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Crossover behavior at an exceptional point for quantum entanglement and correlation
in a non-Hermitian XY spin system
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Non-Hermitian spin systems have attracted extensive interest due to their unconventional magnetic properties,
rich entanglement resources, and unusual quantum criticality phenomena. In this paper, based on the exact
solution of a one-dimensional non-Hermitian spin-1/2 XY model with rotation-time-reversal (RT ) symmetry
[X. Z. Zhang et al., Phys. Rev. A 87, 012114 (2013)], we study the ground-state energy density, magnetization,
correlation functions, quantum entanglement, and correlation in RT -symmetric and RT -broken phases as well
as their characteristics at the exceptional point. We find that the energy density rises faster with the non-Hermitian
parameter |γ | in the symmetric region than in the broken one and is elevated rapidly at the exceptional point, and
the decay of magnetization has similar results. We analyze the effect of γ on the system and find that the energy
density decreases linearly with the external magnetic field h for γ > 0, while it is bifurcated when γ = 0. In
addition, the behaviors of the energy density indicate that the phase transition caused by symmetry breaking is
second order, which is further demonstrated by the magnetization, quantum entanglement, etc. The numerical
results of the correlation functions surprisingly indicate that the RT -broken phase has quasi-long-range order,
which is quite different from the Hermitian XY model. Especially, the crossover behavior of the ground-state
entanglement shows that it increases with γ in the symmetric region, which is opposite to the case of the broken
one, and its maximum always appears at the exceptional point. The above behaviors at the phase boundary are
actually ascribed to the fierce competition between γ and h, which results in a rapid decline of magnetization
and the appearance of the maximum of entanglement.
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I. INTRODUCTION

In conventional quantum mechanics, the closed quantum
systems are described by Hermitian Hamiltonians. In the last
30 years, there has been a tremendous development in the
research of non-Hermitian Hamiltonians [1,2], which can be
used to describe systems that couple with the environment,
i.e., open systems. In general, the processes that proceed in
open systems are dissipative, in which the dynamical behav-
iors can be described by the master equations (such as the
Lindblad form) [2]. The quantum trajectory approach gives a
reasonable physical explanation to such dissipative systems;
i.e., they evolve under effective non-Hermitian Hamiltonians
and are accompanied with quantum jumps which can affect
their long-time dynamic evolution [3]. Research indicates
that the application of non-Hermitian Hamiltonians is also
extensive; for example, they can be used to describe a sys-
tem that is continuously monitored and a null-measurement
outcome is postselected [4–9]. In the above studies, ab-
normal magnetism caused by a steady-state quantum phase
transition is discussed in a non-Hermitian XY model
with spontaneous decay [5], and unconventional quantum
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criticality is explored by studying the ground state properties
of an XXZ model [8]. In 1998 Bender and Boettcher found
that non-Hermitian Hamiltonians with parity-time-reversal
(PT ) symmetry can still have a full real energy spectrum
[10], where P and T are parity and time-reversal operators,
respectively. These terms have dramatically promoted the de-
velopment of non-Hermitian physics both theoretically [8,11–
18] and experimentally [19–24]. Particularly, they play impor-
tant roles in describing open systems with balanced gains or
losses due to interactions with the environment [2,9,21].

If a Hamiltonian H is commutated with the combined
operator PT , we say that H is PT symmetric [10]. In experi-
ments, the development of optics provides abundant resources
for revealing the concept of PT symmetry which can be
simply achieved by building a gain-loss structure [8,25–27].
In addition to a full real energy spectrum, another remarkable
characteristic is the existence of the exceptional point (EP)
which separates the symmetric phase from the broken one in
the parameter space. In the symmetric phase, the system has
a full real energy spectrum and common eigenstates with the
combined operator PT ; i.e., all eigenstates are PT symmet-
ric. When crossing EP from the symmetric phase to broken
one, the imaginary parts of the eigenvalues begin to appear,
and thus the corresponding eigenstates become PT broken
even though [H,PT ] = 0 [8,10,21]. Along with symmetry
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breaking and the degeneracy of eigenstates at EP, the system
exhibits many peculiar properties, in which unusual quantum
phase transitions have been studied [8,11–13,28].

