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Multiple-Q states are expressed as a superposition of spin density waves at multiple ordering wave vectors,
which results in unconventional complicated spin textures, such as skyrmions, hedgehogs, and vortexes. We
investigate the multiple-Q instability by focusing on the low-symmetry ordering wave vectors in momentum
space. By systematically performing the simulated annealing for effective spin models with various ordering
wave vectors on a two-dimensional square lattice, we classify the magnetic phase diagram into four types
according to the position of the ordering wave vectors. Three out of four cases lead to a plethora of isotropic
multiple-Q instabilities yielding collinear, coplanar, and noncoplanar double-Q and quadruple-Q magnetic
phases, while the remaining case leads to an anisotropic double-Q instability when the multiple-spin interaction
is introduced. Our results indicate that exotic multiple-Q phases distinct from the skyrmion crystal phase are
expected when the ordering wave vectors lie on the low-symmetry positions in the Brillouin zone.
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I. INTRODUCTION

Multiple-Q states characterized by a superposition of mul-
tiple spin density waves have attracted much attention as a
source of complicated magnetic structures [1]. Depending on
the type of constituent spin density waves, a variety of spin
textures have been realized [2], such as magnetic skyrmion
crystals [3–11], hedgehog crystals [12–17], meron crystals
[18–22], and tetra-axial vortex crystals [23]. For example,
a two-dimensional superposition of the three spiral waves
on a triangular lattice leads to a skyrmion crystal, while a
three-dimensional superposition on a cubic lattice leads to
a hedgehog crystal. These spin textures often induce topo-
logically nontrivial physical phenomena like the topological
Hall effect [24–31], which would be promising for future
spintronics applications [32–34].

In a classical spin system with a fixed spin length at each
site, only the isotropic exchange interactions in the form of
Si · S j , where Si stands for the classical spin at site i, are not
enough to stabilize the above multiple-Q states in the ground
state. In the case of the skyrmion crystal, additional factors,
such as the Dzyaloshinskii-Moriya interaction [35,36], ther-
mal fluctuations [37], multiple-spin interaction [38], dipolar
interaction [39], and magnetic anisotropy [40–42], are needed
to stabilize the ground-state skyrmion crystal. This is because
the spin configurations as a result of the multiple-Q super-
position lead to a nonzero intensity at higher-harmonic wave
vectors, which gives rise to the energy loss compared with
a single-Q (1Q) spiral state under the constraint on the spin
length.

Meanwhile, some multiple-Q states do not possess the
intensity at higher-harmonic wave vectors depending on the
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position of the ordering wave vectors in the Brillouin zone.
One of the typical examples is a triple-Q state on a triangular
lattice, whose ordering wave vectors lie on the special points
in the Brillouin zone [43–46]. Similar situations also occur
for other lattice structures, when the ordering wave vectors
lie on the special points in the Brillouin zone, as found in
the pyrochlore structure [47], simple cubic lattice [48,49],
checkerboard structure [50], and square lattice [51]. In these
cases, the energies between the 1Q and multiple-Q states
are degenerate with each other within the bilinear isotropic
exchange interaction; the degeneracy is lifted by consider-
ing infinitesimally small multiple-spin interactions [46,52]
and thermal fluctuations [53]. Furthermore, another example
has recently been clarified for a system with specific low-
symmetry ordering wave vectors on a square lattice, where
double-Q (2Q) and quadruple-Q (4Q) states without the in-
tensity at higher-harmonic wave vectors are realized [54,55].
Although such a multiple-Q instability has been shown in a
specific situation, there have been no systematic investigations
so far, especially for the case with low-symmetry ordering
wave vectors in the Brillouin zone. It is highly desired to
clarify the relationship between the positions of the ordering
wave vectors and the resultant multiple-Q instability, which
would help to explore materials with complicated magnetic
structures in both theory and experiments.

