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When subjected to quasiperiodic driving protocols, superconducting systems have been found to harbor robust
time-quasiperiodic Majorana modes, extending the concept beyond static and Floquet systems. However, the
presence of incommensurate driving frequencies results in dense energy spectra, rendering conventional methods
of defining topological invariants based on band structure inadequate. In this work, we introduce a real-space
topological invariant capable of identifying time-quasiperiodic Majorana modes by leveraging the system’s
spectral localizer, which integrates information from both Hamiltonian and position operators. Drawing insights
from non-Hermitian physics, we establish criteria for constructing the localizer and elucidate the robustness of
this invariant in the presence of dense spectra. Our numerical simulations, focusing on a Kitaev chain driven by
two incommensurate frequencies, validate the efficacy of our approach.
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I. INTRODUCTION

The study of topological states under nonequilibrium con-
ditions, particularly under a time-dependent potential, has
been extensively explored over the past decade within the
Floquet paradigm [1–4], with the external drive being time-
periodic. A notable development along this line of inquiry
involves its extension to the time-quasiperiodic realm, in
which quantum systems are subjected to external drives char-
acterized by multiple mutually incommensurate frequencies
[5]. This extension allows for further control and manipulation
of quantum systems and brings about many new topological
phenomena, such as topological energy pumping due to the
nontrivial topology in synthetic dimensions [6–14].

Moreover, time-quasiperiodic drives can also be used to
generate nontrivial topology in physical dimensions with pro-
tected boundary modes. As first explored in Ref. [15], it
was shown that a time-quasiperiodic Kitaev chain can host
multiple types of Majorana boundary modes. In that work,
the authors analyzed the quasienergy band structure using the
enlarged Hamiltonian in the multifrequency-extended space,
which generalizes the Sambe space in the Floquet case [16].
In particular, for the analysis a very small cutoff was chosen
for the frequency-domain truncation, so that one is able to
identify all the topological gaps opened at the intersection
between bands dressed by multiple driving frequencies, when
a periodic boundary condition (PBC) is assumed. Thus, one
expects to have the Majorana edge modes inside these gaps
when the system has an open boundary condition (OBC).

*Contact author: yang.peng@csun.edu

As one increases the frequency cutoff, the spectrum of
the enlarged Hamiltonian becomes denser and denser. Even-
tually, when one pushes the cutoff to infinity, one should
expect a completely dense spectrum, in which for any eigen-
state there exists another one arbitrarily close to it in energy.
Due to the absence of gaps, one should not expect to see
any topological edge modes. Yet in the numerical calcula-
tions of Ref. [15], when the frequency cutoff was chosen
large enough, the Majorana boundary modes did appear,
thanks to the frequency-space localization, as explained by the
authors.

Despite the existence of the Majorana modes, what was not
addressed in that work is how to define a topological invariant
that detects these boundary modes embedded in the dense
spectrum. In the absence of gaps, certainly the Bloch-band-
based topological invariants for the gapped band structures as
in static and Floquet topological systems [17] would not be
applicable.

In this work, we solve this problem by defining such a
topological invariant inspired by a recently developed tool
called the spectral localizer [18–20], which has emerged as
a versatile tool for probing real-space topology in a variety
of materials with a gapless spectrum [21–25], including dis-
ordered semimetals [22], as well as photonic structures [25].
Indeed, we are motivated by the fact that the spectral localizer
can detect topological edge modes despite the presence of
degenerate bulk bands, as appeared in the above-mentioned
systems.

Given the above properties, we show that the spectral
localizer is able to detect the topological boundary modes
in a time-quasiperiodic quantum system. We further present
a physical interpretation of the invariant derived from the
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spectral localizer by making a connection to the physics of
non-Hermitian Hamiltonians, which effectively describe dis-
sipative systems [26]. Our work provides a concrete physical
interpretation for the abstract spectral localizer within the
context of non-Hermitian quantum systems. Particularly, we
establish a criterion for selecting the free tuning parameter in
defining the spectral localizer, thereby making this technique
more practical.

As an example, we shall consider the time-quasiperiodic
Kitaev chain with particle-hole symmetry used in Ref. [15],
and identify the local topological invariant. Furthermore, we
show that the local invariant can be used to detect topological
phase transitions associated with the emergence and disap-
pearance of Majorana edge modes, despite the dense spectrum
in the large frequency truncation limit.

The rest of this paper is organized as follows. In Sec. II, we
provide a brief overview of the spectral localizer. In Sec. III,
we discuss how the spectral localizer formalism can be ap-
plied to time-quasiperiodic systems and derive an appropriate
local invariant. We then demonstrate it as the topological
invariant for non-Hermitian matrices, and provide a criterion
for selecting the free tuning parameter in defining the spectral
localizer. Following that, we numerically study a quasiperiod-
ically driven Kitaev chain and demonstrate how the spectral
localizer can be used to detect topological phase transitions.
We conclude with a discussion in Sec. V.