As is known to all, quantum entanglement, a unique prop-
erty of quantum mechanics that describes the indivisibility of
subsystems in a composite system, is becoming increasingly
significant in various fields [29–33]. Due to its potential ap-
plications in quantum teleportation, quantum dense coding,
and quantum cryptography, the related studies have currently
become quite active [34–37]. In the last two decades, Hermi-
tian quantum many-body spin systems which are employed to
study quantum entanglement have become the bridge between
quantum information and condensed matter physics [29,38–
42]. Especially, the relation between the entanglement and
quantum phase transitions has received extensive and sus-
tained attention [40–51]. For non-Hermitian spin systems, the
entanglement entropy has recently been investigated, and rich
physics phenomena, such as spectral transitions and quantized
topological invariants, have been found [14,52–55]. These
works provide valuable experience in exploring the entangle-
ment properties of non-Hermitian systems.

In general, it is very difficult to solve a many-body sys-
tem exactly. For one-dimensional spin systems, their deep
connections with Fermi (or Bose) systems provide ingenious
methods to solve them exactly [56–58]. The XY model,
in particular, gains a great deal of attention in theoretical
studies [42,59–64] and is often employed in experiments, in
which many interesting phenomena are discovered, such as
the order-to-disorder transition in Cs2CoCl4 and dimensional
reduction in quantum dipolar antiferromagnets [65,66]. For
some non-Hermitian spin models, many studies show that
they have also been solved exactly, with the corresponding
phase diagrams, phase transitions, and quantum information
quantities explored [11–14,66–68]. Compared with the optical
and mechanical systems, the spin systems have better integra-
tion, control, and quantum information storage capabilities;
thus the properties such as quantum entanglement and quan-
tum phase transitions, as well as more exotic phenomena in
non-Hermitian spin systems, deserve further investigation and
discussion.

In 2013, based on PT -symmetric non-Hermitian quan-
tum theory, Song et al. solve exactly a spin model with
rotation-time-reversal (RT ) symmetry [69], which has sim-
ilar properties to the models with PT symmetry, such as
the existence of EP. This model in which the non-Hermitian
property comes from the imaginary anisotropic interaction
term can be regarded as the complex extension of the
one-dimensional quantum anisotropic XY model, and it un-
doubtedly broadens the exploration of the pseudo-Hermitian
field. In recent years, various non-Hermitian models have
been studied in optics [21,70–73], cold atoms [74–77], and
quantum many-body systems [16,78–81]. These works not
only provide a strong theoretical and experimental foundation
for studying the concept of RT symmetry and non-Hermitian
phenomena driven by complex interaction, but they also en-
able the creation of new optical and quantum devices. Besides
the RT symmetry of this model, other properties such as cor-
relation functions and entanglement deserve further study. In
this paper, based on the exact solution of the model [5,69,82],
we study the phase diagram of the infinite-size system and the

characteristics of ground-state energy density, magnetization,
correlation functions, concurrence, and quantum correlation,
especially the crossover behaviors of correlation functions and
concurrence at EP.

This paper is organized as follows. In Sec. II, we introduce
the RT -symmetric non-Hermitian XY model, and study the
phase diagram and ground-state energy in the thermodynamic
limit. In Sec. III, we calculate magnetization and correlation
functions. Section IV studies the quantum entanglement and
discord, along with their crossover behaviors. Section V is the
conclusion.

II. MODEL AND PHASE DIAGRAM

Generally, the non-Hermiticity can be realized by intro-
ducing the imaginary potential in tightly bound models and
adding the imaginary magnetic field in spin models. Mean-
while, the complex coupling between spins can also reflect the
non-Hermiticity and similarly imaginary interaction can be
achieved in ultracold atomic experiments [8,69]. By analogy
to models with PT symmetry, Song et al. study a one-
dimensional non-Hermitian spin-1/2 XY model with RT
symmetry [69], in which the Hamiltonian can be written as

H = −J

2

N∑
l=1

[
(1 + iγ )σ x

l σ x
l+1 + (1 − iγ )σ y

l σ
y
l+1

] − h
N∑

l=1

σ z
l ,

(1)
where σα

l (α = x, y, z) are the Pauli operators and satisfy the
periodic boundary condition σα

l = σα
l+N , and N is the number

of spins in this system. J represents the exchange coupling
between the nearest-neighbor spins (set J = 1), γ is the non-
Hermitian anisotropic parameter, h is the external magnetic
field, and i the imaginary unit. When γ = 0, this system
reverts to the Hermitian one, and as γ increases, it goes from
the RT -symmetric phase to the broken one.