In this paper, we systematically investigate the multiple-Q
instability on a square lattice by focusing on the low-
symmetry ordering wave vectors that cause magnetic frustra-
tion [56,57]. The analysis is based on the numerical simulated
annealing for a simple spin model with the Heisenberg-type
exchange interaction, multiple-spin interaction, and easy-axis
two-spin interaction, where the multiple-spin interaction is
supposed to be small. As a result, we classify the magnetic
phase diagrams into four cases depending on the positions
of the ordering wave vectors. We find that the ordering wave
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vectors Q = (Qx, Qy) satisfying the condition (i) Qx = π/2
or Qy = π/2 or (ii) Qx + Qy = π result in isotropic 2Q and
4Q instabilities at zero field, while the anisotropic 2Q insta-
bility is caused in the case of other low-symmetry ordering
wave vectors; all cases do not require the Dzyaloshinskii-
Moriya interaction [57]. We also investigate the field-induced
multiple-Q states in all cases. Our results show that a further
intriguing multiple-Q state is expected when ordering wave
vectors lie on the low-symmetry positions in the Brillouin
zone.

The rest of this paper is organized as follows. In Sec. II,
the spin model on the square lattice is introduced, and the
numerical method is outlined. Then we discuss the multiple-
Q instability in the spin model with different low-symmetry
ordering wave vectors in Sec. III. We describe the four cases
according to the positions of the ordering wave vectors one by
one. Section IV is devoted to a summary of this paper.

II. MODEL AND METHOD

To investigate the multiple-Q instability at low-symmetry
ordering wave vectors in a systematic way, we consider an
effective spin model with a momentum-resolved interaction
on a two-dimensional square lattice under the space group
P4/mmm [58], which is given by

H = −J
∑

ν

(
SQν

· S−Qν
+ IzSz

Qν
Sz

−Qν

)

+ K

N

∑
ν

(
SQν

· S−Qν
+ IzSz

Qν
Sz

−Qν

)2 − H
∑

i

Sz
i . (1)

where Si = (Sx
i , Sy

i , Sz
i ) is the localized spin at site i; the

spin length is fixed to be |Si| = 1. The Qν component of
the spin is given by SQν

= (Sx
Qν

, Sy
Qν

, Sz
Qν

), which is obtained
via the Fourier transformation to Si; ν is the index of the
ordering wave vectors Qν . We take the lattice constant of
the square lattice as unity. The first term represents the bi-
linear exchange interaction with the coupling constant J . We
suppose that the first term originates from the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [59–61]; this term
is microscopically obtained in the lowest-order perturba-
tive expansions in terms of the Kondo coupling in the
Kondo lattice model. We further introduce the easy-axis-type
anisotropic form factor in the interaction, Iz > 0, which arises
from the relativistic spin-orbit coupling; in the case of the Gd-
and Eu-based compounds without orbital angular momenta,
such anisotropy originates from the anisotropic coupling
to itinerant magnets, which is effectively renormalized into
the anisotropic spin interaction. On the other hand, we ne-
glect other magnetic anisotropy, such as the bond-dependent
magnetic anisotropy, for simplicity [62]. The second term rep-
resents the biquadratic exchange interaction with the coupling
constant K , which is obtained as the higher-order contribu-
tion of the RKKY interaction in the perturbative expansion
in the Kondo lattice model [38,46,52], where N stands for
the number of total spins in the system. We deal with K as
a perturbation term since K appears as a higher-order term
than J in the expansion. In the following, we set J = 1 as the
energy unit of the model and K = 0 or 0.02. The third term

O

FIG. 1. Grouping of multiple-Q instability at low-symmetry or-
dering wave vectors under tetragonal symmetry in the first Brillouin
zone. The green hexagons, black circles, red squares, and blue trian-
gle stand for Cases I–IV, respectively.

in Eq. (1) stands for the Zeeman coupling under an external
magnetic field along the z (out-of-plane) direction.

In the model in Eq. (1), we only consider the interaction
at wave vectors that mainly contribute to the ground-state
energy, which enables us to examine the multiple-Q instability
efficiently [38]. We choose the ordering wave vectors located
at the low-symmetry positions in the first Brillouin zone.
Since we consider the tetragonal P4/mmm symmetry, it is
enough to consider the region for qy <qx <π and 0<qy <π

(denoted as region I) as the independent wave vectors, as
shown in Fig. 1. We set Q1 to be the wave vector in region
I. From the symmetry, there are seven symmetry-related wave
vectors to Q1 in the first Brillouin zone, which are defined
by Q2 = R(π/2)Q1, Q3 = M(x)Q1, Q4 = R(π/2)Q3, Q5 =
−Q1, Q6 = −Q2, Q7 = −Q3, and Q8 = −Q4, where R(π/2)
denotes the rotational operation by π/2 around the z axis and
M(x) denotes the mirror operation with respect to the xz plane.

