notable amplification of the signal for μ/J = ±1 compared
to μ = 0. However, for the nontrivial case, D �= 0, we observe
an amplification or damping, depending on the sign of the spin
bias μ. This result is in direct agreement with the amplifica-
tion found in the numerical LLG simulations (recall Fig. 2).
The amplification or damping is strongest for excitation fre-
quencies in the gap, where the topologically protected edge
modes reside. We conclude that the amplification of the edge
modes is robust against disorder, while the amplification or
damping of the bulk modes is strongly suppressed and can be
effectively ignored.

To investigate the distance dependence of the amplified
signal we define the relative amplification factor δI ≡ (I+μ −
I−μ)/2I0 as the amplification relative to the unmodified
signal. Figure 6(a) shows δI as a function of d and ω0. For
numerical stability, we only plot δI if I+μ > 10−12Iη, where
Iη is the maximum transported spin current at d/a = 30 and
μ = 0. Only the edge modes exhibit sizable relative ampli-
fication, as expected from their disorder immunity; their δI
increases with distance, since the longer an edge magnon
travels, the moreA sites with positive SOT it travels over. The
bulk modes on the other hand have scattered off impurities
before any amplification can take hold.

As shown in 6(b) (orange line), the transported spin current
follows an exponential decay, I±μ ∝ exp(−d/l0) exp(±d/lμ),
where l0 is the spin-bias-independent decay length and
lμ is the amplification length scale, with lμ > l0 (see
Appendix D). Consequently, we obtain δI = sinh (d/lμ),
which fits the numerical data very well (blue line). From
this fit, we have determined lμ/a = 231.8 and l0/a = 14 at
ω0/J = 3.5. These numbers agree with the approximations
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FIG. 6. (a) For D/J = 0.2 and |μ|/J = 1, the relative ampli-
fication δI ≡ (I+μ − I−μ)/2I0, as a function of distance, d , and
excitation frequency, ω0. We only show δI if I+μ > 10−12Iη, where
Iη is the maximum transported spin current at d/a = 30 and μ = 0.
(b) At frequency ω0/J = 3.5 [indicated by the white dashed line in
(a)] the relative amplification δI as a function of d (left axis, open
symbols). The solid line (blue) is a fit to the function sinh(d/l ′). Also
shown is the spin current I0 relative to the maximum transported spin
current Iη

0 at d/a = 30, for no spin bias (right axis, solid triangles),
fitted to exp(−d/l0) (dashed line, orange).

l0 ≈ vg/(2αω0) ≈ 14a ≈ 5 nm and lμ ≈ vg/(αspμ) ≈
200a ≈ 70 nm, where vg = Ja is the group velocity of
the edge mode. Importantly, lμ is inversely proportional
to μ and thus for a weaker SOT the amplification grows
slower with distance. For example, if μ/J = 0.1, we obtain
lμ ≈ 103a ≈ 500 nm. From Fig. 6(b) one can now read off
the expected relative amplification factor δI for a distance d ,
where the unamplified signal can still be measured; e.g., for
d/a = 300 we find δI ≈ 160% and a decay of I0/Iη

0 ≈ 10−9.

VI. CONCLUSION AND EXPERIMENTAL REALIZATION

We have shown that the chiral edge states in the magnon
Haldane model can be electrically controlled through ap-
plying a SOT. For the zigzag edge geometry this results in
an amplification of the edge modes, which we have con-
firmed using numerical Landau-Lifshitz-Gilbert simulations.
In addition, this amplification is reflected in the magnon
density, which gets increased on one side of the sample.
Finally, we have shown this enhanced transport to be robust
against disorder within the linear spin-wave theory formalism,
indicating that amplification over large distances is a possibil-
ity. Throughout, we have assumed a sublattice-antisymmetric
SOT [recall Eq. (3)], but we show in Appendix E that the
amplification of the edge modes is qualitatively the same for
a sublattice-asymmetric SOT, which we believe to be experi-
mentally easier to realize.

