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Ultrafast polarization switching in BaTiO3 by photoactivation of its ferroelectric and central modes
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We use molecular dynamics simulations with machine-learned atomistic force fields to simulate photoexcita-
tion of BaTiO3 by a femtosecond laser pulse whose photon energy exceeds the optical gap. We demonstrate
selective displacive excitation of coherent zone-center ferroelectric mode phonons and of the strongly an-
harmonic central mode. We show that the direction of P can either be reversed by a pulse in hundreds of
femtoseconds or, on a longer timescale and when combined with a weak field, switched to any one of its
symmetry-equivalent directions.
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I. INTRODUCTION

The demand for faster and more efficient optoelectronic
devices has motivated a lot of research into the use of fem-
tosecond (fs) laser pulses to quickly change the directions of
polarization (P) domains in ferroelectric perovskites. Many
pulse-based mechanisms of manipulating P have been pro-
posed [1–14], but none of them are ready for widespread
use in devices. They tend either to use terahertz (THz)-
frequency pulses, which couple strongly and directly to
optical phonons [3–6] or domain walls [7–9,15,16]; or they
use optical pulses, which excite phonons by impulsive stim-
ulated Raman scattering (ISRS) [17–19]. A disadvantage of
THz radiation is that the forces it exerts change direction
every half period. Therefore using it to permanently switch P
entails carefully shaping, polarizing and/or coordinating THz
pulses [3,5–7,20]. A disadvantage of ISRS is that it involves
high-intensity pulses, which can damage a ferroelectric mate-
rial [3,17,21].

BaTiO3 is a widely used and intensively studied ferro-
electric material, which is often regarded as a prototypical
ferroelastoelectric perovskite. Therefore understanding its in-
teraction with ultrashort laser pulses is both fundamentally
interesting and of practical importance to device design and
innovation.

In this work, we present the results of atomistic molecular
dynamics (MD) simulations which show that above-optical-
gap (>Eg) photoexcitation of BaTiO3 with femtosecond (fs)
laser pulses would deterministically reverse the direction of P
within hundreds of fs by a mechanism known as displacive
excitation of coherent phonons (DECP) [22–28]; while higher
intensity pulses would induce a temporary displacive transi-
tion to the unpolarized cubic Pm3̄m structure of BaTiO3’s
paraelectric phase. The Pm3̄m structure would spontaneously
polarize again, via a quasi-random process of domain nu-
cleation and growth [29], when the photoexcited carriers
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recombined or dispersed. By biasing this process with an
applied field or GHz/THz pulses, P could be manipulated into
any one of its symmetry-equivalent directions.

Although >Eg photons produce a lot of heat in pure
BaTiO3 [19,30], there are various ways to mitigate or resolve
this problem, such as by doping [28] or by using (Sr,Ba)TiO3

or another similar material whose optical gap is smaller.
Furthermore, what makes the DECP-based mechanism of
controlling P particularly promising for device applications
is its robustness and versatility: with lower intensity pulses,
which produce less heat, it can be used to weaken an existing
P field temporarily, so that it can be switched more quickly
and easily by another mechanism and stimulus.

To simulate the response of a BaTiO3 crystal to the absorp-
tion of a fs >Eg pulse we first performed an MD simulation at
thermal equilibrium with a force field that describes BaTiO3’s
electronic ground state. Then we simulated the absorption
event by replacing the ground state force field with one that
describes a photoexcited state, before continuing the MD sim-
ulation to observe and analyze the crystal’s response. This
simple procedure entails making the same physical assump-
tions about relaxation timescales that have been made, and
discussed, in many previous works [14,24,26–28,31–33]. The
absorption of a fs >Eg pulse can be approximated as an instan-
taneous change to the state of the electrons, which takes them
out of thermal equilibrium with the lattice, and creates two
separate thermalized populations of carriers: conduction band
electrons and valence band holes. These carriers’ densities
(x) are equal, initially, and remain approximately constant for
several ps after pulse absorption [14,24,26–28,32,33].

Although we neglect the � 100 fs [34–38] taken for the
populations of electrons and holes to thermalize, the DECP
mechanism by which a fs >Eg pulse interacts with P and
with the A1-symmetry ferroelectric mode (FM) phonon does
not require this thermalization, or wait for it to happen. It
begins as soon as electrons vacate bonding states and occupy
antibonding states, because it is driven by the forces on the
crystal’s sublattices caused by this change of the electron
density. Qualitatively, and semiquantitatively, these forces are
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determined by x and by the characters of the upper valence
band states (≈ O-2p admixed with Ti-3d) and lower con-
duction band states (≈ Ti-3d admixed with O-2p). They are
relatively insensitive to how holes and electrons, respectively,
are distributed among these states [28].

There are many other mechanisms by which phonons
throughout the Brillouin zone can be excited by high energy
carriers. The rate at which electron-phonon scattering heats
the lattice should be particularly high during the tens of fs [38]
that it takes the carrier energy distributions imposed by the
laser pulse to relax into quasistationary thermal distributions
of electrons near the bottom of the conduction band and of
holes near the top of the valence band [36]. By assuming that
they reach these states in an instant, we are neglecting these
other phonon excitation processes. However, they are thermal
processes, which do no more than heat the lattice [36,38].

What sets the DECP mechanism apart from other phonon
excitation mechanisms is that it is a nonthermal mecha-
nism. Instead of simply heating the lattice, it excites spatially
coherent motion along the eigenvectors of zone center
phonons [22,27]. In other words, it excites rigid relative
motion of the crystal’s sublattices, which can be observed
indirectly by measuring the changes it induces in a crystal’s
optical constants.

As we explain next, another distinguishing feature of the
DECP mechanism is that, after the initial rapid thermalization
of photoexcited carriers, the only phonons that it excites di-
rectly are those with A1 symmetry. The A1 mode that it excites
most strongly in BaTiO3 is the FM, which is a modulation
of P and of the Ti-O bond distance, dTi-O. As explained in
Ref. [28], strong excitation of the FM is a consequence of
photoexcitation reducing the magnitudes of the Ti and O ions’
charges, and creating carriers that screen their mutual attrac-
tion. Weakening the Ti-O attraction changes the equilibrium
values of P and dTi-O. Therefore it changes the equilibrium
value of the FM mode coordinate.

A. Selective displacive excitation of motion along the A1

ferroelectric mode eigenvector

In this subsection, we explain why the DECP mechanism
selectively excites modes with A1 symmetry; and why, in
BaTiO3, it excites the FM much more strongly than the other
A1 modes.