As for Q1, we consider 21 sets by supposing the sys-
tem size with N = 162, which are denoted as the symbols
of the green hexagons, black circles, red squares, and blue
triangle in Fig. 1; the different symbols mean the different
multiple-Q instabilities, as detailed in Sec. III. From the mi-
croscopic viewpoint, the interactions at the low-symmetry
ordering wave vectors become dominant when the nesting of
the Fermi surface in itinerant electron systems occurs at the
corresponding wave vectors, which have been recently found
in EuNiGe3 [63–65]. We ignore the effect of the interactions
at other wave vectors since their contributions to the total
energy are negligible in determining the ground-state spin
configuration. A similar phenomenological approach has been
used for other models, where several mechanisms causing the
multiple-Q instability have been found [39,66–70].

We calculate the phase diagram while varying Iz and H
for 21 sets of ordering wave vectors based on the simulated
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annealing, which minimizes the energy of the model in Eq. (1)
at a low temperature. We consider the two-dimensional square
lattice consisting of N = 162 spins under periodic boundary
conditions. We confirmed that the following results are not
changed by the larger system size with N = 322. Starting
from a random spin configuration at the temperature T0 =
1.5, we gradually reduce the temperature with a rate Tn+1 =
0.999999Tn in each Monte Carlo sweep up to the final temper-
ature T = 0.0001, where Tn is the nth-step temperature. At the
final temperature, we perform 105–106 Monte Carlo sweeps
for measurements.

For the obtained spin configuration, we calculate the spin
structure factor, which is given by

Sηη
s (q) = 1

N

∑
i, j

Sη
i Sη

j exp[iq · (ri − r j )], (2)

for η = x, y, z; ri is the position vector at site i and q is
the wave vector in the first Brillouin zone. The total spin
structure factor is given by Ss(q) = Sxx

s (q) + Syy
s (q) + Szz

s (q).
It is noted that Sηη

s (Q1) = Sηη
s (Q5), Sηη

s (Q2) = Sηη
s (Q6),

Sηη
s (Q3) = Sηη

s (Q7), and Sηη
s (Q4) = Sηη

s (Q8). We also calcu-
late the Qν component of the magnetic moments from the spin
structure factor, which is given by

mη

Qν
=

√
Sηη

s (Qν )

N
. (3)

In addition, we define the in-plane component of mη

Qν
as

(m⊥
Qν

)2 = (mx
Qν

)2 + (my
Qν

)2. The net magnetization along the
field direction is given by

Mz = 1

N

∑
i

Sz
i . (4)

III. RESULTS

We show the multiple-Q instabilities in the model with
21 sets of low-symmetry ordering wave vectors. By sys-
tematically performing the simulated annealing, we find that
multiple-Q instabilities are classified into four cases, which
are denoted by the different symbols in Fig. 1. We describe
them one by one in the following Secs. III A–III D.

A. Case I

We consider the case where the ordering wave vectors lie
at low-symmetry positions in the Brillouin zone except for
Qx

1 �= π/2, Qy
1 �= π/2, and Qx

1 + Qy
1 �= π , as shown by the

green hexagons in Fig. 1. For the system size with N = 162,
there are 12 independent ordering wave vectors. Among them,
we show the results for Q1 = (5π/8, π/8), although different
choices of the ordering wave vector for Q1 do not affect the
qualitative result.