Based on our results, we foresee two possibilities to realize
the non-Hermitian topological magnon phase considered in
this work: (i) certain magnetic compounds and (ii) artificial
magnetic materials. First, the sublattice-dependent SOT can
be engineered by putting a spacer between the magnetic and
normal metal layer that breaks the sublattice symmetry or by
using magnetic layers with a built-in sublattice asymmetry,
e.g., due to buckling as realized in honeycomb or kagome
materials [64,65]. A normal metal layer placed above and
below the magnetic layer would then couple asymmetrically
to the A and B sites, respectively. Applying a positive spin
accumulation μ in the top normal metal and a negative spin
accumulation μ in the bottom normal metal, for example by
opposite voltages, then realizes the antisymmetric SOT as
considered in this work. Secondly, the sublattice-dependent
SOT could also be realized in artificial magnetic materials,
such as topological magnonic crystals [4,66] and magnetic
solitons in a honeycomb lattice [67]. These artificial materials
would offer remarkable control over both the driving and the
edge geometry.

Finally, we comment here on the size of the spin-orbit
torque. With sufficient optimization, the spin-orbit torque γ

can be 10 mT per 1011 A m−2 [68,69]. The maximal current
density that can be applied is device specific, but as an exam-
ple we take here magnonic waveguides composed of Bi-doped
yttrium iron garnet (BiYIG) and platinum (Pt), where current
densities of 1011 A m−2 have been achieved in the context
of magnon amplification [70]. Similar current densities have
been achieved in other systems [30]. Taking a current density
of 1011 A m−2, we obtain a spin-orbit torque of γ = 10 mT.
For αsp = 5 × 10−3 we then obtain μ = 0.2 meV. Given that
typically J ≈ 1 meV, this gives a ratio of μ/J = 0.2. Follow-
ing the analysis as presented in Sec. V, this corresponds to
lμ = 103a ≈ 350 nm.
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APPENDIX A: HYBRID SKIN EFFECT

Besides a damping correction, the model considered also
exhibits the hybrid skin effect, which we discuss here in more
detail. Importantly, this hybrid skin effect manifests itself only
for nanoribbons with an armchair edge. For nanoribbons with
a zigzag edge, the edge modes have symmetrical support on
either the top or bottom: the left-moving mode is localized on
one side and the right-moving mode on the other side of the
ribbon. To demonstrate this, we show in Figs. 7(a) and 7(b)
the zigzag-terminated magnon spectrum and the localization
of the eigenmodes. We obtain a left-moving mode and right-
moving mode, which are localized on opposite sides of the
sample.

For the armchair ribbon, Figs. 7(c) and 7(d), the eigen-
modes |ψ |2 have an asymmetric distribution in space and have
stronger support on one side of the sample. Therefore, the
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FIG. 7. For a zigzag (top row) and armchair nanoribbon (bottom
row), we show the magnon dispersion (a), (c) and the localization
of the eigenmodes circled in red (b), (d). The color scale in (a),
(d) indicates the damping enhancement −Im[ε] induced by the spin
bias μ/J = 1. The damping of the left- and right-moving edge mode
in the zigzag nanoribbon is enhanced and reduced, respectively,
whereas in the armchair nanoribbon the edge modes exhibit the
hybrid skin effect and thus have larger support on one side of the
sample.

armchair edge modes exhibit a hybrid skin effect. The skin
effect generally refers to the localization of eigenmodes on
one side of the sample [57,58], but here the localization is
only present for edge modes in the armchair geometry. We
therefore refer to this as the hybrid skin effect, as suggested
by Refs. [53,54], who first discovered this effect. Not shown
here are the bulk modes, but we have confirmed that these do
not exhibit this asymmetric localization. Finally, we note that
the asymmetric localization of the magnon density discussed
in the main text is the equivalent of the hybrid skin effect
discussed here, but for open boundary conditions [53].