According to the concept of PT symmetry, Song et al. give
the definition of RT symmetry [69]; i.e., a Hamiltonian is
RT symmetric when it commutes with the combined operator
RT . R is the rotation operator with the role of counterrotating
each spin by π/2 along the z axis,

R = exp

[
−i(π/4)

N∑
l=1

σ z
l

]
, (2)

and satisfies

Rσα
l R−1 =

⎧⎪⎨⎪⎩
σ

y
l , α = x,

−σ x
l , α = y,

σ z
l , α = z,

(3)

and T has the function T iT −1 = −i. As a result, one can
check that the Hamiltonian of Eq. (1) is RT symmetric.
Besides, if the full spectrums are real, the system is RT sym-
metric; when the imaginary part of the eigenvalue appears,
RT symmetry is spontaneously broken.

In order to facilitate the study of the following content, we
provide the basic exact solution process of the non-Hermitian
Hamiltonian with RT symmetry [69]. The first step is to map
the spin system onto a spinless fermion one by Jordan-Wigner
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transformation,

σ+
l =

∏
j<l

(1 − 2c†
j c j )c

†
l (4)

and

σ−
l =

∏
j<l

(1 − 2c†
j c j )cl , (5)

where σ±
l = 1

2 (σ x
l ± iσ y

l ); c†
l and cl are fermionic creation

and annihilation operators, respectively. Using the Fourier
transformation

cl = 1√
N

e−iπ/4
∑

k

ck exp (ikl ) (6)

and

c†
l = 1√

N
eiπ/4

∑
k

c†
k exp (−ikl ), (7)

we map the fermionic Hamiltonian from the coordinate space
to the momentum one, in which k is the wave vector, and c†

k
and ck are fermionic creation and annihilation operators in
the momentum space, respectively. Then, the form of Eq. (1)
becomes

H = 2
∑
k>0

[
(cos k + h)c−kc†

−k − (cos k + h)c†
kck

+ iγ sin kc−kck + iγ sin kc†
kc†

−k

]
= 2

∑
k>0

[
(c†

k c−k )

( − cos k − h iγ sin k
iγ sin k cos k + h

)(
ck

c†
−k

)]
.

(8)

Finally, using non-Hermitian Bogoliubov transformation

ηk = ukck + vkc†
−k (9)

and

ηk = ukc†
k + vkc−k, (10)

the diagonalized Hamiltonian can be obtained as

H = 2
∑

k

ωkηkηk −
∑

k

ωk, (11)

in which

ωk = ±
√

(h + cos k)2 − γ 2 sin2 k, (12)

k = 2πm
N (the number of fermions N = ∑N

l=1 c†
l cl is odd)

or 2π (m+1/2)
N (N is even), m = 0, 1, 2, . . . , N − 1, and k ∈

(−π, π ] (N → ∞). The new operators ηk, ηk are fermionic
operators and satisfy the anticommutation relation, and the
concrete forms of uk and vk are

uk = −h − cos k ±
√

(h + cos k)2 − γ 2 sin2 k

c
,

vk = iγ sin k

c
, (13)

in which c is the normalization constant satisfying
u2

k + v2
k = 1.

The vacuum state |ψ0〉 that satisfies ηk|ψ0〉 = 0 is given by

|ψ0〉 = 1√
|uk|2 + |vk|2

∏
k>0

(uk − vkc†
kc†

−k )|Vac〉, (14)

where |Vac〉 is the vacuum state of fermion cl , and the eigen-
value of |ψ0〉 is

E0 = −
∑

k

ωk . (15)

The eigenstates of H consist of |ψ0〉 and the state
∏
k
ηk|ψ0〉,

such as ηπ/3|ψ0〉 (with eigenvalue E0 + ωπ/3). Generally, a
non-Hermitian Hamiltonian has complex eigenvalue, of which
the real part represents the energy and the imaginary part
describes the rate of decay of the associated eigenstate [7,12].
In the following study, we take the branch where the real part
of ωk is positive, and thus E0 has the lowest real part and the
vacuum state |ψ0〉 is the ground state. Although ωk is imagi-
nary for some values of k (corresponding to the RT -broken
phase), this does not affect the fact that the real part of E0

remains the lowest.