1. Selective excitation of modes with A1 symmetry

A phonon mode has A1 symmetry if and only if the perfect
crystal’s symmetry is not lowered by slightly moving it from
equilibrium along the mode’s eigenvector. All A1 modes are
modes at the Brillouin zone’s � point (k = 0), which means
that the motion of the crystal along an A1 eigenvector is a rigid
relative motion of the crystal’s sublattices.

Let us assume that the phonon eigenvectors have been cho-
sen to be mutually orthogonal, and let {Qeq

kμ} denote the set of
values of the phonon mode coordinates when the crystal is at
mechanical equilibrium. Therefore, when Qkμ = Qeq

kμ, ∀kμ,
the net force Fkμ ≡ −∂U/∂Qkμ on every mode coordinate
Qkμ vanishes, where U denotes the potential energy, and kμ

labels the mode with wave vector k and band index μ.

At equilibrium, the reason that forces on A1 modes are zero
differs from the reason that forces on non-A1 modes are zero,
and understanding this difference is crucial to understand-
ing why the DECP mechanism selectively excites A1 modes.
As we now explain, the forces on non-A1 modes vanish by
symmetry, whereas the forces on A1 modes vanish because
competing contributions to them are balanced and cancel one
another. Our explanation is easy to adapt from a state of
mechanical equilibrium to a state of thermal equilibrium. At
thermal equilibrium Fkμ does not vanish, but its time average
or expectation value, 〈Fkμ〉, vanishes.

If the perfect crystal is moved away from mechanical equi-
librium along the eigenvector of zone center mode �μ, the
orthogonality of eigenvectors implies that Q�μ is the only
mode coordinate that changes. Let us denote the change of
potential energy resulting from the change Qeq

�μ → Qeq
�μ + q

by Ũ�μ(q) = Ũ n-n
�μ (q) + Ũ e-n

�μ (q), where Ũ n-n
�μ is the energy of

Coulomb repulsion between nuclei, and Ũ e-n
�μ is the energy of

Coulomb attraction between electrons and nuclei.
If mode �μ does not have A1 symmetry, the crystal’s sym-

metry is higher at q = 0 than it is when q �= 0. Therefore the
functions Ũ�μ(q), Ũ n-n

�μ (q), and Ũ e-n
�μ (q) must have inversion

symmetry about q = 0. It follows that

F�μ(q) ≡ −dŨ�μ

dq
= − ∂U

∂Q�μ

∣∣∣∣
Qeq

�μ+q

= −F�μ(−q),

and that F n-n
�μ ≡ −dŨ n-n

�μ /dq and F e-n
�μ ≡ −dŨ e-n

�μ /dq are also
odd functions of q. Therefore F n-n

�μ (q) and F e-n
�μ (q) both van-

ish at q = 0, and this is why F�μ(q) = F n-n
�μ (q) + F e-n

�μ (q)
vanishes.

Conversely, if mode �μ does have A1 symmetry, symmetry
is not lowered by q becoming finite. This implies that the
functions Ũ�μ(q), Ũ n-n

�μ (q), and Ũ e-n
�μ (q) do not have symmetry

about the value q = 0, and that F n-n
�μ and F e-n

�μ do not vanish at
equilibrium. Therefore, at equilibrium, F�μ does not vanish by
symmetry or because F n-n

�μ and F e-n
�μ both vanish, but because

F n-n
�μ = −F e-n

�μ .
This is the property of an A1 mode that allows it to be

excited by the DECP mechanism: An A1 mode coordinate can
vary within a continuous range without changing the perfect
crystal’s symmetry, and its equilibrium mode coordinate is
the value in that range at which F n-n

�μ and F e-n
�μ are perfectly

balanced. It follows that when the electronic state of a perfect
crystal is changed by photoexcitation or any stimulus, causing
the magnitude of F e-n

�μ to change, the balance is disrupted and
F e-n

�μ and F n-n
�μ are no longer equal in magnitude and opposite

in direction. Therefore the stimulus changes Qeq
�μ.

DECP occurs when an fs laser pulse suddenly creates a
high density of photoexcited carriers in a crystal that possesses
A1 phonon modes. This changes the crystal’s A1 mode coordi-
nates suddenly, meaning that the crystal’s sublattices suddenly
have the wrong relative displacements. Therefore they move
along the A1 eigenvectors towards the new A1 coordinates,
which they overshoot and oscillate about [23,24,28]. This
oscillation is the displacively excited coherent A1 phonon.

After the rapid (≈ 10 fs [38]) thermalization of the pho-
toexcited carriers, it is only A1 modes that are excited
significantly by the change in the electronic state, because
thermalization implies loss of coherence and only coherent
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electronic states have density matrices with finite off-diagonal
elements. Therefore carrier thermalization endows the pho-
toexcited electron density, and the electronic contributions
(F e-n

�μ ) to the forces [39,40], with the symmetry of the crystal.
It follows that F e-n

�μ vanishes by symmetry if �μ is not an A1

mode; and that the equilibrium coordinate Qeq
�μ only differs

from its value before the laser pulse was absorbed if mode �μ

has A1 symmetry.

2. Polar distortions create A1 phonon modes

BaTiO3 has three ferroelectric (FE) phases, which all pos-
sess A1 modes and have almost identical electronic structures.
Each FE phase only differs from the Pm3̄m structure by tiny
symmetry-breaking relative displacements of its sublattices,
and an accompanying strain. This breaking of inversion sym-
metry lifts the degeneracy of the four triply degenerate optical
modes, 3F1u + 1F2u, of the Pm3̄m phase.

Specifically, in the lowest temperature rhombohedral phase
(R3m), which is the phase that we simulated, each F1u mode
has split into an A1 mode and a doubly degenerate E mode
(F1u → A1 + E); while the F2u mode has split into an A2

mode and a doubly degenerate E mode (F2u → A2 + E).
The room temperature tetragonal FE phase (P4mm) is very
similar. Each F1u mode has split into an A1 mode and a doubly
degenerate E mode (F1u → A1 + E); while the F2u mode
has split into a B1 mode and a doubly degenerate E mode
(F2u → B1 + E). In both of these phases, all three of the A1

modes are both infrared active and Raman active.
The distortions that lower the symmetry of the

Pm3̄m structure also lower the potential energy by
�U ≡ UPm3̄m − UFE > 0, and create a P field [28]. By
far the largest contributions to both P and �U come from
the polar distortion of Pm3̄m along the eigenvector of the
ferroelectric phase’s A1 ferroelectric mode (FM), which is
a countermotion of the Ti and O sublattices along an axis
parallel to P. The polar distortion makes the Ti-O Coulombic
attraction more negative by shortening the Ti-O bond length,
and displacements along the other eigenvectors help to
accommodate it [28].