In the zigzag orientation there is no hybrid skin effect, but
there is a damping enhancement of the edge modes—which
has the same physical origin, namely the non-Hermitian topol-
ogy. Both effects are therefore two sides of the same coin,
manifested differently under different boundary conditions.

APPENDIX B: DETAILS OF CALCULATIONS
FOR THE MAGNON DENSITY

To calculate the magnon density, we add to the LLG equa-
tion a magnetic field hi, modeling stochastic fluctuations, such
that ∂t Si|stoch = −Si × hi. After linearization, we obtain the
equation of motion

i(1 + iα)∂t mi =
∑

j

Hi jm j, (B1)

where

Hi j = δi j

(
H + S

∑
n

Jin + iγ j

)
− S(Ji j + iDi j ) (B2)

is the linear spin-wave Hamiltonian and γi ≡ αμi. We now
Fourier transform the equation of motion to frequency space

to obtain ∑
j

G−1
i j (ω)mj (ω) = h0

i (ω) + hsp
i (ω). (B3)

Here, h0/sp
i (ω) is the Fourier transform of the circular com-

ponents h0/sp
i = hx

i + ihy
i of the stochastic magnetic field,

taking into account the fluctuations related to the bulk Gilbert
damping (h0

i ) and the interfacial spin-pumping (hsp
i ). The

inverse magnon propagator is given by G−1
i j (ω) = −δi j (1 +

iα)ω + Hi j , where Hi j is the effective non-Hermitian Hamil-
tonian in real space, given by Eq. (B2). At finite tempera-
tures, the stochastic magnetic field hi(ω) has to be chosen
such that 〈hi(ω)〉 = 0 and 〈h0/sp

i (ω)h0/sp
j (ω′)∗〉 = 2πδ(ω −

ω′)R0/sp
i j (ω), where

R0
i j (ω) = δi j

4α0ω/S

eω/kBT − 1
, Rsp

i j (ω) = δi j
4αsp(ω − μi )/S

e(ω−μi )/kBT − 1
(B4)

are covariance matrices determined by the quantum-
mechanical fluctuation-dissipation theorem to ensure agree-
ment with the quantum-mechanical linear spin-wave theory
for magnons [60–62].

The average magnon number, 〈ni〉, of the local spin i can
then be found as

〈ni〉 =
∫

dω

2π
{G(ω)[R0(ω) + Rsp(ω)]G†(ω)}ii. (B5)

To highlight the relative change of 〈ni〉 under the spin bias μ,
we show in the main text

δ〈ni〉 ≡ 〈ni〉μ=0 − 〈ni〉
〈ni〉μ=0

× 100%, (B6)

i.e., the relative change of magnon density as the spin bias
is turned on. Because the site-resolved occupation is strongly
dependent on the on-site spin bias, we average over a hexagon
containing three A and three B sites. We note that one single
site can be part of up to three hexagons. To show that the
averaging procedure does not neglect information, we show in
Figs. 8(a) and 8(b) the change in magnon density for a smaller
nanoribbon with d/a = 7, after and before the averaging pro-
cedure.

We consider a nanoribbon of length d and width of 6a,
oriented such that its zigzag edges are of length d . In the
main text, we only show the change in magnon density for the
three outermost hexagons. We find that the change in magnon
density increases as a function of nanoribbon length. We show
this in Fig. 9(a), where we find that, for small (d/a < 50),
the change in magnon density increases, saturating for larger
sizes. The sizes for which saturation is reached are found to be
independent of the spin-orbit torque strength. We have there-
fore chosen to show in the main text the case for d/a = 43,
for which the change in magnon density is already 95% of
the change in magnon density at d/a = 103. Additionally, we
show in Fig. 9(b) the change in magnon density for increasing
Gilbert damping, where we have set α = αsp, while keeping
γ = αspμ constant. For increasing Gibert damping, the satu-
ration length reduces. Additionally, the overall magnitude of
the change in magnon density increases, but this we attribute
to the fact that we keep γ constant—such that, as we increase
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FIG. 8. (a),(b) Relative change in magnon occupation, for a smaller finite nanoribbon, with length d/a = 7, such that we are able to show
the entire nanoribbon. (c),(d) The relative site-resolved change of magnon density, before spatial averaging. The magnon density changes
between the A and B sites and thus the buildup of spin is hard to observe. After averaging one sees the buildup of spin more clearly, as in
(a),(b). Parameters for (a)–(d) are identical to Fig. 4 in the main text.