A. Phase diagram

The phase diagram associated with RT symmetry for the
finite-size system has been studied in Ref. [69]; we then give
it a deep discussion and explore it for an infinite-size system.
The condition under which the system is RT symmetric is
that the eigenvalues of H are fully real, i.e., f (k) = (h +
cos k)2 − γ 2 sin2 k � 0 for all possible values of k. From this
expression, one can get the phase diagrams for different values
of N [see Figs. 1(a)–1(c)], in which the shadow regions are
RT symmetric and the blank ones are RT broken. When N
is small, the discontinuity of k causes the phase boundary to be
relatively complicated; as N increases, the boundary becomes
smooth. In the thermodynamic limit (N → ∞), the conditions
of the phase boundary satisfy [69]

f (k) = 0,
∂ f (k)

∂k
= 0, (16)

from which one can obtain equations of the phase boundary

h2 − γ 2 = 1, |h| � 1;

γ = 0, |h| < 1. (17)

Figure 1(d) is the phase diagram of the infinite-size system, in
which the boundary approaches the hyperbola for |h| � 1, and
it also includes the middle segment (γ = 0, |h| < 1) which
corresponds to the Hermitian XX model.

B. Ground-state energy density in RT -symmetric phase

According to the above discussion, the phase diagram ex-
hibits a unique shape which differs from that of the Hermitian
XY model [83]. Ground-state energy density (GSED) is a
useful tool for detecting phase transitions; thus we will inves-
tigate its variations in both phases and focus on its behavior at
the phase boundary. For the sake of simplicity, we first study
GSED of a finite-size system (E0/N ) in the RT -symmetric
phase. Figure 2(a) depicts the relation between E0/N and γ

when h = 1.5, which shows that E0/N increases with γ , but
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FIG. 1. Phase diagrams in γ -h plane for different values of N . (a), (b), and (c): When N is small, the phase boundary is complicated, and
it becomes smoother as N increases. (d) The phase boundary is the hyperbola for |h| � 1 and the symmetry is also satisfied at the middle
segment for |h| < 1.

the larger N is, the slower E0/N increases. In the special case
of γ = 0, from Eqs. (12) and (15), one can get that

E0/N =
(

−
∑

k

|h + cos k|
)

/N, (18)

which has two kinds of results for different values of h [see
Fig. 2(b)], i.e., E0/N = −h for h > 1, while E0/N no longer
overlaps and begins to bifurcate at h = 1. The abnormal be-
havior of the energy density at h = 1 is actually caused by
the Ising phase transition (J = h) in the general XY model

[84]. When γ > 0 (non-Hermitian system), E0/N decreases
linearly with h [see Fig. 2(c)], and it tends to be coincident
with the increase of N . By fitting the data of N = 300, we get
the fitted equation E0/N = −1.00158h + 0.51627.

C. Ground-state energy density in the infinite-size system

The GSED in the thermodynamic limit N → ∞ can be
represented as

ε = lim
N→∞

E0

N
= 1

2π

∫ π

−π

ωkdk. (19)

FIG. 2. Ground-state energy density in the RT -symmetric phase for finite-size system. (a) For different values of N , E0/N increases with
γ at different rates. (b) E0/N begins to bifurcate as h decreases to 1, while E0/N = −h when h � 1. The inset is the variation of E0/N for 0.4
� h � 1. (c) E0/N varies linearly with h for different values of N , and their slopes are approximately equal.
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FIG. 3. Real and imaginary parts of GSED as well as their derivatives with respect to γ for N → ∞. (a) There are inflection points (at EP)
on each curve. (b) The derivative of Re[ε] has a cusp at EP. (c) The second derivative of Re[ε] is discontinuous at EP. (d) Im[ε] is complex
conjugate in the RT -broken region, and the larger h is, the wider the range of γ is for Im[ε] = 0. (e) The first derivative of Im[ε] has a jump
at EP. (f) The second derivative of Im[ε] is also discontinuous at EP.

By numerical integration, its real and imaginary parts as well
as their derivatives with respect to γ are obtained, and the
results are shown in Fig. 3. We find that Re[ε] has a minimum
when γ = 0 for a certain h [see Fig. 3(a)], and it increases
faster with |γ | in the RT -symmetric phase than that in the
broken one. Besides, ∂ Re[ε]/∂γ is continuous but has a cusp
at EP in Fig. 3(b), which illustrates that Re[ε] varies rapidly at
EP. For Im[ε], it is presented in the form of complex conjugate
pairs as shown in Fig. 3(d), and ∂ Im[ε]/∂γ has a jump at
EP [see Fig. 3(e)]; this is because Im[ε] is no longer zero
when parameters cross EP into the broken phase. In Figs. 3(c)
and 3(f), ∂2 Re[ε]/∂γ 2 and ∂2 Im[ε]/∂γ 2 are discontinuous at
EP, indicating that a second-order quantum phase transition
occurs simultaneously with symmetry breaking.