First, we discuss the result in the absence of Iz and K .
Figures 2(a) and 2(b) show the H dependence of the field-
induced magnetization Mz and the squared magnetic moments
(mη

Qν
)2 for ν = 1, 2 and η =⊥, z, respectively. In Fig. 2(b),

we show the results by appropriately sorting (mη

Qν
)2 for bet-

ter readability. At zero field (H = 0), the 1Q spiral state is
stabilized. The spin configuration is given by Si = (cos Q1 ·
ri, sin Q1 · ri, 0), where the spiral plane is arbitrary owing to
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FIG. 2. H dependence of (a) and (c) the magnetization Mz and
(b) and (d) the squared magnetic moments (mη

Qν
)2 for ν = 1, 2 and

η =⊥, z in the model belonging to Case I with Q1 = (5π/8, π/8)
and Q2 = (−π/8, 5π/8) at K = 0. The model parameter Iz is set
as (a) and (b) Iz = 0 and (c) and (d) Iz = 0.1. The vertical lines
represent the phase boundaries between different magnetic phases.
It is noted that (mη

Q3
)2 = 0 and (mη

Q4
)2 = 0.

the spin rotational symmetry under Iz = H = 0. When the
effect of H is introduced, the spiral plane is fixed on the xy
plane to gain the Zeeman energy. In other words, the spin
state is characterized by the 1Q conical state with (m⊥

Q1
)2 �= 0

and (mz
Q1

)2 = 0, whose real-space spin configuration is shown
in Fig. 3(a). This state remains stable up to the saturation
field H = 2, as shown in Figs. 2(a) and 2(b). Then this state
continuously turns into the fully polarized state for H � 2.

By considering the effect of Iz, the magnetization curve
exhibits the jump at H ∼ 0.6, as shown in the case of Iz = 0.1
in Fig. 2(c), which means that an additional magnetic phase
appears in the presence of Iz. In the low-field region, the

(a) 1Q conical (b) 1Q vertical spiral

0

1

-1

FIG. 3. Real-space spin configurations of (a) the 1Q conical state
at Iz = 0 and H = 0.35 and (b) the 1Q vertical spiral state at Iz = 0.1
and H = 0.15. The arrows represent the in-plane spin components,
while the color represents the out-of-plane spin component.
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FIG. 4. H dependence of (a) Mz and (b) (mη

Qν
)2 for ν = 1, 2 and

η =⊥, z at K = 0.02 and Iz = 0. The vertical lines represent the
phase boundaries between different magnetic phases. It is noted that
(mη

Q3
)2 = 0 and (mη

Q4
)2 = 0.

behavior of (mη

Qν
)2 is different from that at Iz = 0; nonzero

(mz
Qν

)2 appears, which indicates that the spiral plane lies on
the xz or yz plane corresponding to the 1Q vertical spiral
state. Indeed, one finds such a tendency in the real-space spin
configuration in Fig. 3(b). The 1Q vertical spiral state shows
the phase transition into the 1Q conical state with increasing
H , as shown in Fig. 2(d). Thus, no multiple-Q instability
occurs in the absence of K ; this is because the energy of the
1Q state is lower than the multiple-Q state in Case I.

Next, we introduce the small biquadratic interaction K =
0.02 at Iz = 0. As shown in Fig. 4(a), the magnetization looks
continuous against H , which is like that in Fig. 2(a). Mean-
while, (mz

Q2
)2 becomes nonzero in addition to (m⊥

Q1
)2 with

different magnitudes, as shown in Fig. 4(b), which indicates
the emergence of the anisotropic 2Q state. The spin configu-
ration is characterized by a superposition of the conical spiral
wave in the Q1 component and the sinusoidal wave with the
z-spin modulation in the Q2 component. Such a feature can be
seen in the real-space spin configuration in Fig. 5(a) and the
spin structure factor in Fig. 5(b), where the Q2 component
of magnetic moments is dominant and the Q1 component
is subdominant. It is noted that small intensities at higher-
harmonic wave vectors, such as Q2 + 2Q1, exist owing to the
superposition of the 2Q spin density waves at Q1 and Q2.
A similar anisotropic 2Q state has been clarified in the case

(a) (b)

0

0

0

6

12

0

1

-1

FIG. 5. (a) Real-space spin configurations of the anisotropic 2Q
state at K = 0.02, Iz = 0, and H = 0.1. The arrows represent the
in-plane spin components, while the color represents the out-of-plane
spin component. (b) Square root of the spin structure factor corre-
sponding to (a).