In both R3m and P4mm, the three optical A1 modes are
known as the FM, the Axe mode (AM) [41], and the Last mode
(LM) [42]. The eigenvectors in P4mm are easier to visualize,
and are shown in Fig. 1(d). The only qualitative difference in
R3m is that the sublattices displace along one of the 〈111〉
axes, instead of along one of the 〈001〉 axes, as shown for the
FM in Fig. 2. Both the FM and its counterpart in Pm3̄m, which
does not have A1 symmetry, are often referred to as the soft
mode or the Slater mode (SM) [43]. We refer to it as the FM
when its A1 symmetry is relevant and as the SM otherwise.

3. Selective excitation of the ferroelectric mode

As discussed above, ultrafast >Eg photoexcitation induces
motion along every A1 eigenvector to some degree, but it
selectively excites motion along the FM eigenvector in the
sense that the AM and LM are excited to much lesser degrees.
We demonstrate this selectivity in Sec. III, and briefly explain
it here. We discuss it in greater detail in Ref. [28].

Roughly speaking, the SM of a given phase can be viewed
as an oscillation of �Ti-O ≡ dPm3̄m

Ti-O − dTi-O � 0, where dTi-O

FIG. 1. (a) Polarization P as a function of time (t), with >Eg

photoexcitation to a carrier density of x = 0.12 e−/ f.u. occurring
at t = 0. (b) The IR absorption spectrum immediately after pho-
toexcitation; (c) Squared projections of the normalized change in
the T = 0 equilibrium structure, (Req

x − Req
0 )/|Req

x − Req
0 |, onto the

three unit-normalized zone-center A1 optical phonon eigenvectors.
At each of the two values of x, the sum of the squared projections
is one. (d) The eigenvectors of the three A1-symmetry zone-center
optical modes of BaTiO3’s tetragonal (P4mm) phase, which are the
Slater mode (SM) [43], the Last mode (LM) [42], and the Axe mode
(AM) [41]. Arrows indicate the directions and relative magnitudes
of the sublattice displacements. We show eigenvectors in the P4mm
phase for clarity. The only qualitative difference in the rhombohedral
(R3m) phase is that P and the sublattice displacements of the SM,
LM, and AM eigenvectors are parallel to one of the 〈111〉 axes
instead of one of the 〈001〉 axes.

and dPm3̄m
Ti-O are the Ti-O nearest-neighbor distances in the given

phase and in Pm3̄m, respectively. We choose the origin for the
FM mode coordinate, QFM, to be where the polar distortion
vanishes, i.e., in the Pm3̄m phase. Therefore the thermody-
namic averages of QFM, �Ti-O, P, and the contribution, PFM,
of the polar distortion along the FM eigenvector to P, approx-
imately satisfy

P̄(T, x) ≈ P̄FM(T, x) ∝ Q̄FM(T, x) ∝ �̄Ti-O(T, x),

where the bar over each quantity denotes that it is the thermo-
dynamic average of that quantity.

As discussed in Ref. [28], photoexcited carriers weaken the
Ti-O attraction by screening it and by reducing the magnitudes
of Ti and O ions’ charges. They reduce charges because pro-
moting electrons from predominantly O-2p bonding states to
predominantly Ti-3d antibonding states moves some electron
density from O to Ti. Therefore DECP excites the FM strongly
because QFM ∝ �Ti-O is highly sensitive to x. However, the
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FIG. 2. Schematic illustrating the average potential energy, U
and ū, as a function of P and p, respectively, at T = 0 in the
electronic ground state and at several finite temperatures (T ) and
photoexcited carrier densities (x). The BaTiO3 crystal structure in
the center illustrates the FM eigenvector of the R3m phase. The
Ti-O attraction is responsible for lowering the energy of the R3m
structure relative to Pm3̄m. This gives U multiple energy minima,
corresponding to R3m structures with different P directions, and a
local maximum at P = 0, corresponding to the Pm3̄m structure [28].
The effects on U and ū of increasing x are similar to the effects of
increasing T . They gradually transform into having single minima at
P = 0 and p = 0, respectively. This is because carriers weaken the
Ti-O attraction by screening it and reducing the magnitudes of ions’
charges; while temperature both weakens it and reduces its relevance.
Thermal disorder weakens long range electrostatic interactions [44]
and increases the average Ti-O distance [45,46], and the potential
energy cost of thermal fluctuations grows with increasing T until it
dwarfs the Ti-O attraction.

AM and LM do not depend linearly on �Ti-O and there is no
obvious reason why DECP would excite them strongly.

II. SIMULATION METHODS

We performed MD simulations of the R3m phase with three
different force fields. One of the force fields was developed
and used to describe the crystal before absorption of a laser
pulse, and the other two were developed and used to describe
it after the absorption of laser pulses of two different intensi-
ties, and therefore at two different levels of photoexcitation.
We assumed that the crystal was in its electronic ground state
(x = 0) before pulse absorption, and our photoexcited-state
force fields modeled carrier densities of x = 0.05 conduc-
tion band electrons per BaTiO3 formula unit (e−/ f.u.) and
x = 0.12 e−/ f.u.

We simulated photoexcitation at various different temper-
atures T . At each value of T , we performed a long MD
simulation with the ground state (x = 0) force field to reach
thermal equilibrium. Then, at a time that we designated t = 0,
we simulated pulse absorption by replacing the x = 0 force
field with one of the two photoexcited state force fields.
Then we continued the MD simulation to see how the crystal

responded to the photoexcited carriers changing the interac-
tions between ions.

A. Force fields

The parameters of each force field were fit to density
functional theory (DFT) calculations of thermally disordered
crystals. We fit our ground state force field to ground state
DFT calculations, and our photoexcited state force fields to
constrained DFT calculations [24,27,28]. All of our DFT
and constrained DFT calculations were performed with the
PBEsol functional [47].

In constrained DFT calculations, the difference between a
photoexcited electronic state and the electronic ground state
is modeled by populating the conduction and valence bands
with independently thermalized populations of electrons and
holes, respectively, with equal densities, x, of conduction band
electrons and valence band holes [24,26,27,32]. Our con-
strained DFT calculations of BaTiO3 are discussed in detail
in Ref. [28].

1. Mathematical form

The mathematical form of our force fields is presented
in detail in Appendix A. It can be expressed as a sum of
interactions between pairs of ions, where the interaction be-
tween each pair is the sum of a Morse potential [48] and an
electrostatic interaction. Although the electrostatic interaction
can be expressed as a sum of apparently pairwise terms, each
of the terms is really a function of all ions’ positions and is
therefore a many-body interaction.