II. REVIEW OF SPECTRAL LOCALIZER

In this section, we first briefly review the spectral localizer
and its properties. From a mathematical perspective, the spec-
tral localizer is a composite operator that combines a number
of incompatible observables and determine whether they can
be continued to commuting without breaking the system’s
symmetries. It is also shown to be closely related to a system’s
numerical K-theory [18,19]. Practically, the spectral localizer
allows one to probe a finite system’s real-space topology,
and has been shown to be more numerically efficient than
other real-space approaches, such as computing the Bott index
[22,27]. Given these properties, the spectral localizer has been
primarily used to detect boundary-localized modes and probe
nontrivial local topology in a variety of materials and systems
[21–25,28–32].

For a system in d dimensions, the Hamiltonian H and
its position operators Xj=1,...,d are generally incompatible,
[H, Xj] �= 0. The spectral localizer is constructed by combin-
ing individual eigenvalue equations using a nontrivial Clifford
representation [33]. Namely, it is defined as [18]

Lx1,...,xd ,E (X1, X2, . . . , Xd , H )

= κ

d∑
j=1

(Xj − x jI ) ⊗ � j + (H − EI ) ⊗ �d+1. (1)

Here κ > 0 is a scaling constant, and I is the identity
matrix with appropriate dimensions. The set of matri-
ces {�1, �2, . . . , �d+1} satisfies �

†
j = � j , �i� j = −� j�i,

�2
j = I . Unlike eigenvalue equations, however, here x =

(x1, x2, . . . , xd ) and E are inputs to the spectral localizer, and
they dictate where in position-energy space the localizer is

probing. Moreover, x and E do not necessarily have to be
eigenvalues of (X1, X2, . . . , Xd ) and H .

Depending on the system’s symmetries, different prop-
erties of the spectral localizer can be used to determine
whether the set of matrices {X1 − x1I, . . . , Xd − xd I, H − EI}
can be continued to commuting. If there is obstruction to
that continuation, then the system exhibits nontrivial topol-
ogy at (x, E ). Probing whether the continuation is possible
then allows us to define a local invariant that classifies a
system’s local topology [18,21,29]. Similar to ones proposed
in topological band theory [34], the local invariant will be
one of the three types: matrix signature (Z invariant), sign
of a determinant (Z2), or sign of a Pfaffian (Z2). In this
work, we focus on 1D topological superconductors in class
D with a Z2 invariant, which is shown in later sections to be
related to the the sign of the determinant of one block of the
localizer.

III. SPECTRAL LOCALIZER
IN TIME-QUASIPERIODIC SYSTEMS

A. Frequency-domain representation

Let us first review the frequency-domain representation
of operators. This representation allows us to work with a
static Hamiltonian K instead of the original, time-dependent
Hamiltonian H (t ), and therefore to use the spectral localizer,
which is defined for time-independent Hamiltonians.

Consider first a time-periodic (Floquet) system with period
T , where the Hamiltonian H (t ) satisfies H (t ) = H (t + T ).
Denoting the system’s physical Hilbert space as H, we may
equivalently formulate the problem by introducing an en-
larged Hilbert space, K = H ⊗ L2(S1) (also known as the
Sambe space [16]). Here L2(S1) denotes the space of square
integrable T -periodic functions.

In the enlarged Hilbert space K, a time-periodic state
|ψ (t )〉 can be represented as

|ψ (t )〉 =
∑

n

|ψn〉e−inωt →
∑

n

|ψn〉 ⊗ |n〉, (2)

where |n〉 is a state in the Fourier space of L2(S1). Intuitively,
the time-periodic problem is mapped to a 1D synthetic lattice,
where the index n denotes the position on that lattice. Simi-
larly, the Hamiltonian H (t ) and time derivative operator −i∂t

can be written as, respectively,
∑

n hn ⊗ |n〉 and −ωIH ⊗ N̂ ,
where IH is the identity matrix on the physical Hilbert space,
N̂ := ∑

n n|n〉〈n| is the position operator on the frequency
lattice, and ω = 2π/T is the frequency. Therefore, in the
enlarged space, the enlarged Hamiltonian is represented by
the following static matrix K :

H (t ) − i∂t → K := −ωIH ⊗ N̂ +
∑

n

hn ⊗ σn, (3)

where we have also introduced σn := ∑
m |n + m〉〈m| as the

operator that shifts all sites on the Floquet lattice by distance
n, namely σn|m〉 = |n + m〉.

As an example, consider a harmonically driven system,
H (t ) = h0 + 2h1 cos(ωt ). The nontrivial harmonics are h0 and
h1 = h†

−1. In this representation, the enlarged Hamiltonian is
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written explicitly as

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .

h0 − ω h1 0

h†
1 h0 h1

0 h†
1 h0 + ω

.. .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The quasienergies can then be obtained by diagonalizing K .
Note that the structure of K immediately implies that the
quasienergies are only defined modulo ω in the Floquet sys-
tem. In practice, we have to truncate K to a finite number of
sectors, and we will denote the cutoff as M.