)b()a(

0

1

-1
(c)

0

0

0

4

8
(d)

0

0

0

6

12

FIG. 6. Real-space spin configurations of the 2Q state at K = 0
and Iz = 0 for (a) H = 0.3 and (b) H = 0.35 in the model belonging
to Case II with Q1 = (π/2, π/8). The arrows represent the in-plane
spin components, while the color represents the out-of-plane spin
component. (c) and (d) Square root of the spin structure factor corre-
sponding to (a) and (b).

where the ordering wave vectors lie in the high-symmetric
〈100〉 and 〈110〉 lines [38,71].

B. Case II

In this section, we consider the case where either the x or y
component of the ordering wave vectors takes π/2. There are
six possibilities for N = 162, as denoted by the black circles
in Fig. 1. We specifically set Q1 = (π/2, π/8), although we
confirmed that similar results are obtained for other choices of
Q1, as detailed below.

In contrast to Case I, we find that a 2Q state has the
same energy as the 1Q conical state at Iz = 0 and K = 0,
irrespective of H . We show the real-space spin configurations
and spin structure factors for nonzero H in Figs. 6(a)–6(d),
which are obtained from the simulated annealing as one of
the lowest-energy states. As shown in Figs. 6(c) and 6(d), this
2Q state is characterized by a superposition of Q1 and Q3

[Fig. 6(d)] or that of Q2 and Q4 [Fig. 6(c)]. Thus, constituent
ordering wave vectors are connected by the mirror symmetry
rather than the fourfold rotational symmetry. We find the spin
ansatz in this 2Q state, which is given by

Si =

⎡
⎢⎢⎢⎣

√
1 − (Mz )2

(
c1 cosQ1 −

√
1 − c2

1 sinQ3
)

√
1 − (Mz )2

( − c1 sinQ1 +
√

1 − c2
1 cosQ3

)
Mz

⎤
⎥⎥⎥⎦, (5)

where Qν = Qν · ri, Mz represents the magnetization, and c1

represents the numerical coefficient satisfying 0 � c1 � 1. A
similar spin ansatz is also obtained for a 2Q state with nonzero
Q2 and Q4 components.

The expressions in Eq. (5) exhibit two characteristic points.
The first is that the spin configuration in Eq. (5) connects to

014404-4



DOUBLE-Q AND QUADRUPLE-Q INSTABILITIES AT … PHYSICAL REVIEW B 110, 014404 (2024)

fully polarized state

2Q II

2Q I

FIG. 7. Magnetic phase diagram in the plane of Iz and H in the
model belonging to Case II with Q1 = (π/2, π/8) at K = 0.02.

that in the 1Q conical state when setting c1 = 0 or 1. Thus,
this state is regarded as a superposition of two conical spiral
waves, i.e., a 2Q conical state. The second is that the energy of
this state is unchanged for 0 � c1 � 1; the 1Q and 2Q conical
states are energetically degenerate. This is also understood
from the fact that the obtained 2Q states do not have the
intensities at higher-harmonic wave vectors like Q1 + Q3 and
Q2 + Q4 in the spin structure factor, as shown in Figs. 6(c)
and 6(d). Indeed, from the expression in Eq. (5), one finds that
the interference term arising from the normalization condition
|Si| = 1 is summarized as sin(Q1 + Q3), and it identically
vanishes. Such a degeneracy is not lifted by Iz. To lift the de-
generacy between the 1Q and 2Q spin states, the introduction
of the multiple-spin interaction K is required.

By introducing K , the energy of the 2Q state becomes
lower than that of the 1Q state since K tends to enhance
the instability toward the multiple-Q states compared with
the 1Q state [38,46,52]. For small K = 0.02, we construct the
magnetic phase diagram against Iz and H in Fig. 7. There are
two phases below the saturation magnetic field at H = 2: One
is the 2Q I in the low-field region, and the other is the 2Q
II state in the high-field region. In contrast with Case I, no
single-Q state appears in the phase diagram.