The Morse interaction energy between two ions has the
form

U Morse = D[1 − exp(−C(r − r0))]2,

where C, D, and r0 are parameters, and r is the dis-
tance between them. It only acts at short range and it is
repulsive when the ions are very close to one another and
attractive when they are slightly farther apart. It is a truly pair-
wise interaction because it does not depend on the positions of
any other ions.

The electrostatic energy of interaction between two ions
is a sum of contributions from charge-charge, charge-dipole,
dipole-charge, and dipole-dipole interactions. However, these
are not interactions between point charges and point dipoles
if the two ions are close to one another: When the distance r
between two ions is small, the dependence of their interaction
on r is adjusted to account for the overlap of their electron
clouds.

Furthermore, each ion’s dipole moment is not simply
d = αE, where E is the electric field at the nucleus and α

is an isotropic scalar polarizability. It is d = αE + dsr, where
dsr is a contribution from the distortion of the ion’s electron
cloud by overlap repulsion. When ions are close enough, the
electron density between them is not simply a superposition
of their electron clouds. If it were, the density of electrons
between them would be very high, and so the kinetic en-
ergy of the electrons between them would be very high. To
reduce their kinetic energy, electrons move out of the space
between the two nuclei. This strengthens the Coulomb re-
pulsion between the nuclei, and changes the shape of each
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ion’s electron cloud. We use dsr to model the effects on
Coulomb interactions of the changes of an ion’s shape caused
by this overlap repulsion. This is a nonelectrostatic mecha-
nism by which an ion’s neighbors help to determine the value
of its dipole moment, and influence its interaction with all
other ions.

Even if the force field did not describe the effects of ions’
electron clouds overlapping, and distorting one another via
their mutual repulsion, the electrostatic interaction between
two ions would not be pairwise because each ion’s dipole
moment d is determined by the local electric field E, and E
is determined by the positions, charges, and dipole moments
of all of the other ions. Therefore the electrostatic interaction
between two ions depends on the positions of all ions.

2. Variable charges versus fixed charges

As discussed in Ref. [28] and in many other works (e.g.,
Refs. [49,50]), the lower conduction bands and the upper
valence bands of BaTiO3 are all hybrid states: they are linear
combinations of both O-2p and Ti-3d atomic orbitals. The
upper valence bands have roughly 70%–80% O-2p character,
and the lower conduction bands have roughly 70%–80% Ti-
3d character, but this changes to some degree as ions move,
causing the electric potential at each point in space to change.
As the potential of each ion changes, it shifts the ion’s orbitals
up and down in energy, which would cause some degree of
variation in the amounts of O-2p and Ti-3d characters of
the upper valence bands and lower conduction bands, and
therefore some degree of variation of the net charges of O
anions and Ti cations.

To model this effect, Sarsam [51] and Nemytov [52] have
developed force fields that allow each ion to simultaneously
polarize in response to its local electric field [53–56] and
vary its charge in response to changes of its local electric
potential [57]. They found that allowing ions’ charges to vary
did not substantially improve the accuracies of polarizable
force fields for some insulating simple oxides in their elec-
tronic ground states, including BaTiO3. However, electrons
in photoexcited states are more delocalized and mobile, and
we have found that variable charges significantly improve the
ability of our force field to fit the constrained DFT potential
energy surface of photoexcited states.

Therefore we parameterized a more accurate set of variable
charge (also known as charge equilibration or qEq) and polar-
izable ion force fields for the ground and photoexcited states.
These force fields are significantly more expensive compu-
tationally; and, as explained in Appendix B, they cannot be
used to calculate infrared spectra. Therefore the results that
we present in Figs. 1, 3, 5, and 6 are from MD simulations
with fixed charge force fields. However, we used our variable
charge force fields to check that greater accuracy did not alter
the response of P to photoexcitation qualitatively, and that the
quantitative changes were slight.

In Ref. [58] (see also Refs. [59–63]), we present the results
of tests of our force fields and we provide their parameters.

3. Parameterization protocol

Our parametrization protocol is discussed in detail in
Refs. [51,52,54,55,64]. Briefly, to construct each force field
we performed several (≈ 5) parametrizations in order to

FIG. 3. Infrared absorption spectra in the electronic ground state
at different temperatures.

achieve consistency between the microstructures to which
the parameters were fit and the microstructures that those
parameters subsequently produced in MD simulations. Iterat-
ing parameter sets until self-consistency of microstructures is
achieved greatly improves the accuracies and transferabilities
of force fields, such as ours, that are fit to effectively infinite
ab initio data sets [54,64,65].

Achieving self-consistency is particularly important if
the microstructures used to calculate DFT data sets are
generated by force field-based MD simulations: Regardless

FIG. 4. Schematic illustrating two limits of the complex mecha-
nism by which thermal fluctuations change the direction of the dipole
moment per unit volume pα of the αth unit cell. Each limit is depicted
as a sequence of three curves, representing one-dimensional versions
of the local potential energy surface (PES), uα (pα ), on which pα

moves. If long range interactions dominate, as depicted in (a), the
PES is dominated by the term −pα · P, and is approximately time
invariant. pα spends most of its time oscillating about the deeper
pα ‖ P minimum, but occasional large thermal fluctuations, whose
frequency increases with temperature, bring it into the p ‖ −P min-
imum. While there, it slightly reduces the magnitude of P, because
P is the average of pα over all primitive cells α. However, it returns
to the p ‖ P minimum relatively quickly because the barrier it must
surmount to return is smaller. In (b), the PES is strongly time depen-
dent because short range interactions dominate. The instantaneous
shape of uα (pα ) is determined by the strains and dipole moments of
neighboring cells, and pα simply follows the position of the deeper
minimum as it moves between the two directions.
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FIG. 5. [(a)–(d)] P as a function of time in NVE simulations
of ultrafast photoexcitation to a carrier density of x = 0.05 e−/ f.u.
at four temperatures. [(e)–(h)] IR absorption spectra at the same
four temperatures immediately after the simulated pulse absorption
at t = 0.

of the quantity of data that parameters are fit to, if only
one parametrization is performed, the fit to the data used in
the parametrization is invariably much better than the fit to
ab initio data that was not used in the parametrization [65].
However, even when ab initio MD is used to generate
the initial data set, it can be important to perform further
parametrizations in which the data from ab initio MD is
supplemented with data calculated from microstructures gen-
erated by the force field [66].