The above discussion on Floquet systems generalizes eas-
ily to time-quasiperiodic systems, where H (t ) depends on s
mutually incommensurate frequencies. In this case, the emer-
gent synthetic lattice |n〉 will be s-dimensional, and the static
Hamiltonian K will take a form similar to that in Eq. (3), with
its sectors being

Kn,m = Hn−m − δn,mn · ω, (5)

with n, m ∈ Zs, and ω = (ω1, ω2, . . . , ωs) the vector of fre-
quencies.

As a concrete example, for a system driven by two mutu-
ally irrational frequencies ω1 and ω2, the static Hamiltonian
K is

K = − ω1 IH ⊗ N̂ (1) ⊗ I(2) − ω2 IH ⊗ I(1) ⊗ N̂ (2)

+
∑

n

h(1)
n ⊗ σ (1)

n ⊗ I(2) +
∑

n

h(2)
n ⊗ I(1) ⊗ σ (2)

n , (6)

where the superscript denotes operators from the correspond-
ing drive. Again from the first two terms, we see that
quasienergies in this system are only defined modulo n1ω1 +
n2ω2, where n1, n2 ∈ Z.

B. Real-space topological invariant

Similar to Majorana modes in static systems, in 1D time-
quasiperiodic Majorana modes are also protected by particle-
hole symmetry (class D). In this section, we will identify the
local invariant for such systems.

With only one spatial dimension, we have a single posi-
tion operator X , which acts trivially on the frequency lattice
spanned by |n〉. We construct the spectral localizer composed
of operators K and X ,

Lx,ε (X, K )

= κ (X − xI ) ⊗ σx + (K − εI ) ⊗ σy

=
(

0 κ (X − xI ) − i(K − εI )

κ (X − xI ) + i(K − εI ) 0

)
.

(7)

Here x and ε are parameters with dimensions of position
and energy, σx,y are the Pauli x and y matrices satisfying the
Clifford algebra, and κ > 0 is a scaling constant. It was stated
in previous works that while the allowed values of κ spans a
wide range, it should be chosen below some critical value κc

[19,20]. However, the meaning of κc was not clearly stated,

and the appropriate values of κ were chosen only empirically
[35]. In Sec. III C, we shall present the meaning for this κc in
our system.

In class D, there is a particle-hole symmetry realized by
a unitary matrix Vc with VcV †

c = 1 that transforms the en-
larged Hamiltonian as Vc(K − ε̄I )∗V −1

c = −(K − ε̄I ). Here ε̄

can be any particle-hole symmetric quasienergies of the form
ε̄ = l · ω with l an s-dimensional vector consisting of integers
and half integers. Given multiple inequivalent particle-hole
symmetric quasienergies, multiple types of Majorana modes
can be obtained [15], and thus we need to detect Majorana
modes at different quasienergies.

Because of the particle-hole symmetry, the spectral local-
izer is also particle-hole symmetric at ε = ε̄,

(Vc ⊗ σz ) L∗
x,ε̄ (Vc ⊗ σz )−1 = −Lx,ε̄ . (8)

Moreover, Lx,ε has an additional chiral symmetry introduced
by the particular Clifford representation,

(I ⊗ σz ) Lx,ε (I ⊗ σz )−1 = −Lx,ε . (9)

Given these symmetries, for each pair (x, ε̄), the spectral
localizer is a Hermitian matrix describing an effective 0D
system in class BDI, and is classified by a Z2 invariant [36].
To see this, we use the fact that via a basis transformation,
K − ε̄I can always be brought into a pure imaginary form
whereas X − xI is purely real. In this basis, we can define the
topological invariant for Lx,ε̄ ,

Cx,ε̄ = sgn{det[κ (X − xI ) + i(K − ε̄I )]}. (10)

Note that the matrix κ (X − xI ) + i(K − ε̄I ) is real, which
guarantees the determinant to be real. This invariant is in
agreement with, and a generalization of, its counterpart in
static, particle-hole symmetric systems, in which the invariant
is only defined at ε̄ = 0 [18,29].

To detect topologically protected boundary modes, such
as the Majorana modes in the time-quasiperiodic topological
superconductor introduced above, we need to examine the
invariant Cx,ε̄ at fixed ε̄, which is determined by the type of
time-quasiperiodic Majorana modes we are interested in, and
vary the position argument x. For small κ and x inside the
bulk, Cx,ε̄ will take the value of the bulk topological invariant
obtained from the topological band theory in a periodic system
[18,29]. When x is near the boundary, Cx,ε̄ = 1 is trivial. Thus,
the real-space signature for the existence of a Majorana at
quasienergy ε̄ is the jump from 1 to −1 for Cx,ε̄ as x is varied
from the boundary into the bulk.