αsp, we simultaneously decrease μ to keep the product αspμ

constant.
The stochastic magnetic fields in Eq. (B4) follow from

with the quantum-mechanical FDT. We expect the quantum-
mechanical nature of the FDT to become relevant if the spin
accumulation is comparable to the temperature energy scale.
In the main text, we have chosen |μ|/J = 0.002 and we
therefore do not expect such corrections there. To demonstrate
that the quantum-mechanical nature of the FDT becomes
relevant for large μ, we choose μ/J = 0.1 (as a reminder,
T/J = 1) and show the resulting magnon density (for a small
nanoribbon) in Fig. 10. We observe that the magnon density
on average increases for both positive and negative spin bias
μ, which we therefore attribute to the quantum-mechanical
FDT. In realistic systems at room temperature, however, we do
not expect the spin accumulation to be comparable to the tem-
perature energy scale and we thus concentrate on μ/T 	 1
when discussing the magnon density in the main text.

APPENDIX C: DETAILS OF NUMERICAL
LANDAU-LIFSHITZ-GILBERT SIMULATIONS

We describe here the details for numerically solving the
Landau-Lifshitz-Gilbert equation [Eq. (1) in the main text].
A spin wave is excited with a pulse of a local transversely
oscillating magnetic field he = b0 fe(t )(cos ω0t x̂ + sin ω0t ŷ)
added to the LLG equation, such that ∂t Si|e = −δinSi ×
he, where n is the excitation site. Here fe(t ) = exp[−(t −
b)2/2c2] is an envelope function which slowly turns the pulse
on and off, since turning on the excitation pulse instanta-

neously will excite a range of spurious frequencies. We have
chosen b = 4.5J−1, c = 3J−1, and b0/S = 5 × 10−3. At t = 0
all spins are aligned along the z directions and the LLG equa-
tion is numerically solved with time steps of 	t = 0.01J−1.

APPENDIX D: DETAILS OF TRANSPORT CALCULATIONS

We consider in the main text a transport setup as shown in
Fig. 5(a). Magnons are excited by an antenna on the left side,
travel through a nanoribbon oriented such that the transport
occurs parallel to the zigzag edge, and inject spin into an
attached normal metal right side. We model this by taking a
nanoribbon of length d and adding a local driving field hexc

i =
b0 cos ω0t x̂ δi∈antenna to the leftmost sites. To the rightmost
sites we add a normal metal lead. In order to minimize reflec-
tions, we add an interfacial Gilbert damping enhancement αIF

to the left- and rightmost sites. For the sites between the left
antenna and right normal metal lead we allow for μ �= 0, while
μ = 0 for the sites in contact with the left antenna and right
normal metal. The detection and injection therefore happens
in the Hermitian phase, but transport happens in the non-
Hermitian phase. We consider T = 0 in these calculations, but
note that at finite temperatures there will also be spin injected
in the lead because of the thermal population of the magnons.
However, this effect can easily be subtracted experimentally.