At each iteration of our self-consistent parametrization pro-
cedure we fit the force field’s parameters to the forces, stress
tensors, and energy differences of ≈ 20–30 microstructures at
temperatures of 100, 200, 300, and 500 K. Each microstruc-
ture was a set of atomic positions taken from a long MD
simulation of a 3 × 3 × 3 supercell (135 atoms) performed
with the parameter set produced by the previous iteration.
Therefore, at each iteration we fit the 30 (fixed charge) or 39
(variable charge) parameters of the force field to a different
set of Ndata ∼ 104 numbers, and iterated until the closeness of
the fit achieved during parametrization was matched by the
closeness of the fit to approximately Ndata data which had not
been used in the parametrization [58].

B. Molecular dynamics simulations of pulse absorption

We used a 12 × 12 × 12 supercell (8640 atoms), un-
der periodic boundary conditions, and performed long MD
simulations with the x = 0 potential to equilibrate, before

modeling fs >Eg pulse absorption by switching abruptly to
one of the photoexcited potentials. We calculated the P au-
tocorrelation function, 〈P(t0)P(t0 + t )〉t0 , from the first 10 ps
after photoexcitation and Fourier transformed it to calcu-
late the infrared (IR) absorption spectrum, as described in
Appendix B.

Both �U and the ferroelectric to paraelectric transition
temperature, TC , are highly sensitive to strain and are lowered
by compression [67]. Therefore, when force fields or DFT
overestimate the density, it is common to perform calculations
at the experimental density or under negative pressure [45,68].
We found TC ≈ 150, ≈ 100, and ≈50 K for our x = 0, 0.05,
and 0.12 e−/ f.u. force fields, respectively. However, we chose
not to apply negative pressure because working at a low T
allowed us to observe the DECP mechanism with less ther-
mal noise, and to calculate spectra with signal-to-noise ratios
closer to those that would be obtained with simulation cells
comparable in size to the photoexcited regions in pump-probe
experiments.

III. RESULTS

Figure 1(a) is a plot of P as function of time (t)
in MD simulations of photoexcitation to a carrier
density of x = 0.12 e−/ f.u. at T = 75 K. At t = 0,
photoexcitation changes the value of P at thermal
equilibrium from P̄(75 K, 0) ≈ 6 × 10−4 e−/bohr to
P̄(75 K, 0.12 e−/ f.u.) = 0. The latter vanishes because
Pm3̄m is the thermodynamically stable phase at
(T, x) = (75 K, 0.12 e−/ f.u.) with our force field. Therefore
the fs pulse causes P̄ to vanish suddenly as a consequence of
Q̄FM and �̄Ti-O vanishing suddenly.

The change of Q̄FM excites a large amplitude SM phonon
by displacively exciting motion along the FM eigenvector.
This manifests in Fig. 1 as a damped oscillation of P about
P = 0, with an initial amplitude of |P̄(75 K, 0)|. Figure 1(b)
is the IR absorption spectrum calculated immediately after
photoexcitation to a carrier density of x = 0.12 e−/ f.u.. The
very high intensity of the SM demonstrates that it is excited
much more strongly by photoexcitation than any other mode.
In Fig. 1(c), for each of our two finite values of x, we plot the
squared projections of (Req

x − Req
0 )/|Req

x − Req
0 | onto the unit-

normalized A1 eigenvectors of the photoexcited crystal, where
the vectors Req

0 and Req
x specify the crystal’s T = 0 equilib-

rium structure (the
√

mass-weighted positions of the atoms)
in the electronic ground state and in the photoexcited state, re-
spectively. The fact that the sums of these squared projections
are both one demonstrates that the only modes whose eigen-
vectors are changed by photoexcitation, and therefore which
are displacively excited, are those with A1 symmetry. The fact
that the squared projection onto the SM/FM eigenvector is
much larger than the squared projections onto the other modes
demonstrates that DECP selectively excites this mode.

To better understand what happens when a fs >Eg pulse
is absorbed, it is useful to regard the FM as an oscillation of
P. If pα denotes the dipole moment of the αth primitive cell
of the crystal divided by its volume, then P is the average of
pα over all cells α; and P̄(T, x) is the value shared by P and
the time average of each pα (t ) at thermal equilibrium. There-
fore a displacively excited FM phonon can be viewed as a
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FIG. 6. P as a function of time in NVE simulations of ultrafast photoexcitation to a carrier density of x = 0.05 e−/ f.u. at five temperatures.
When simulations were repeated five times at each temperature, deterministic behavior was found at most temperatures: either P did not reverse
in every simulation, or it reversed and returned to its original direction, or it reversed and remained reversed, or it reversed but then settled
at the value P = 0. However, as plots (e) and (f) illustrate, close to the critical temperature TC,x=0.05 e−/ f.u. = 100 K, above which P vanishes,
the behavior of P was statistical. This is likely to be a consequence of the small size of our simulation cell, and is unlikely to be relevant to
experiments or device applications.

collective motion of the set {pα} of all p’s, which is caused by
a sudden change of P̄ from P̄(T, 0) to P̄(T, x), and which has
an initial amplitude of �P̄(T, x) ≡ |P̄(T, 0) − P̄(T, x)|. The
motion is collective in the statistical sense that the average
time derivative of the p’s is finite, and remains finite until the
crystal reaches a new thermal equilibrium in which the time
averages of the p’s are all equal to P̄(T, x).

Now consider a simple model of the crystal in which pα

completely specifies the structure of the αth cell, and in which
P̄ = P̄FM. Our only reason for representing the structure of
each cell by its dipole moment is to make it easier to dis-
cuss interactions between cells and correlations between their
structures. We are not approximating interactions between
cells as dipole-dipole interactions, or making any other strong
assumptions about interactions. We are simply assuming that
the contribution of each cell to the potential energy of the
crystal is determined by how closely its structure is aligned
with the structures of other cells. Then we are assuming that,
for the purpose of discussing interactions and correlations,
all relevant aspects of the structure of cell α, such as its
strain, are correlated strongly enough with pα that they can
be represented by pα .

Therefore let uα (pα; T, x, t ) denote the potential energy of
the entire crystal as a function of pα when all other p’s are
fixed at their instantaneous values at time t ; and let ū(p; T, x)
denote the average of uα over all α or over time.

Each uα is time dependent because it is highly sensitive
to the structures and strains of surrounding cells [45]. Instan-
taneously, it is not symmetric about pα = 0, and it may be
a single well or an asymmetric double well, with the (deeper)
minimum continuously moving as the p’s of surrounding cells
change [45]. ū(p; T, x) is also asymmetric because, on aver-
age, the off-center displacement of the deepest minimum of uα

must be parallel to P. However, it is time independent because
it is a thermodynamic average.