Next, we introduce this basis transformation explicitly.
The key insight is to find a basis in which Vc is an identity
operator so that (K − ε̄I ) = −(K − ε̄I )∗ is purely imaginary
(and antisymmetric). To this end, we define the transformation
matrix

W = 1√
2

(
Ix iIx

Ix −iIx

)
, (11)

where Ix is the identity matrix in real space. For particle-hole
symmetry centered at quasienergy ε̄ = l · ω, we can further
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define the following matrix in the frequency domain:

ρn,m = 1√
2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 n = m < l,
−i n = m > l,√

2 n = m = l,
i n = −m < l,
1 n = −m > l,

(12)

where vectors are ranked by comparing their indices, starting
from the first one. One can then check that the following
matrix after basis transformation

(W ⊗ ρ)†K (W ⊗ ρ) − ε̄I (13)

is purely imaginary. On the other hand, since the transfor-
mation matrix W ⊗ ρ acts trivially on the spatial dimension,
X − xI is unchanged under the transformation; i.e., it remains
real and diagonal.

C. Interpretation from non-Hermitian physics

The invariant of the spectral localizer Lx,ε̄ defined in
Eq. (10) involves the non-Hermitian parity-time (PT)–
symmetric real matrix Mx(κ ) = κ (X − xI ) + i(K − ε̄I ),
where the PT symmetry is simply the complex conjugation.
It is known that there are two types of eigenvalues of
a PT-symmetric matrix: the PT-preserving ones (real)
and the PT-breaking ones (complex) [37]. Note that the
PT-breaking eigenvalues must appear as complex conjugate
pairs E , E∗ ∈ C.

Now, let us look at the matrix Mx(κ ) in our problem. At
κ = 0, Mx(0) = i(K − ε̄I ) is simply the enlarged Hamiltonian
multiplied by the imaginary unit. Because of the particle-hole
symmetry around ε̄, the eigenvalues of Mx(0) are on the
imaginary axis and appear in conjugation pairs as ±iεn cor-
responding to non-Majorana modes, and zero corresponding
to possible Majorana modes. Hence, the topologically trivial
bulk states can be regarded as the PT-breaking states, whereas
the Majorana modes are the PT-preserving states.

As κ increases from zero, all PT-breaking eigenvalues must
move in pairs with the same real part, ±iεn → �n ± iε′

n. Note
that the invariant in Eq. (10) can be written as the sign of the
product of all eigenvalues of Mx(κ ). Since the PT-breaking
eigenvalues appear as complex conjugation pairs, their prod-
uct is always real and positive. We thus conclude that Cx,ε̄ = 1
is trivial if there are no Majorana modes, i.e., no PT-preserving
states.

However, if at κ = 0 the system has two Majorana modes
at the left and right boundary, their eigenvalues can move
independently along the real axis (0, 0) → (δL, δR) as κ is
increased [37]. Since the product of all other eigenvalues is
real and positive, the invariant can be written as

Cx,ε̄ = sgn(δLδR). (14)

For small κ , based on perturbation theory we have δL,R �
κ〈ψL,R|(X − xI )|ψL,R〉, where |ψL,R〉 denotes the Majorana
mode at the left and right boundary, respectively. If x is chosen
near either boundary, the matrix X − xI is either positive or
negative semidefinite, which produces the same sign for δL

and δR and gives Cx,ε̄ = 1. However, if x is chosen deep inside
the bulk, 〈ψL|X − xI|ψL〉 is negative, while 〈ψR|X − xI|ψR〉

is positive, which gives opposite signs for δL and δR, and leads
to Cx,ε̄ = −1.

The connection to non-Hermitian systems also explains
why the hyperparameter κ cannot be too large when con-
structing the spectral localizer [18,29]. This can be understood
from the spectrum of the matrix Mx(κ ). As κ is increased, all
our above statements remain true, until an exceptional point
is reached when κ = κc, where the matrix Mx(κc) becomes
non-diagonalizable through the coalescence of pairs of eigen-
values and eigenvectors [38,39]. For κ > κc, Mx(κ ) no longer
hosts PT-preserving modes, indicating that it is topologically
different from Mx(0) ≡ iK , which has Majorana modes as PT-
preserving modes. Thus, the criterion for selecting κ is that no
exceptional point should be met as κ is increased from zero.

D. Effects due to dense spectrum

One complication in time-quasiperiodic systems is the
dense energy spectrum when one extends the frequency trun-
cation limit to infinity. This can lead to a vanishing localizer
gap [21], which is defined as the smallest eigenvalue (in
modulus) of Lx,ε̄ at each (x, ε̄). For our system, the localizer
gap at each x is equal to the smallest singular value of ma-
trix Mx(κ ), namely min[σs(Mx(κ ))], where σs(·) denotes the
singular value spectrum of a matrix.

To analyze the localizer gap of Mx(κ ), it is useful to
consider the eigenvalues of Mx(κ ), which is different from
its singular values. If we denote the smallest eigenvalue of
Mx(κ ) in absolute value as εmin ∈ C, then we have in general
min[σs(Mx(κ ))] � |εmin|. This means whenever εmin = 0, the
localizer gap vanishes. Conversely, vanishing localizer gap
implies 0 ∈ σs(Mx(κ )) and det[Mx(κ )] = 0, thereby forcing
εmin = 0. εmin can therefore be regarded as an alternative to the
localizer gap, given that the localizer gap closes if and only if
εmin = 0, where the invariant Cx,ε̄ is no longer well defined.