Similar to Eq. (B3), the equation of motion for this system
is given by

∑
j

G−1
i j (ω)mj (ω) = hexc

i (ω), (D1)

FIG. 9. (a) Change in magnon density for the upper-right hexagon, as a function of length d of the nanoribbon, for different values of the
spin bias μ. (b) Same as (a), but for different values of α = αsp, while keeping the product γ = αspμ constant at γ /J = 10−5. Note that the
decrease in magnitude for increasing α can be explained by the corresponding decrease in μ to keep αspμ constant.
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FIG. 10. Relative magnon density with μ/J = 0.1 and T/J = 1,
for opposite values of the spin bias μ/J . Other parameters are identi-
cal to Fig. 4 in the main text. Importantly, the overall average magnon
density increases and is no longer symmetric around δ〈n〉 = 0, which
we attribute to quantum-mechanical corrections to the FDT, since
here μ is comparable to the temperature T .

where hexc
i (ω) = hδ(ω − ω0)δi∈antenna is the Fourier transform

of the excitation field.
The spin current injected in the right lead can then be found

from the continuity equation ∂t 〈Sz
i 〉 = 0 as [17]

I (ω0) = αIF

∫
dω

2π

∑
i∈right lead

{ωG(ω)H(ω)G†(ω)}ii, (D2)

where [H(ω)]i j = hexc
i (ω)hexc

j (ω) = h2δ(ω − ω0)δi∈antenna,
the summation is over all lattice sites in contact with the right
lead, and αIF is the interfacial Gilbert damping enhancement
of the normal metal lead serving as the detector. In order
to minimize reflections, we choose the Gilbert damping
enhancement of the antenna and detection lead as αIF = 1.

In addition to the uniformly distributed on-site disorder
δ discussed in the main text, here we also investigate the
effect of defect disorder. We accounted for defect disorder by
randomly removing a fraction w of the sites, implemented by
setting a large on-site magnetic field Hdefect = 1000H on those
sites. In addition, the spin-orbit torque is set to zero on those
sites, to ensure that they are truly defects. We average over
N = 100 realizations.

1. Effects of disorder

We first study the effect of disorder on the observed relative
amplification factor δI ≡ (I+μ − I−μ)/2I0, shown in Fig. 11.
We first observe that, in the absence of disorder, both the bulk
and edge modes amplify the signal, with both positive and
negative sign of δI . Importantly, the edge mode amplification
factor is always positive, whereas the bulk mode amplification

FIG. 11. Relative spin transport amplification factor δI as a function of antenna distance d and excitation frequency ω0 for selected disorder
concentrations. δ denotes the random on-site potential and w the defect concentration. (Top) No disorder; δ = w = 0. (Left panels) Only
random on-site potential disorder. (Right panels) Only defect concentration. For numerical stability, we only plot δI if I+μ > νIη, where Iη
is the maximum transported spin current at d/a = 30 and μ = 0, and ν = 10−12 for the random on-site potential disorder and 10−10 for the
defect concentration. In both cases, for increasing disorder, the bulk signal is suppressed, while the signal carried by the edge modes is more
robust. Note that the color scales are not equivalent for each figure and that the color scale extends to negative values. However, δI is always
positive for excitation of the edge modes.
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FIG. 12. Injected spin current with μ/J = +1, as a function of distance, for a frequency in the bulk (left) and a frequency in the band gap
(right). Note that the injected spin current is shown on a log scale. The signals are represented by the stars and the lines are numerical fits to
Eq. (D3), where σl is the standard error of the l parameter, defined as the square root of the covariance.

factor can have either sign, depending on excitation frequency
and distance d to the antenna. Upon adding disorder, the
bulk amplification factor is significantly reduced, while the
edge signal is relatively unaffected. Increasing the disorder
δ significantly suppresses the relative amplification factor δI
in the bulk, while the edge mode is relatively unaffected.
This we attribute to the topological protection of the edge
modes, which disallows backscattering. Additionally, we ob-
serve some smaller differences between the on-site disorder
δ and defect concentration w. Most strikingly, the defect
concentration suppresses the relative amplification factor for
larger ω0, whereas the on-site disorder does not. Furthermore,
the defect concentration does not produce as clear a signal as
the on-site disorder, which we attribute to the fact that, for the
same number of realizations, the defect concentration has not
yet converged.