In the low-field region, the 2Q I state appears, whose
stability region becomes wider for larger Iz. The real-space
spin configuration in this state is shown in Fig. 8(a), where
both xy and z spins exhibit the 2Q modulation. Such a 2Q
feature is also found in the spin structure factor in Fig. 8(c),
where the relations of (m⊥

Q1
)2 = (m⊥

Q3
)2 and (mz

Q1
)2 = (mz

Q3
)2

are satisfied. In contrast with the case at K = 0 in Figs. 6(c)
and 6(d), there are intensities at the high-harmonic wave
vectors of Qν ; subdominant peak structures are found at 3Q1

and 3Q3, which are attributed to the fact that the additional
out-of-plane modulations of both Q1 and Q3 have different
intensities from the in-plane modulations owing to Iz and H ,
which results in the appearance of the elliptic spiral plane to
have the 3Qν component.

When H increases, the 2Q I state turns into the 2Q II
state with a jump of the magnetization like the behavior in
Fig. 2(c). The spin configuration in this state corresponds to
that in Eq. (5) with setting c1 = 1/

√
2; there is no z-spin

(a) 2Q 2)b(I Q II

0

1

-1
(c)

0

0

0

4

8
(d)

0

0

0

4

8

FIG. 8. Real-space spin configurations of (a) the 2Q I state for
H = 0.05 and (b) the 2Q II state for H = 1 at K = 0.02 and Iz = 0.2.
The arrows represent the in-plane spin components, while the color
represents the out-of-plane spin component. (c) and (d) Square root
of the spin structure factor corresponding to (a) and (b).

modulation, in contrast with the 2Q I state. The real-space
spin configuration and the spin structure factor are shown
in Figs. 8(b) and 8(d), respectively. This state continuously
changes into the fully polarized state.

It is noted that the emergence of the 2Q state in Case II is
qualitatively different from that in Case I since, in the absence
of K , the energy of the 2Q state is degenerate with that of the
1Q state in the former, while their energies are different in the
latter. This difference is attributed from the fact that the latter
2Q spin structure possesses the intensity at high-harmonic
wave vectors in the spin structure factor, while the former
does not. In this sense, the instability toward the 2Q state is
prominent for Case II. Indeed, only the 2Q state appears in
the phase diagram even for small K , as shown in Fig. 7. On
the other hand, the 1Q state remains stable for finite H in Case
I, as shown in Fig. 4(b).

The 2Q I and 2Q II states at Q1 = (π/2, π/8) also appear
for other choices of the ordering wave vectors once either
Qx

1 or Qy
1 takes π/2. We show the snapshots of the real-

space spin configurations of the 2Q I and 2Q II states in the
cases of Q1 = (π/2, π/4) in Fig. 9(a), Q1 = (π/2, 3π/8) in
Fig. 9(b), Q1 = (5π/8, π/2) in Fig. 9(c), Q1 = (3π/4, π/2)
in Fig. 9(d), and Q1 = (7π/8, π/2) in Fig. 9(e), where the left
(right) panel shows the spin configuration of the 2Q I (2Q II)
state. The spin structure factors in these states are qualitatively
like those in Figs. 8(c) and 8(d). Thus, the instability toward
the 2Q spin configurations is common when the ordering wave
vectors include the π/2 modulation.

C. Case III

In this section, we discuss the situation where the or-
dering wave vectors satisfy Qx

1 + Qy
1 = π except for Q1 =

(3π/4, π/4), as denoted by the red squares in Fig. 1; we
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FIG. 9. Real-space spin configurations of (left panel) the 2Q
I state for H = 0.1 and (right panel) the 2Q II state for H = 1
at K = 0.02 and Iz = 0.2, which are obtained in the models with
different positions of the ordering wave vectors. The Q1 vector is
given by (a) Q1 = (π/2, π/4), (b) Q1 = (π/2, 3π/8), (c) Q1 =
(5π/8, π/2), (d) Q1 = (3π/4, π/2), and (e) Q1 = (7π/8, π/2).
The arrows represent the in-plane spin components, while the color
represents the out-of-plane spin component.
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FIG. 10. Real-space spin configurations of (a) the 2Q state for
H = 0.1 and (b) the 4Q state for H = 0.15 at K = 0 and Iz = 0 in the
model belonging to Case III with Q1 = (5π/8, 3π/8). The arrows
represent the in-plane spin components, while the color represents
the out-of-plane spin component. (c) and (d) Square root of the spin
structure factor corresponding to (a) and (b).

denote this case as Case III. We specifically set Q1 =
(5π/8, 3π/8) without loss of generality.