One advantage of analyzing the eigenvalues of Mx(κ ) is
that they are related at different spatial locations x, because
Mx(κ ) = Mx=0(κ ) − κxI . In other words, the eigenvalues of
Mx(κ ) at generic x can be obtained from the ones at x = 0 to-
gether with an additional shift −κx. Without loss of generality,
let us choose the coordinate system such that the left boundary
is at the origin x = 0, and sites along the chain are located at
integer coordinates x = 0, 1, . . . , N − 1. This means the po-
sition operator X has eigenvalues 0, 1, . . . , N − 1 and is thus
positive semidefinite. We can denote eigenvalues of Mx=0(κ )
as �n ± i(εn + m · ω) and δL,R + im · ω, with �n, δL,R � 0,
corresponding to PT-breaking states and PT-preserving states,
respectively. Here the term m · ω takes into account the time-
quasiperiodicity represented in frequency domain [15].

In the limit of large frequency truncation, m · ω can ap-
proach any real value by choosing sufficiently large (in
magnitude) integers in the integer-valued vector m. There-
fore, the imaginary parts of eigenvalues of Mx=0(κ ), namely
εn + m · ω and m · ω, are dense in R (can be made arbitrarily
close to any real number). Particularly, these imaginary parts
can approach zero. This implies

εmin = min
n; j=L,R

(|�n − κx|, |δ j − κx|). (15)

As x increases from 0, κx may become equal to a particular
�n or δ j , and hence lead to εmin = 0 and vanishing localizer
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gap. Since the number of distinct real parts of eigenvalues �n

and δ j is linear in L (in contrast to the dense imaginary part),
there is only a finite number of spatial locations x > 0 where
the localizer gap and εmin vanish.

The above analysis shows that despite the dense spectrum
of K , the invariant Cx,ε̄ is undefined only at a finite number of
points (a measure zero set). Moreover, to calculate the εmin,
we only need to get the distinct real part of the eigenvalues
of M(κ ). Numerically, as shown in Appendix B, the real part
easily converges with a small frequency-domain truncation.

The next question is, Can we still use Cx,ε̄ to detect Ma-
jorana modes by sweeping x when there is a finite number
of x where Cx,ε̄ is not well defined? To answer this question,
we first note that vanishing localizer gap/εmin does not neces-
sarily imply a change in Cx,ε̄ . In particular, the invariant does
not change if the gap closing is due to a pair of PT-breaking
eigenvalues going through zero, namely �n = κx for some
n. This is because the product of this pair of eigenvalues
remains positive, before and after closing. The invariant Cx,ε̄

only changes if a PT-preserving eigenvalue goes through zero,
namely δ j = κx for j = L or R. Hence, in spite of many points
of localizer gap closing, the transition between 1 and −1 in
Cx,ε̄ only happens when the gap closing is due to δL or δR

crossing κx. The usage of the spectral localizer is therefore
still valid.

IV. NUMERICAL EXAMPLE: DRIVEN KITAEV CHAIN

A. Quasiperiodic Majorana modes

To illustrate the ideas introduced previously, as an example
we shall take the quasiperiodically driven Kitaev chain [15],
which is known to host multiple types of time-quasiperiodic
Majorana modes.

The Hamiltonian for this driven Kitaev chain has the fol-
lowing form,

H (t ) = HK +
∑

i

V (ωit ; �i ), (16)

where

HK = −μ

N∑
j=1

c†
j c j −

N−1∑
j=1

[(Jc†
j c j+1 + i�c jc j+1) + H.c.]

(17)

is the Hamiltonian for a static Kitaev chain [40], where c j (c†
j )

is the annihilation (creation) operator on site j, J is the
nearest-neighbor hopping amplitude, μ the on-site potential,
and � the static pairing potential. The term

V (ωit ; �i ) = −i�i

N−1∑
j=1

(e−iωit c jc j+1 − eiωit c†
j+1c†

j ) (18)

describes a time-periodic pairing term at frequency ωi, with
amplitude �i.

In Appendix A, we review the condition for the existence
of different time-quasiperiodic Majorana modes in this model.
It turns out that by including two independent dynamic pairing
potentials at two frequencies ω1 and ω2, Majorana modes at
quasienergy ω1/2, ω2/2, together with the zero mode, can

be engineered. In terms of the system’s parameters, the ω1/2
and ω2/2 Majorana modes disappear when ω1, ω2, exceed
the bandwidth 2J + μ, respectively. On the other hand, the
zero mode should always survive, as long as |μ| < 2|J|, inde-
pendent of ω1 and ω2. Moreover, the (ω1 + ω2)/2 Majorana
mode can be engineered if we include the dynamic pairing
potential V ((ω1 − ω2)t ; �12) in addition to the other two dy-
namic pairing terms. It requires |ω1 − ω2| < (2J + μ), and
ω1,2 � (2J + μ).