To further discuss the effects of γ and h on ε, we give the
contour plots of ε. From Fig. 4(a) one can find that ε still
has a real part in the RT -broken phase, because there are
some values of k making the real part of ωk not to be zero.

Meanwhile, |h| can reduce Re[ε], which is opposite to the in-
fluence of |γ |, implying that h can weaken the non-Hermitian
effect. For Im[ε], we just display its negative part in Fig. 4(b),
which shows that the effects of |h| and |γ | on | Im[ε]| are the
same as those on Re[ε]. In Figs. 4(c) and 4(d), the discontinu-
ous behavior of the second derivative of ε can be clearly seen
at the dash-dotted line which corresponds to the boundary
between the RT -symmetric phase and the broken one.

III. MAGNETIZATION AND CORRELATION FUNCTION

In this section, we study the magnetization and correlation
functions in both RT -symmetric and RT -broken phases, and
discuss their crossover behaviors at EP.

A. Magnetization

Magnetization is an important concept for studying quan-
tum phase transitions in spin systems, and it can exhibit
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FIG. 4. (a) and (b): Contour plots of the real and imaginary parts of GSED. For a certain h, Re[ε] and | Im[ε]| have a minimum when
γ = 0, and they increase with |γ |. (c) and (d): ∂2 Re[ε]/∂h2 and ∂2 Im[ε]/∂h2 are discontinuous on the dash-dotted line which is the boundary
between RT -symmetric and RT -broken phases.

remarkable nonanalytic behavior at the critical point in non-
Hermitian spin systems though the number of spins is small
[5]. In this subsection, we study it in the infinite-size non-
Hermitian system. From Eqs. (4) and (5), one can obtain
σ z

l = 2c†
l cl − 1. Then using Eqs. (9), (10), and (14), the mag-

netization can be obtained as

M = 〈
σ z

l

〉 = − 1

π

∫ π

0
dk

|uk|2 − |vk|2
|uk|2 + |vk|2

. (20)

Considering that M is an even function of γ , we only focus
on the case of γ � 0. The results of M and its derivatives with
respect to γ and h are shown in Fig. 5. In the special case
of γ = 0, we find that M increases with h when 0 < h < 1;
when h � 1, all spins are magnetized, leading to M = 1. In the
case of γ > 0, M is positively correlated with h but negatively
correlated with γ . This is because γ enhances the interaction
in the x direction, which can reduce the influence of h. The
opposite effects of γ and h on M can be seen more clearly
from Fig. 5(c). In addition, it is obvious that ∂M/∂γ is nonan-
alytic at EP [see Fig. 5(b)], indicating that M declines quickly
when parameters go from the RT -symmetric phase to the
broken one. Similar phenomena can be seen from Fig. 5(d),

where ∂M/∂h is also nonanalytic at the phase boundary. The
physical mechanism behind these characteristics is the com-
petition between γ and h, and it is extremely intense at the
phase boundary.

B. Correlation functions

When discussing critical phenomena, the correlation func-
tion is often mentioned. We next study it and its crossover
behavior, which is defined as

Gα (r) = 〈
σα

l σα
l+r

〉 − 〈
σα

l

〉〈
σα

l+r

〉
, (21)

where r is the distance between spins σl and σl+r . Using
Eqs. (4) and (5), one can obtain [56]

Gx(r) = 〈BlAl+1Bl+1 · · · Al+r−1Bl+r−1Al+1〉, (22a)

Gy(r) = (−1)r〈AlBl+1Al+1 · · · Bl+r−1Al+r−1Bl+1〉, (22b)

Gz(r) = 〈AlBlAl+rBl+r〉 − 〈
σ z

l

〉〈
σ z

l+r

〉
, (22c)

in which Al = c†
l + cl and Bl = c†

l − cl . Due to the existence
of h in the z direction, it is more significant to study the
correlation function in the x-y plane. By means of Wick’s
theorem, Gx(r) can be calculated through the Pfaffian of a
skew-symmetric matrix [5], i.e.,
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FIG. 5. Magnetization and its derivatives with respect to γ and h. (a) M as a function of γ for different values of h. At γ = 0, it increases
with h for 0 < h < 1; M = 1 (maximum) for h � 1. (b) ∂M/∂γ varies smoothly with γ when 0 < h � 1, while it has a cusp at EP when
h > 1. (c) and (d): The solid lines in the contour plots are the boundaries between RT -symmetric and RT -broken phases.