Now let U (P; T, x) denote the thermodynamic average
of the potential energy over all microstates of the crystal
for which PFM = P. U is time independent because it is
a thermodynamic average, and it has the symmetry of the
crystal because, as long as the average magnitude of the
p’s does not change, the crystal’s energy is not changed
by switching their average direction to any one of the
eight symmetry-equivalent polarization directions of the R3m
structure.

Figure 2 shows schematic cross sections of U and ū along
the axis passing through P̄FM and −P̄FM as both T and x
are varied. When (T, x) ≈ (0, 0), U is a symmetric dou-
ble well, with the wells at P = ±P̄FM(T, x) corresponding
to symmetry-equivalent R3m structures. The energy bar-
rier separating them is at P = 0, which corresponds to the
Pm3̄m structure within this simple model, and its height is
�U (T, x) ≡ U (0; T, x) − U (P̄FM(T, x); T, x).
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The zone-center FM is a coherent collective oscillation
of the p’s about p = P̄FM. Both experimentally [69,70], and
in our x = 0 simulations (Fig. 3), increasing T causes the
FM’s IR absorption peak to soften and broaden, and a very
broad peak, known as the central mode (CM), to emerge in
the frequency range of 0–3 THz. The CM is not one of the
crystal’s normal modes, and it does not exist in the T → 0
limit. It gradually becomes active as T increases and the
directions of the p’s become disordered. It is common to
view the dynamics of each pα as motion on a potential energy
surface with eight minima [28,71–73]. At each minimum, pα

is parallel to the displacement of a different one of the eight
Ba atoms at the corners of the cell shown in Fig. 2, from the
center of that cell [74–76]. The CM is often thought of as a
collective hopping motion of the p’s between two or more of
these eight minima. However, Fallon’s calculations of uα for
various structures of surrounding cells (Ref. [45], Sec. 7.4)
suggest that it may be more realistic to view pα as moving
on a continuously changing surface with only one minimum.
Therefore, instead of pα hopping between eight ever-present
minima of a relatively passive potential energy surface, it
might simply follow a single minimum around as it is moved
by the rapidly changing p’s of surrounding cells. These two
limiting cases are illustrated in Fig. 4.

Figure 4(a) illustrates how thermal fluctuations switch the
direction of pα in the limit in which long range order is a
consequence of long range interactions. This is the limit in
which the energy of pα is dominated by its coupling to the
macroscopic field P and uα (pα ) ∝ −pα · P is a good approx-
imation. Since P is the average of pα over all cells, it is a
thermodynamic quantity and approximately independent of
time, which means that uα is approximately independent of
time. Therefore Fig. 4(a) illustrates the limit in which pα

moves on an approximately static, but temperature dependent,
potential energy surface.

The opposite limit, which is more consistent with Fallon’s
results, is illustrated by Fig. 4(b). In this limit, the coupling of
pα to P makes a negligible contribution to uα . Instead, long
range order emerges from local ordering caused by the short
range interactions of each cell with the cells in its immediate
surroundings. Senn et al. demonstrated that long range order
can emerge from short range interactions in Ref. [72].

Regardless of how active a role the time dependence of uα

plays, the CM peak is the spectral signature of the relatively
slow and anharmonic large-amplitude “rattling” of the p’s be-
tween multiple directions, which emerges as they gain enough
thermal energy to change direction. At low T , when most p’s
are aligned, pα spends most of its time near the pα ‖ P site.
As T increases it spends an increasing fraction of its time
at the other seven sites. Therefore the directional disorder of
the p’s reduces |P̄| and |P̄FM| and, if short range interactions
dominate energetics, as depicted in Fig. 4(b), it makes ū more
symmetric because the minimum of uα spends more of its time
at the pα ‖ (−P) site.

Disorder also reduces �U because the potential energy
is lower when each p is parallel to its neighbors. Reduc-
ing �U/(kBT ) increases the proportion of time for which
the direction of each p differs significantly from that of
P, and reduces the fraction of the p’s that, at any given
time, are participating in the FM, i.e., performing small

synchronized oscillations about energy minima at their p ‖ P
sites. Therefore, when the CM becomes active it amplifies
itself by generating disorder that makes it easier for the p’s
to change direction.

The FM IR absorption peak shrinks as the CM peak grows
with increasing T because, as more p’s contribute to the
CM, fewer are available to participate in it. It also softens
and broadens because reducing �U makes the wells in U
shallower, which reduces their curvatures and makes them
less harmonic. As T increases even further, the p’s become
so disordered that �U vanishes and U becomes a single
well with a minimum at P = 0. At the lowest values of T
for which Pm3̄m is stable, U is approximately quartic (i.e.,
flat-bottomed; see Fig. 2), meaning that a sufficiently small
polar distortion neither raises nor lowers U . When T is larger,
U is quadratic near its minimum and its curvature increases as
T increases [28].

As discussed in Ref. [28], and the caption of Fig. 2, the
effects on ū and U of increasing x are similar to the effects of
increasing T : by weakening the Ti-O attraction, photoexcited
carriers reduce both �U and the magnitude of the polar dis-
tortion [28]. Therefore increasing x reduces P̄FM by moving
the two minima of U closer together and, by making the
two energy wells shallower [28], it lowers the FM frequency,
makes it less harmonic, and makes the CM more active.
Therefore it decreases the proportion of time for which each
p is approximately parallel to P.