B. Numerical results

We numerically study the quasiperiodically driven Kitaev
chain described by Eq. (16), with two dynamic pairing po-
tentials at frequencies ω1 and ω2, using the spectral localizer
Lx,ε̄ as defined in Eq. (7) and the local invariant Cx,ε̄ defined
in Eq. (10).

First, we show the behavior of the local invariant Cx,ε̄ and
the localizer gap, min[σs(M )], in the presence and absence
of Majorana modes. For concreteness, we have focused on
the Majorana mode at quasienergy ω2/2 by setting ε̄ = ω2/2.
As shown in Figs. 1(a) and 1(b), the local invariant becomes
nontrivial in the bulk when the system hosts Majorana edge
modes. On the other hand, when Majorana modes are absent
(specifically, for ω2 exceeding the bandwidth 2J + μ; see
Appendix A), the invariant remains trivial along the chain.
This correspondence between the existence (absence) of topo-
logical boundary modes and nontrivial (trivial) bulk invariants
has also been observed in other systems using the spectral
localizer approach, such as anomalous Floquet topological
insulators [32] and nonlinear topological materials [36].

The localizer gap behaves similarly, as shown in Figs. 1(c)
and 1(d). In the presence of Majorana modes, the localizer
gap indeed closes near the boundary, while it remains open
when the system is topologically trivial. The location of the
gap closing coincides with that of invariant change shown in
Fig. 1(a). Importantly, we would like to note that the appear-
ance of a constant localizer gap in the bulk is merely an artifact
of finite sampling of x: namely, we have sampled x densely
around the boundary and chosen x on site in the bulk to single
out the effects of Majorana edge modes. If we were to sample
the bulk as densely, we would have expected many closings
due to topologically trivial states. However, such crossings
always occur in pairs and therefore do not affect the local
invariant, as discussed in Sec. III D.

To further support our analysis in Secs. III C and III D, we
have also analyzed the spectrum of Mx(κ ). In Fig. 1(e), we
show the real part of a few eigenvalues of Mx(κ ) along the
chain, i.e., (�n, δ j ) − κx for both δL, δR and a few bulk states
�n. Compared to the local invariant shown in Fig. 1(a), it is
clear that only the Majorana crossings at δ j − κx = 0 change
the local invariant. On the other hand, while there is an exten-
sive number of crossings at �n − κx = 0 due to bulk states,
the local invariant is not affected, as such crossings always
occur in pairs. In Fig. 1(f) we show (�n, δ j ) − κx for all �n

and δ j in an energy window (−ω2/2, ω2/2). In the limit of
large frequency-domain truncation, while the imaginary part
of M’s spectrum becomes dense, the real part of the spectrum
remains unchanged. Therefore, despite the dense spectrum,
εmin still serves as a useful alternative to the localizer gap. For
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FIG. 1. (a) and (b): Local invariant Cx,ε̄ along the chain in the
presence and absence of Majorana modes. The bulk invariant is
nontrivial when topological edge modes are present. (c) and (d):
Localizer gap min[σs(M )] in the presence and absence of Majorana
modes. Inset of (c): Localizer gap zoomed-in around the system
boundary. The location of localizer gap closing in (c) coincides with
that of invariant change in (a). (e) Distinct real part of the eigenval-
ues of M(κ ). The Majorana modes (δ j − κx) and a few bulk states
(�n − κx) are shown in red and blue, respectively. The black dashed
line is at y = 0. Intersections with it indicate vanishing (�n, δ j ) − κx.
Only the Majorana crossings, shown in red, correspond to invariant
changes. Bulk state crossings, shown in blue, occur an even number
of times and do not change the invariant. (f) Real part of eigenvalues
of M(κ ) in an energy window (−ω2/2, ω2/2). While the imaginary
part of the spectrum is dense, the real part is not. The parameters used
across all panels are J/ω1 = 0.5, μ/ω1 = 1, �/ω1 = 0.05, �′/ω1 =
0.05, κ = 0.4, N = 100. The frequency ratio is ω2/ω1 = (

√
5 +

1)/2 [(a), (c), (e), (f)], ω2/ω1 = 5(
√

5 + 1)/2 [(b), (d)]. The fre-
quency domain is truncated to a 9 × 8 lattice.

the behavior of the localizer gap and εmin in the limit of an
infinite frequency lattice, see Appendix B.