Gx(r) = Pf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 〈BlBl+1〉 〈BlBl+2〉 · · · 〈BlBl+r−1〉 〈BlAl+1〉 〈BlAl+2〉 · · · 〈BlAl+r〉
0 〈Bl+1Bl+2〉 · · · 〈Bl+1Bl+r−1〉 〈Bl+1Al+1〉 〈Bl+1Al+2〉 · · · 〈Bl+1Al+r〉

0 · · · ...
...

... · · · ...

0 〈Bl+r−2Bl+r−1〉 〈Bl+r−2Al+1〉 〈Bl+r−2Al+2〉 · · · 〈Bl+r−2Al+r〉
0 〈Bl+r−1Al+1〉 〈Bl+r−1Al+2〉 · · · 〈Bl+r−1Al+r〉

0 〈Al+1Al+2〉 · · · 〈Al+1Al+r〉
0 · · · ...

0 〈Al+r−1Al+r〉
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(23)

in which the elements on the bottom left are given by the skew symmetry, and the pair contractions of Al and Bl are

〈Al Al+r〉 = δll+r + 1

π

∫ π

0
dk

ukv
∗
k − u∗

kvk

|uk|2 + |vk|2
sin (kr), (24a)

〈Bl Bl+r〉 = −δll+r + 1

π

∫ π

0
dk

ukv
∗
k − u∗

kvk

|uk|2 + |vk|2
sin (kr), (24b)

〈Al Bl+r〉 = −〈Bl+rAl〉 = 1

π

∫ π

0
dk

|uk|2 − |vk|2
|uk|2 + |vk|2

cos (kr) + 1

π

∫ π

0
dk

ukv
∗
k + u∗

kvk

|uk|2 + |vk|2
sin (kr). (24c)

014403-7



CHUANZHENG MIAO et al. PHYSICAL REVIEW B 110, 014403 (2024)

FIG. 6. Correlation function versus r for different values of h. The symbols are numerical results of |Gα (r)| (α = x, y) for γ = 0.5 and
0.8; dashed lines are approximately fitting results which satisfy the equation |Gα (r)| = ar−be−cr . hc is the value at EP when γ is a constant.
(a) and (b): |Gx (r)| decays according to a power law as r increases for h < hc; it shows the exponential decay for h � hc. (c) and (d): When
h < hc, the symbols are dispersed when r is small, but they still fit well as r increases, which shows that |Gy(r)| decays according to a power
law. When h � hc, |Gy(r)| has the same result as |Gx (r)|.

For Gy(r), its calculation process is similar to Gx(r).
Figure 6 shows the variation of correlation functions in the

x and y directions with distance r. The symbols in figures are
produced by numerical calculation, and dashed lines are fitting
results satisfying the equation Gα (r) = ar−be−cr, in which
a, b, c are fitting parameters. It is evident that |Gα (r)| will
decay exponentially with r when c > 0 and according to a
power law when b > 0, c = 0. We first discuss the character-
istics of |Gx(r)| in different phases. The function of |Gx(r)|
with r is shown in Figs. 6(a) and 6(b). When h < hc (broken
phase), c almost equals zero, which indicates that |Gx(r)|
decays according to a power law and there is quasi-long-range
order in the broken phase. Besides, the speed of decay is
comparatively enhanced with the increase of h. When h � hc

(symmetric phase), it is shown that c is no longer zero, indi-
cating that |Gx(r)| decays exponentially and the short-range
order appears. In the case of |Gy(r)|, its variation with r is
shown in Figs. 6(c) and 6(d). When h < hc, the fitted lines
also present the power-law decay; when h � hc, due to the
preservation of RT symmetry, its results are the same as
|Gx(r)| in Figs. 6(a) and 6(b), respectively, where they exhibit
the exponential decay.

The numerical results show that the correlation functions
of the non-Hermitian model studied are uncommon. For the
Hermitian anisotropic XY model [56], its ground state is

antiferromagnetic which features with long-range order. Only
at the anisotropic critical point (γ = 0), the correlation func-
tions decay according to a power law and quasi-long-range
order appears. In the presence of the real magnetic field
[83,85], it also exhibits quasi-long-range order when the
Ising transition takes place (γ = h), while short-range or-
der appears in the paramagnetic phase (γ < h). For the
model studied, the emergence of quasi-long-range order in
the RT -broken phase is quite fascinating. It has recently
been discovered that quasi-long-range order and the gapless
phase of non-Hermitian spin systems are strongly connected
[68]. In the RT -broken phase, one can check that there are
always some values of k making the real part of the energy
gap ωk equal to zero, which leads to the emergence of quasi-
long-range order. In the RT -symmetric phase, the order is
destroyed by large values of h, resulting in the short-range
correlation being similar to that in the paramagnetic phase.