2. Model of relative amplification factor δI

To further explain the distance dependence of the relative
amplification factor, we propose here a simple model, where
we assume that the injected spin currents decay exponen-
tially [17],

Iμ(ω0) = c0 exp

(
−d

l

)
, (D3)

where lμ is the effective decay length of the excited magnon
with frequency ω0 and applied spin orbit torque μ and c0 is
a constant. We will first show that this model of exponential
decay is accurate, by performing a numerical fit, as shown
in Fig. 12. We choose a frequency in the bulk and in the
band gap, such that we excite a bulk and edge mode, and
perform a numerical fit to Eq. (D3). We stress here that the
data shown here is after averaging over N = 100 realizations
of the disorders. In addition, we show in Fig. 13 the result
of performing this fitting procedure to all frequencies and
disorder levels. In both figures, we show the standard error of
the fitted l , defined as the square root of the covariance. From
the quality of these fits we can conclude that the assumption
of exponential decay is well justified, even in the presence of
an applied spin bias μ.

We now proceed to further develop a model for
the effective decay length, which we propose can be

written as

l = vgτ, (D4)

with vg the group velocity of the mode with frequency ω0 and
the lifetime

τ−1 = τ−1
0 + τ−1

μ , (D5)

where τ0 is the spin bias-independent lifetime, due to a com-
bination of Gilbert damping and scattering of defects, and τμ

is the lifetime enhancement as a result of the applied spin bias
μ. We can thus write the injected spin current as

Iμ(ω0) ∝ exp

(
− d

l0

)
exp

(
− d

lμ

)
, (D6)

where l0 ≡ vGτG and l = vGτμ is the amplification length
scale. In Fig. 14(a) we show the ratio of Iμ/I0 for a single
frequency and disorder level. Following Eq. (D6), we fit this
data with the assumption I±μ/I0 ∝ exp(∓d/lμ) and show the
resulting fit as the solid lines. In Fig. 14(b) we perform this fit
for all frequencies in the band gap and show the resulting lμ.
The error bar indicates the standard error of the fitted l and we
only show data points where the standard error is smaller than
5a. We can now draw two conclusions: (i) the amplification or
suppressing is well described with the model of exponential
decay with two lifetimes and (ii) for opposite spin bias the
effective amplification length scale l±μ has opposite sign and
can thus be well approximated as l+μ = −l−μ.

We are now in a position to develop a model for the ampli-
fication factor, δI ≡ (I+μ − I−μ)/2I0, which can be written as

δI = 1

2

(
e
− d

l+μ − e
− d

l−μ

)
= sinh

(
d

lμ

)
, (D7)

where we have assumed that l+μ = −l−μ.
We can additionally perform a simple estimate, by taking

the edge magnons in the middle of the gap, for a ferro-
magnet with compensated boundaries [7], such that we have
v(ω0) = Ja and by assuming τμ = 1/(αspμ). For the param-
eters μ/J = 1 and αsp = 5 × 10−3, as in the main text, we
then find lμ/a = 200. Additionally, for the edge modes, the
lifetime τ0 is independent of disorder, as can be concluded
from Fig. 14(b). Thus we have τ0 = (2αω0)−1 and obtain
l0 = vgτ0 ≈ 14 for ω0/J = 3.5. Both these estimates are in
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FIG. 13. For increasing disorder β, the fitted decay length l , as defined in Eq. (D3). The dashed line indicates the lower band gap, separating
bulk and edge modes. Error bars indicate standard error of the l parameter, defined as the square root of the covariance, but most error bars are
too small to be seen.

excellent agreement with the l0 and lμ obtained from fitting
the numerical results, as shown in Fig. 6 in the main text.