Now that we have established the correspondence between
topological edge modes and bulk invariants, we wish to use
it in reverse: namely, by probing whether the bulk invari-
ant is nontrivial, we wish to determine whether the system
hosts Majorana edge modes. To this end, we simulate the
driven Kitaev chain at different driving frequencies. For each
pair of frequencies (ω1, ω2) and each Majorana mode [ε̄ =
0, ω1/2, ω2/2, (ω1 + ω2)/2], we compute the localizer in-
variant, Eq. (10), at the center of the chain, i.e., we use
x = N/2, where N is the length of the chain. If the local
invariant is trivial (C = 1), then the corresponding Majorana

FIG. 2. Phase diagrams of coexisting Majorana modes from
probing the bulk local invariant. (a) Phase diagram consisting of three
Majorana modes with quasienergies ε̄ = 0, ω1/2, ω2/2. (b) Same as
(a), but with two modes at ε̄ = 0, (ω1 + ω2)/2. In both panels, the
red line indicates that the parameter regime ω1 � ω2 is not con-
sidered. The parameters used for both figures are μ/J = 1, �/J =
0.1, �1/J = �2/J = 0.05, κ = 0.001, N = 60. In (b), there is an
extra pairing potential �12/J = 0.05.

mode is absent; if nontrivial (C = −1), then the system hosts
Majorana modes at the particular quasienergy ε̄. Note that
for each set of frequencies, we only need to compute the
invariant at one location. Furthermore, since the matrix Mx(κ )
is in general sparse, there are readily available algorithms to
efficiently compute the sign of its determinant (for example,
using LU factorization).

Using the bulk invariant, we have compiled two phase
diagrams, as shown in Fig. 2. Results from the spectral local-
izer approach indeed match our expectations, validating our
real-space invariant for a time-quasiperiodic system.

In Fig. 2(a), we see that when ω1, ω2 exceed the system
bandwidth 2J + μ, corresponding Majorana modes at ε̄ =
ω1/2, ω2/2 vanish. In contrast, the Majorana mode at zero
quasienergy always survives, regardless of the frequencies.
Note that the red line in the lower-left square indicates that we
are not considering cases where ω1 � ω2. Along the direction
perpendicular to ω = (ω1, ω2), the energy variation across
different synthetic lattice sites is very small. Therefore, the
quasiperiodic localization argument of Ref. [15] is no longer
valid, and the time-quasiperiodic Majorana modes are not
stable.

In Fig. 2(b), we further study the parameter regimes when
the (ω1 + ω2)/2 Majorana mode is present by adding a third
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dynamic pairing potential V ((ω1 − ω2)t ; �12) to the Hamilto-
nian. Note that such a newly added term does not change the
time quasiperiodicity of the model. We found that we are able
to engineer the Majorana at energy (ω1 + ω2)/2 if |ω1 − ω2|
does not exceed 2J + μ, while both frequencies ω1,2 are com-
parable to 2J + μ, as expected. Similar to Fig. 2(a), we are
not considering cases where ω1 ∼ ω2, as indicated by the red
line.

V. CONCLUSION AND OUTLOOK

In this work, by exploiting a recently developed tool
called the spectral localizer, we defined a real-space topolog-
ical invariant at position x as Cx,ε̄ = sgn{det[Mx(κ )]}, with
non-Hermitian matrix Mx(κ ) = κ (X − xI ) + i(K − ε̄I ) and
hyperparameter κ , for time-quasiperiodic Majorana modes
at quasienergy ε̄ in a superconducting system driven at
multiple incommensurate frequencies. Using the theory of
PT-symmetric non-Hermitian matrices to analyze Mx(κ ), we
provided a detailed physical understanding of this invariant by
analyzing the eigenvalues of Mx(κ ). We were able to interpret
the maximal hyperparameter κc beyond which our approach
is invalid as the exceptional point for Mx(κ ). Furthermore, we
showed that despite the dense spectrum of frequency-space
enlarged Hamiltonian K for the time-quasiperiodic system,
the invariant Cx,ε̄ only depends on the real part of the eigen-
values of M(κ ), which only takes a finite number (linear in
system size) of distinct values. We illustrated this approach
numerically by studying a time-quasiperiodic driven Kitaev
chain model.

In the future, we shall generalize this approach to other
systems with a dense spectrum, such as the gapless topo-
logical space-time crystals mentioned in Ref. [41]. Another
direction is to construct a real-space invariant for interact-
ing many-body systems, where the spectral localizer is not
defined yet. However, our non-Hermitian matrix construction
may provide some hints. Finally, we notice that for small κ ,
the matrix −iMx(κ ) = (K − ε̄I ) − iκ (X − xI ) is essentially a
Hamiltonian with a small non-Hermitian perturbation, which
can be regarded as an effective Hamiltonian for the short-time
dynamics in an open quantum system described by the Lind-
blad master equation [26]. It would be interesting to explore
the possibility of designing dissipative protocols for a driven
Kitaev chain (or the Jordan-Wigner equivalent transverse-field
Ising model) to measure the local topological invariant in
experiments.
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APPENDIX A: DRIVEN KITAEV CHAIN

Under periodic boundary conditions, we may write
the Hamiltonian Eq. (16) with a two-frequency drive in

momentum space as

H =
∑

k



†
k [HK (k) + V (k, ω1t ) + V (k, ω2t )]
k, (A1)

where

HK (k) = τzξk + τx� sin k, (A2)

V (k, ωt ) = τx�
′ sin keiωtσz . (A3)

Here 

†
k = (c†

k , c−k ) is the Nambu spinor, ck =∑N
j=1 c je−ik j/

√
N is the annihilation operator in k

space, τx,y,z are Pauli matrices for Nambu space, and
ξk = −J cos(k) − μ/2 is the normal state dispersion.