IV. QUANTUM ENTANGLEMENT AND DISCORD

We have investigated the GSED, magnetization, and cor-
relation functions of the model studied and discussed their
crossover behaviors. In this section, we study the physical
quantities associated with quantum information, such as quan-
tum entanglement and discord.
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FIG. 7. Concurrence and its derivatives with respect to γ and h. (a) C decreases to zero with γ when 0 < h < 1, while it has a maximum
at EP when h � 1. (b) ∂C/∂γ is nonanalytic at EP. (c) The variations of C with γ in different phases are opposite, and the maximum of C
appears at the phase boundary. (d) ∂C/∂h is nonanalytic at the phase boundary, especially when γ is small.

A. Ground-state quantum entanglement

Concurrence is an essential measure of quantum entan-
glement, and we use it to analyze the entanglement of the
nearest-neighbor spins, which can be calculated by [86,87]

C = max[0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4], (25)

where λ j ( j = 1, 2, 3, 4), in decreasing order, are eigenvalues
of the non-Hermitian matrix R = ρl,l+1 ρ̃l,l+1 . Here ρl,l+1 is the
reduced density matrix by tracing over all spins in the ground
state except the nearest-neighbor spins σl and σl+1 [88,89],
and it can be written as

ρl,l+1 =

⎛⎜⎜⎜⎜⎝
a11 0 0 a14

0 a22 a23 0

0 a32 a33 0

a41 0 0 a44

⎞⎟⎟⎟⎟⎠, (26)

where

a11 = 1
4 Ml + 1

4 Ml+1 + 1
4

〈
σ z

l σ z
l+1

〉 + 1
4 , (27a)

a22 = 1
4 Ml − 1

4 Ml+1 − 1
4

〈
σ z

l σ z
l+1

〉 + 1
4 , (27b)

a33 = − 1
4 Ml + 1

4 Ml+1 − 1
4

〈
σ z

l σ z
l+1

〉 + 1
4 , (27c)

a44 = − 1
4 Ml − 1

4 Ml+1 + 1
4

〈
σ z

l σ z
l+1

〉 + 1
4 , (27d)

a23 = a32 = 1
4

〈
σ x

l σ x
l+1

〉 + 1
4

〈
σ

y
l σ

y
l+1

〉
, (27e)

a14 = 1
4

〈
σ x

l σ x
l+1

〉 − 1
4 i

〈
σ x

l σ
y
l+1

〉 − 1
4 i

〈
σ

y
l σ x

l+1

〉 − 1
4

〈
σ

y
l σ

y
l+1

〉
,

(27f)

a41 = 1
4

〈
σ x

l σ x
l+1

〉 + 1
4 i

〈
σ x

l σ
y
l+1

〉 + 1
4 i

〈
σ

y
l σ x

l+1

〉 − 1
4

〈
σ

y
l σ

y
l+1

〉
.

(27g)

ρ̃l,l+1 = (σ y ⊗ σ y)ρ∗
l,l+1

(σ y ⊗ σ y) is the corresponding spin-
flipped density matrix, where ρ∗

l,l+1
is the complex conjugate

of ρl,l+1 .
Based on Eq. (25), we calculate the concurrence C in the

RT -symmetric and RT -broken phases, and the results are
given in Fig. 7. The variations of C with γ for different
values of h are shown in Fig. 7(a). When 0 < h < 1, C rapidly
decreases to zero as γ increases; when h > 1, it first increases
to a maximum and then decreases to zero, indicating that the
crossover behavior of concurrence is prominent. Additionally,
the concurrence reaches its maximum at EP and increases
with hc or γc. In the special case of γ = 0, C decreases with
the increase of h; this is because the spins are magnetized as
the magnetic field increases, which breaks the entanglement
between two spins. Meanwhile, ∂C/∂γ is nonanalytic at EP
[see Fig. 7(b)], which indicates that the entanglement can
reflect the phase transition from the RT -symmetric phase to
the broken one in this system.
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FIG. 8. Quantum discord and its derivative with respect to γ and h. (a) Q oscillates and decreases with γ . (b) ∂Q/∂γ is nonanalytic at EP.
(c) Q exists in a wider range than concurrence, and its maximum also appears at the phase boundary. (d) ∂Q/∂h is nonanalytic at the phase
boundary.