For K = 0 and Iz = 0, we find that the 1Q, 2Q, and 4Q
states are energetically degenerate. The 2Q state is represented
by a superposition of the conical spiral waves at Q1 and Q4,
whose spin ansatz is given by

Si =

⎡
⎢⎢⎢⎣

√
1 − (Mz )2

(
c1 cosQ1 −

√
1 − c2

1 sinQ4
)

√
1 − (Mz )2

( − c1 sinQ1 +
√

1 − c2
1 cosQ4

)
Mz

⎤
⎥⎥⎥⎦. (6)

Although the expression is like that in Eq. (5), the constituent
ordering wave vectors are different from each other; the or-
dering wave vectors in the present 2Q state are connected
by the vertical mirror plane on the [110] line, while those in
the 2Q state in Eq. (5) are connected by the vertical mirror
plane on the [100] line. Meanwhile, this 2Q state does not
possess the intensity at high-harmonic wave vectors in the spin
structure factor like the situation in Sec. III B. Like Case II, Si

is normalized as |Si| = 1 for all i without the normalization
constant owing to the relation sin(Q1 + Q4) = 0. The real-
space spin configuration and spin structure factor are shown
in Figs. 10(a) and 10(c), respectively.

The spin ansatz of the 4Q state is given by

Si =

⎡
⎢⎣

A(cosQ1 − sinQ2 − sinQ3 − cosQ4)

A(sinQ1 + cosQ2 + cosQ3 + sinQ4)

Mz

⎤
⎥⎦, (7)

where A =
√

1 − (Mz )2/2. In contrast with the 2Q state in
Eq. (6), the intensities at Q1–Q4 are the same as each other,
which indicates the isotropic 4Q state; the isotropic intensity
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FIG. 11. Magnetic phase diagram in the plane of Iz and H in the
model belonging to Case III with Q1 = (5π/8, 3π/8) at K = 0.02.

of the spin structure factor is found in Fig. 10(d). It is noted
that there is no intensity at higher-harmonic wave vectors,
which is understood from the expression in Eq. (7); the
factor of cos(Q2 − Q3) − cos(Q1 + Q4) + sin(Q1 − Q2) +
sin(Q1 − Q3) + sin(Q2 + Q4) + sin(Q3 + Q4) appearing
from the normalization condition of the spin length is
expressed as c2 sin πxi sin πyi + c3(sin πxi + sin πyi )
for ri = (xi, yi ), which vanishes for all i (c2 and c3 are
coefficients). Since the modulations of Q1–Q4 occur in the
xy plane, this state is regarded as a 4Q conical state, whose
spin configuration is shown in Fig. 10(b). Like Case II, the
introduction of K lifts the degeneracy among the 1Q and
multiple-Q states.

Next, we turn on Iz and K . Figure 11 shows the low-
temperature phase diagram with changing Iz and H for small
K = 0.02. By introducing K , the 4Q state becomes the ground
state in the whole region in the phase diagram except for
H = 2, where the fully polarized state appears. There are two
types of the 4Q states, which are denoted as the 4Q I state
stabilized in the low-field region and the 4Q II state stabilized
in the high-field region.

The 4Q I state is characterized by a superposition of spin
density waves at Q1–Q4 with equal intensity, as shown by
the spin structure factor in Fig. 12(c). The real-space spin
configuration is shown in Fig. 12(a), where a complicated
noncoplanar spin texture happens, although there is no net
scalar spin chirality in contrast with the skyrmion crystal.
There are intensities at high-harmonic wave vectors, such as
−Q1 + 2Q4, owing to a superposition of multiple spin den-
sity waves in both xy- and z-spin components, as shown in
Fig. 12(c). By increasing H , the 4Q I state changes into the
4Q II state with a jump of the magnetization. The spin config-
uration of the 4Q II state corresponds to that in Eq. (7), where
the real-space snapshot is presented in Fig. 12(b), and the spin
structure factor in momentum space is shown in Fig. 12(d).
This phase continuously changes into the fully polarized state
at H = 2.