There is no CM peak in Fig. 1(b) because, at
(T, x) = (75 K, 0.12 e−/ f.u.), the combined effects of x and
T make U a single approximately quadratic well. Instead of
the p’s rattling between different directions with very large
amplitudes, as they would at lower values of x or T , their
collective motion is a superposition of the Pm3̄m phase’s
three degenerate SMs. When x is large or T − TC is large and
positive, each zone-center SM of Pm3̄m is an oscillation of
one of three mutually orthogonal components of P about the
approximately quadratic minimum (at P = 0) of a function
identical to U (P; T, x). When x and/or T are either very large
or very small, the CM is not active, the minima of U and
ū have relatively high curvatures, and thermal fluctuations
of the p’s are much smaller than when the CM is active.
Figures 5(a)–5(d) are plots of P(t ) in simulations of photoex-
citation to a much smaller carrier density (x = 0.05 e−/ f.u.)
than in the simulations reported in Fig. 1 (x = 0.12 e−/ f.u.).
R3m is stable at (T, x) = (75 K, 0.05 e−/ f.u.), while Pm3̄m
is stable at (T, x) = (100 K, 0.05 e−/ f.u.). The IR spectra in
Figs. 5(e)–5(h) show the emergence of the CM as T increases,
and that the FM has softened before its peak disappears. They
also show that, at T = 100 K, the CM still has a substantial
peak. This implies that the oscillation of P about P = 0 in
Fig. 5(d) is not simply a superposition of small-amplitude
harmonic SMs. It implies that the average magnitude of the
p’s is large, that the p’s are disordered, that each p is rattling
between multiple directions with a large amplitude, and that
U and ū are either flat, or shallow double wells. This ex-
plains why the oscillations about P = 0 in Fig. 5(d) are so
much less harmonic than those in Fig. 1(a), and why, when
T � 75 K, the damping of the displacively excited motion
along the FM eigenvector is strong enough for P to stabilize
at P ≈ P̄(T, 0.05 e−/ f.u.) almost immediately.
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The damping of the collective component of the motion
of the p’s can be viewed as their motions falling out of
synchronicity. It is a crucial ingredient in the pulse-induced
P-reversal mechanism that we propose, and which Fig. 5(c)
demonstrates. Without it, P would return to its original di-
rection almost as quickly as it reversed. However, Fig. 5(c)
demonstrates that P reverses in less than half a FM period and
remains reversed. The motion of P is the collective component
of the motion of the p’s. Therefore this demonstrates that the
collective motion of the p’s is so dissipative that, after its
direction reverses, it does not have enough energy to return
P to its original direction.

To investigate whether, or to what degree, P reversal is
deterministic, we performed five independent simulations at
each of the six temperatures, 50, 60, 70, 80, 90, and 100 K.
The results of some of these simulations are presented in
Fig. 6. At all temperatures except T = 90 K the same qual-
itative behavior of P was observed in all five simulations.
Therefore, at least at most temperatures, the P reversal mecha-
nism that we demonstrate is deterministic. However, when the
temperature is approaching the critical value TC,x=0.05 e−/ f.u. =
100 K, the behavior in our simulations was not determin-
istic, as illustrated by the results of the two simulations at
(T, x) = (90 K, 0.05 e−/ f.u.) plotted in Figs. 6(e) and 6(f).
Out of our five simulations at 90 K, P reversed and returned
back to its original direction in two simulations and reversed
permanently in the other three.

It is important to note, however, that the degree to which
this P reversal mechanism is statistical rather than deter-
ministic would be much less in a device or a pump-probe
experiment than it is in our simulations of only 1728 unit
cells. Furthermore, the range of temperatures for which P
reversal is deterministic depends on the value of x. Therefore
there must exist a wide range of temperatures at which deter-
ministic P reversal is possible with an appropriate choice of
pulse fluence.

IV. SUMMARY

We have used MD simulations to show that a femtosec-
ond >Eg pulse would selectively excite relative motion of
a BaTiO3 crystal’s sublattices along the eigenvector of its
A1-symmetry ferroelectric mode, and reduce both the coercive
field strength (Ec) and the magnitude of P̄.

Our simulations demonstrate that, for a T -dependent range
of pulse fluences, the pulse-induced motion along the FM
eigenvector would reverse P within 100’s of fs without subse-
quently returning it to its original direction; and that, at higher
fluences, the pulse would induce a transient transition to the
paraelectric Pm3̄m phase.

Although pulse-induced reversal of P is permanent in cer-
tain fluence and/or temperature ranges, the reductions of Ec

and |P̄|, and the photoinduced stability of Pm3̄m [Figs. 1(a)
and 5(d)] would only last until x is reduced by electron-hole
recombination and/or diffusion. During the lifetime of the
photoexcited state, which might be as short as tens of ps or
as long as many nanoseconds [34], the ultimate direction of
P could be determined by a weak bias, such as an applied
field, or by a different pulse-induced mechanism [4,6,13,77].
Therefore a slower method of manipulating P, but one capable

of placing it into any of its symmetry-equivalent directions,
would be to bias the process by which the transient paraelec-
tric phase spontaneously repolarizes when electrons return to
their ground state.

Our simulations also suggest that much could be learned
about BaTiO3 and related materials from pump-probe experi-
ments that exploit the DECP mechanism to selectively excite
the soft mode.
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APPENDIX A: MATHEMATICAL FORM OF THE
FORCE FIELDS

Each of our force fields is defined by a set of parameters,
η, and by the mathematical form of the potential energy func-
tion of atomic positions, U ({ri}). The general form of the
potential energy function is U = U Morse + U elect + U self, where
U Morse ≡ ∑

i, j>i U Morse
i j is a pairwise Morse potential to de-

scribe nonelectrostatic short-range interactions between ions;
U elect ≡ ∑

i, j>i U elect
i j describes both long range electrostatic in-

teractions and electrostatic interactions between overlapping
ions; and U self ≡ ∑

i U self
i , which we explain below, is the sum

of the ions’ self-energies.
The Morse interaction between ions i and j has the form

U Morse
i j ≡ Dsis j

[
e
γsi s j (1− ri j

r0
si s j

)
− 2e

1
2 γsi s j (1− ri j

r0
si s j

)]
,

where si ∈ {Ba, Ti, O} denotes the species of ion i,
ri j ≡ |ri − r j | is the distance between ions i and j, and
Dsis j , γsis j , r0

sis j
∈ η are among parameters that we fit. If

C ≡ γ /r0, the expression for U Morse quoted in Sec. II only
differs from this one by an irrelevant additive constant. The
Morse potential was not chosen for physical reasons but be-
cause, for several oxides, we have found that it allows a closer
fit to DFT data to be achieved than can be achieved with
other mathematical forms, such as sums of inverse powers of
ri j [53–56].

The electrostatic interaction between ions i and j is

U elect
i j =

charge-charge︷ ︸︸ ︷
κqiq j

(
1

ri j
− wqqĨsis j (ri j )

)

+

charge-dipole︷ ︸︸ ︷
κ

∑
α

(
dα

i q j − qid
α
j

) ∂

∂rα
i j

(
1

ri j
− wqd Ĩsis j (ri j )

)
dipole-dipole︷ ︸︸ ︷

−κ
∑
α,β

dα
i dβ

j

∂2

∂rβ
i j∂rα

i j

(
1

ri j
− wdd Ĩsis j (ri j )

)
,
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where κ ≡ 1/(4πε0); qi and dα
i denote the charge and the

αth Cartesian component of the dipole moment, respectively,
of ion i; wqq,wqd ,wdd ∈ η are parameters that we fit; and
the function Ĩsis j is a correction to 1/ri j that accounts for
overlap between the electron clouds of ions i and j [51,52].
Its mathematical form is

Ĩsis j (ri j ) ≡ csis j e
−bsis j ri j

[
nk+1∑
k=0

(bsis j ri j )k

k!