It has been shown in Ref. [15] that the above system
hosts four quasiperiodic Majorana modes at quasienergies
0, ω1/2, and ω2/2. Since quasienergy is only defined mod-
ulo n1ω1 + n2ω2 in this system, under the particle-hole
transformation, any state with one of the four quasiener-
gies is mapped to itself; i.e., they are all particle-hole
symmetric.

The robustness of quasiperiodic Majorana modes may
at first seem surprising. Indeed, since ω1 and ω2 are mu-
tually irrational, n1ω1 + n2ω2 can approach any value for
sufficiently large |n1|, |n2|, and the dense quasienergy spec-
trum would naively imply mixing between the Majorana
modes and bulk states under local perturbation. Interest-
ingly, despite the absence of a spectrum gap, quasiperi-
odic Majorana modes are stable due to localization in
the drive-induced synthetic dimensions. In fact, Ref. [15]
has shown that the Majorana modes are robust even in
the presence of temporal disorder and rational driving
frequencies.

One may also understand the robustness of dynamical
Majorana modes from the system’s quasienergy band struc-
ture. In the absence of static and dynamic pairing potentials
� = �′ = 0, the quasienergy bands of the system take the
form εn1,n2,e/h(k) = ±ξk + n1ω1 + n2ω2. For appropriate pa-
rameters, there can be at three special quasimomenta k j ,
j ∈ {0, 1, 2}, where the quasienergy bands cross. Namely, the
three special momenta satisfy

εn1,n2,e(k0) = εn1,n2,h(k0),

εn1,n2,e(k1) = εn1+1,n2,h(k1),

εn1,n2,e(k2) = εn1,n2+1,h(k2). (A4)

Reinstating �,�′ �= 0 opens up topological gaps at these mo-
menta. These gaps protect the Majorana modes at quasiener-
gies 0, ω1/2, ω2/2, respectively.

Depending on the driving frequencies, the system can host
different numbers of coexisting Majorana modes and there-
fore be in different topological phases. The disappearance of
Majorana modes at large frequencies is dictated by conditions
in Eq. (A4): when frequencies exceed the normal state band-
width, there can no longer be quasienergy band crossings.
In turn, no topological gap opens up, and Majorana modes
lose their robustness and disappear. In terms of the system’s
parameters, Majorana modes at ω1/2, ω2/2 vanish when ω1,
ω2 exceed the bandwidth 2J + μ, respectively. Note that the
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FIG. 3. The localizer gap min[σs(M )] along a chain for dif-
ferent number of frequency sectors M. The gap is indepen-
dent of the cutoff and converges to a finite value. Parameters
used are J/ω1 = 0.5, μ/ω1 = 1,�/ω1 = 0.05, �′/ω1 = 0.05, κ =
0.4, N = 40, ω2/ω1 = (

√
5 + 1)/2. We have focused on the ε̄ =

ω2/2 mode.

zero mode should always survive as long as |μ| < 2|J| in the
presence of static pairing.

It is also possible to engineer a Majorana mode at energy

(ω1 + ω2)/2 = (ω1 − ω2)/2 mod ω2. (A5)

One of the possibilities is to introduce a pairing term
V (k; (ω1 − ω2)t ) into the previous Hamiltonian. Following
the same logic from the previous discussion, we need to make
|ω1 − ω2| smaller than the bandwidth 2J + μ. To make such
a mode stable, we should also make ω1, ω2 � (2J + μ), to
make sure the Majorana at (ω1 − ω2)/2 does not overlap in
energy with continuum states of the ξk + n1ω1 + n2ω2 side-
bands.

FIG. 4. Same parameters as Fig. 3, except that the quantity of
interest is εmin, as defined in Eq. (15).

APPENDIX B: EFFECTS OF FINITE
FREQUENCY TRUNCATION

In this Appendix, we show the robustness of the localizer
gap and εmin against truncation in the frequency domain.

For concreteness, we have again focused on the ε̄ = ω2/2
mode. Therefore, when we truncate the frequency lattice to
Nmax sectors, we restrict to −Nmax, . . . , Nmax harmonics of
ω1 and −Nmax + 1, . . . , Nmax harmonics of ω2; i.e., we are
truncating the infinite frequency lattice to a (2Nmax + 1) ×
(2Nmax) lattice.

In Figs. 3 and 4, we show the localizer gap and εmin for
different Nmax. Note first that vanishing εmin coincides with
vanishing localizer gap (at x = 1), as we had expected. In
the limit of a dense spectrum Nmax → ∞, both εmin and the
localizer gap remain nonzero, indicating that a dense spectrum
does not pose an issue, as discussed in Sec. III D. Furthermore,
both quantities converge easily for small cutoff Nmax, showing
our results only require a small frequency truncation.
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