APPENDIX E: ASYMMETRIC SPIN-ORBIT TORQUE

To contrast the scenario of sublattice-antisymmetric spin
bias studied in the main text, we here consider the case of
sublattice-asymmetric spin bias. Concretely, we assume that
the spin accumulation is nonzero on theA sites only,

μi =
{
μ, i ∈ A,

0, i ∈ B,
(E1)

which might be experimentally more feasible, since it only
requires a single normal metal layer. In what follows, we
assume for simplicity that the Gilbert damping enhancement
αsp is still present on all sites—such that α = α0 + αsp is
constant throughout the system—but this is not a necessary
requirement. After linearization and Fourier transforming, we
obtain the same equation of motion (4), but with iγ σz →
iγ (σ0 + σz )/2, such that there is only an imaginary mass on
the A sites. The long-wavelength excitations are then, up to
first order in the dissipative terms, ωk=0 = H − i(αH − γ /2)

and thus the system is only stable if γ /2 < αH . There are
therefore now two stability requirements: αspμ/2 < αH and
μ < H .

We first calculate the band structure for a zigzag and arm-
chair nanoribbon, shown in Fig. 15(a). Here we observe the
same amplification of the right-moving edge modes compared
to the left-moving edge modes (cf. Fig. 1 in the main text) for
the zigzag nanoribbon. However, the damping correction is
negative everywhere, due to the fact that μi > 0 everywhere—
as opposed to the antisymmetric setup, where μi has opposite
signs on different sublattices. We also calculate the magnon
density, as shown in Fig. 15(b), which displays the same fea-
tures as the antisymmetric setup (cf. Fig. 4 in the main text).

We next reproduce the numerical LLG simulations in Fig.
15(c). We observe the same amplification (cf. Fig. 2 in the
main text), splitting the signal depending on the sign of the
spin-orbit torque. However, because of the asymmetric nature
of the spin-orbit torque, the signal is not canceled at the third
detector and is only slightly reduced.

Finally, we show the amplification of the spin current for
the asymmetric setup in Figs. 15(d)–15(f). We can clearly
observe the same amplification of the topological edge states

FIG. 14. (a) For ω0/J = 1.9, the ratio of injected spin current with a spin bias μ �= 0 to no spin bias μ = 0. The solid lines indicate the
resulting fit to exp(∓d/lμ). (b) For frequencies in the gap, the fitted lμ for positive (solid lines) and negative (dashed lines) spin bias μ. The
error bars show the standard error and we only show lμ if the standard error is less than 5a. Importantly, we conclude that l+μ = −l−μ.
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FIG. 15. Results for the asymmetric spin-orbit torque only applied on the A sites, showing that asymmetric spin-orbit torque exhibits the
same features as the antisymmetric spin-orbit torque. (a) The band structure (equivalent of Fig. 1); (b) magnon density (equivalent of Fig. 8);
(c) numerical LLG simulations (equivalent of Fig. 2); (d) transported spin current [equivalent of Fig. 5(a)]; (e) the relative amplification and
(f) the relative amplification, only showing the edge mode [equivalents of Fig. 6(a)]. In (e), the color scale is dominated by the bulk modes at
low frequency. We therefore also show in (f) the relative amplification factor for only the edge modes, in order to highlight the similarity with
the antisymmetric spin-orbit torque presented in the main text.

(cf. Figs. 5 and 6 in the main text). We thus conclude that
the same robust amplification of the chiral edge modes can
be achieved with an asymmetric spin-orbit torque. However,
we also observe that we obtain some spurious amplification
of the bulk modes at low frequencies, which is not necessarily
suppressed by the finite disorder. These bulk modes dominate

the color scale in Fig. 15(e) and we therefore also show in
Fig. 15(f) the relative amplification only for frequencies cor-
responding to the excitation of edge modes. From Fig. 15(f)
we conclude that we obtain the same disorder-protected spin
transport as in the presence of an antisymmetric spin-orbit
torque.
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