To better analyze the crossover behaviors of concurrence
in different phases, we discuss the influences of γ and h
on C in a contour plot [see Fig. 7(c)]. When h is a certain
value, it is shown that C is positively correlated with γ in the
RT -symmetric phase, which is opposite to that in the broken
one. For the effects of h, C exhibits a negative correlation
with h in the symmetric phase; in the broken one, the variation
of C is not monotonic, which shows that it is also negatively
connected with h when 0 < h < 1, while opposite to the case
of 1 < h < hc. Furthermore, we find that the larger γ or h will
weaken C, and the maximum value of C always emerges at the
phase boundary where the competition is intense (including
the segment for γ = 0, 0 < h < 1). In Fig. 7(d), ∂C/∂h de-
creases abnormally when crossing from the broken phase to
the symmetric one, especially in the case in which γ is rela-
tively small, which corresponds to a junction of the Hermitian
region (γ = 0), the RT -symmetric phase and the broken one.

B. Ground-state quantum discord

We have identified that entanglement is closely connected
to the phase transition of this non-Hermitian XY model.
Quantum discord [90,91], a type of quantum correlation with
more quantum information than entanglement, has been con-
sidered as a sign of a quantum phase transition [92–98]. We
next calculate it and discuss its crossover behavior at EP.

Quantum discord can be obtained through the equation

Q(ρ) = I (ρ) − C(ρ), (28)

in which I (ρ) and C(ρ) are quantum mutual information
and classical correlation, respectively. Since the calculation
process is relatively complicated, we will not go into details.

Figure 8 shows the numerical results (see the detailed
calculation process in Ref. [99]) of the quantum discord Q
between nearest-neighbor spins in relation to γ and h. From
Fig. 8(a) one can find that the behaviors of Q are identical to
those of concurrence when γ = 0; Q oscillates and decreases
with γ for a certain h when γ > 0. Compared with entangle-
ment, it is obvious that Q exists in a wider parameter range (Q
still exists when γ is very large). The overall distribution of Q
with γ and h is shown in Fig. 8(c). In the symmetric phase,
γ and h have opposite effects on Q, while its distribution
is relatively complicated in the broken one. Furthermore, the
crossover behavior of Q is also evident, which shows that its
variations with γ (or h) are opposite on both sides of the phase
boundary. We also find that the maximum of Q also appears
at EP, and ∂Q/∂γ as well as ∂Q/∂h are also nonanalytic at
EP [see Figs. 8(b) and 8(d)], which has similar phenomena to
entanglement.

We emphasize that the ground state considered in this
paper differs from the steady state of a dissipative system.
For a dissipative system described by the master equation, the
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dissipation process tends to destroy quantum information and
coherence, resulting in the properties of steady states similar
to those of a thermal equilibrium system or one at finite tem-
perature [100–103]. The quantum phase transition describes a
sudden change of the ground state by tuning parameters and
usually occurs when the energy gap goes to zero. A significant
aspect of the non-Hermitian XY model with RT symmetry
is the presence of EP, which separates the RT -symmetric
phase from the broken one. Additionally, one can find that the
energy gap coincidentally closes at EP. As a result, the phase
transition at EP is quantum and it can be well characterized by
GSED and quantum entanglement.

V. CONCLUSION

In this paper, we have studied the ground-state energy
density, magnetization, correlation functions, quantum entan-
glement, and correlation of a non-Hermitian spin-1/2 XY
model and focused on the effects of the non-Hermitian pa-
rameter γ and external magnetic field h on these physical
quantities in RT -symmetric and RT -broken phases as well
as their crossover behaviors at EP. It is found that the magneti-
zation decays faster with γ in the symmetric region than in the
broken one, and declines rapidly at EP. For GSED, when γ >

0, it decreases linearly with h, while it bifurcates when γ =
0. By calculating GSED and its derivatives, a second-order
phase transition caused by symmetry breaking is confirmed,

and it can be further demonstrated by the magnetization and
quantum entanglement, etc. The numerical result of the cor-
relation function is quite interesting, which shows that there
is quasi-long-range order in the RT -broken phase; besides,
the exponential decay of it in the symmetric phase implies
that the phase has paramagnetic properties. We also find that
the crossover behavior of quantum entanglement is obvious,
which shows that its variations with γ are opposite before and
after crossing the phase boundary, and its maximum always
appears at the phase boundary. Overall, the existence of γ

makes the behaviors of the above physical quantities unusual,
which is actually caused by the competition between γ and h,
especially at EP; the competition is so intense that it drives the
appearance of the maximum or a sharp change for the above
physical quantities.
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