The qualitatively same phase diagram is obtained for an-
other ordering wave vector, i.e., Q1 = (7π/8, π/8). We show
the real-space spin configurations of the 4Q I and 4Q II

(a) 4Q 4)b(I Q II

0

1

-1
(c)

0

0

0

3

6
(d)

0

0

0

4

8

FIG. 12. Real-space spin configurations of (a) the 4Q I state for
H = 0.1 and (b) the 4Q II state for H = 1 at K = 0.02 and Iz = 0.2.
The arrows represent the in-plane spin components, while the color
represents the out-of-plane spin component. (c) and (d) Square root
of the spin structure factor corresponding to (a) and (b).

states in the left and right panels of Fig. 13, respectively.
Compared with the spin configuration in Fig. 12(a), the spin
configuration of the 4Q I state in the left panel of Fig. 13
seems to be different, although the spin structure factor shows
similar profiles to each other. In this way, the instability to-
ward the 4Q state is expected when the ordering wave vectors
belong to Case III.

D. Case IV

Finally, let us discuss the multiple-Q instability in Case
IV, where the ordering wave vector lies at Q1 = (3π/4, π/4),
as denoted by the blue triangle in Fig. 1. Since the magnetic
phase diagram at this ordering wave vector has already been
shown in previous literature [55], we briefly mention the dif-
ference from other cases.

0

1

-1

FIG. 13. Real-space spin configurations of (left panel) the 4Q
I state for H = 0.1 and (right panel) the 4Q II state for H = 1 at
K = 0.02 and Iz = 0.2, which are obtained for different ordering
wave vectors Q1 = (7π/8, π/8). The arrows represent the in-plane
spin components, while the color represents the out-of-plane spin
component.
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In Case IV, a checkerboard bubble lattice with the collinear
4Q spin configuration appears in the low-field region, while
the 4Q conical state, whose spin configuration is like that in
Eq. (7), appears in the high-field region when introducing
a small biquadratic interaction K [55]. In other words, the
instability toward the 4Q state occurs at Q1 = (3π/4, π/4)
like Case III. On the other hand, the spin configurations
in the low-field region are different between Cases III and
IV; the noncoplanar spin configuration emerges in Case III
[Fig. 12(a)], while the collinear spin configuration emerges in
Case IV.

IV. SUMMARY

To summarize, we have investigated the multiple-Q in-
stability on the two-dimensional square lattice by focusing
on the situation where the ordering wave vectors lie on the
low-symmetry position in the Brillouin zone. By performing
numerical simulations based on the simulated annealing for
the spin model with various ordering wave vectors, we find
that the multiple-Q instabilities are classified into four cases.
In Case I (Sec. III A), the ground state corresponds to the
single-Q state in the bilinear spin model. The anisotropic
double-Q state is induced by considering the effect of the
biquadratic interaction (K). In Case II (Sec. III B), the single-
Q and double-Q states are energetically degenerate in the

bilinear spin model. The isotropic double-Q state is chosen
for small K . In Case III (Sec. III C), the single-Q, double-Q,
and quadruple-Q states are energetically degenerate in the
bilinear spin model, and the quadruple-Q state is chosen as
the ground state when K is considered. In Case IV (Sec. III D),
the situation is like that in Case III, although the quadruple-
Q spin configurations in the low-field region are different
from each other. Our present results indicate the possibility
of realizing further exotic nontopological multiple-Q states,
as observed in iron-based magnets [72–77], CeRh2Si2 [78],
and Na3Co2SbO6 [79] and predicted in the theoretical mod-
els [80,81], which will stimulate experimental exploration
in future studies. The candidate materials in this paper are
the europium and gadolinium compounds with large total
angular momentum, such as EuPtSi [82–91], EuAl4 [92–96],
EuNiGe3 [63,64,97,98], GdRu2Si2 [99–104], and GdRu2Ge2

[105], since they often host a variety of multiple-Q states.
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