− bsis j

nk + 1

nk∑
k=0

(bsis j ri j )k

k!

]
,

where nk = 4, and bss′ , css′ ∈ η are parameters that we
fit [51,52].

Polarizable ions with variable charges

What follows is a description of the form of our vari-
able charge and polarizable ion force field, which we used
to validate the results of simulations with our fixed charge
polarizable ion force field. The fixed charge force field is a
special case of the variable charge force field, which can be
viewed as its Asi → ∞ and Bsi → ∞ limit. Alternatively, it
can be viewed as the variable charge force field when, for each
ion i, parameters Asi and Bsi are zero and �qi has a fixed value
of zero.

The charge of ion i is qi ≡ q0
si

+ �qi, where q0
si

∈ η is a
parameter that we fit. The values of �qi and di ≡ (d1

i , d2
i , d3

i )
change as ions move because their values are those that min-
imize the sum, U elect + U self, of the electrostatic interactions
and the ions’ self-energies under the constraint

∑
i �qi = 0.

The self-energy, U self
i (�qi, di ), is the energy cost of deforming

its spherically symmetric electron cloud to give it a dipole
moment di, and of changing its charge by �qi relative to the
reference charge, q0

si
.

We express the self-energy of ion i as a Taylor expansion
about its reference state, (�qi, di ) = (0, 0), as follows:

U self
i = U 0

i + ∂U self
i

∂ (�qi )

∣∣∣∣∣
(0,0)

�qi + ∂U self
i

∂ (dα
i )

∣∣∣∣∣
(0,0)

dα
i

+ 1

2

∂2U self
i

∂ (�qi )2

∣∣∣∣∣
(0,0)

�q2
i +

∑
α,β

1

2

∂2U self
i

∂dα
i ∂dβ

i

∣∣∣∣∣
(0,0)

dα
i dβ

i

+
∑

α

1

2

∂2U self
i

∂ (�qi )∂dα
i

∣∣∣∣∣
(0,0)

�qid
α
i + · · ·

= Asi�qi + Bsi�q2
i +

∑
α

Csi (d
α
i )2,

where the three terms that are linear in dα
i vanish by symmetry

and Asi , Bsi ,Csi ∈ η are parameters that we fit.
Note that the isotropic polarizability of species si is

αsi ≡ 1/(2Csi ), and that, if ions did not overlap, minimizing
U elect + U self with respect to the sets {�qi} and {di} would
ensure that the dipole moment of ion i was di = αsi Ei, where
Ei is the electric field at the position ri of ion i from the
charges and dipole moments of all other ions. Therefore, at
each time step of our MD simulations, the sets {�qi} and {di}

that minimize U elect + U self provide a simplified description of
either the ground state, or the photoexcited stationary state, of
the electrons at that time step’s set of atomic positions.

In our simulations we found the sets {�qi} and {di} at each
time step by iterating them to self-consistency, but they can
also be found by direction minimization, matrix inversion, or
a combination of all three approaches [51,52,57]. Extended
Lagrangian methods of evolving sets of induced dipole mo-
ments or variable charges have also been proposed [78–80].
However, the so-called fictitious mass parameters on which
extended Lagrangian methods depend can influence forces
significantly, unphysically, and unpredictably [54,81,82].

APPENDIX B: INFRARED ABSORPTION SPECTRUM

We now derive an expression for the infrared absorption
coefficient by expressing the infrared absorption intensity in
terms of the quantum mechanical autocorrelation of the po-
larization P using perturbation theory. First we derive the
transition probability from state |i〉 to state | f 〉 per unit time
using Fermi’s golden rule, to the first order of perturbation,
which is

Pi→ f = 2π

h̄
|〈 f |�H|i〉|2ρ(E f ), (B1)

where �H is the perturbing Hamiltonian, ρ(E f ) is the density
of states at the energy E f of the final states, |i〉 and | f 〉 are the
initial and final state, respectively. Consider a monochromatic
electric field of frequency ω,

Eω = |Eω| cos(ωt )ε̂

where ε̂ is the unit vector along the electric field and |Eω| is
the amplitude of the field. The interaction between the field
and the system perturbs the Hamiltonian by

�H = −P · Eω,

where P is the total polarization operator. Equation (B1) then
becomes

Pi→ f (ω) = π |Eω|2
2h̄2 |〈 f |ε̂ · P|i〉|2[δ(ω f i − ω) + δ(ω f i + ω)],

where ω f i = ω f − ωi. Then, the rate of energy loss from the
radiation to the material can be written as

−Ėrad =
∑

i

∑
f

ρi h̄ω f iPi→ f

= π |Eω|2
2h̄

∑
f ,i

ω f i(ρi − ρ f )|〈 f |ε̂ · P|i〉|2δ(ω f i − ω)

= π |Eω|2
2h̄

(1 − e−β h̄ω )ω
∑

f ,i

ρi|〈 f |ε̂ · P|i〉|2δ(ω f i−ω),

where ρi is the probability of initially being in state i, of an
thermal equilibrated initial system as

ρ f = ρie
−β h̄ωρi ,

ρi − ρ f = ρi(1 − e−β h̄ω f i ).

By dividing the average incident energy flux by the mag-
nitude of the Poynting vector, |S| = cn

2μ0
|Eω|2, we obtain an
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expression for the absorption coefficient:

α(ω) = μ0π

h̄cn
(1 − e−β h̄ω )ω

∑
f ,i

ρi|〈 f |ε̂ · P|i〉|2δ(ω f i − ω)

= A(1 − e−βhω )ω
∫ ∞

−∞
dte−iωt 〈P(t ) · P(0)〉, (B2)

where A is a constant, and the refractive index, n, is assumed
to be approximately independent of ω. This is a quasi-
classical expression that incorporates quantum mechanical
ω-dependent prefactors into the classical correlation function.
In the expression for the absorption coefficient shown above,
we have replaced 〈ε̂ · P(t ) ε̂ · P(0)〉 with 〈P(t ) P(0)〉. This
assumption is valid either when the field is parallel to the
total polarization density (Eω ‖ P), or when the sample is
polycrystalline, consisting of many domains with different
orientations.

Calculating infrared spectra in MD simulations

To calculate α(ω) from an MD simulation one must be
able to calculate variations of P. Although it is well known
that P is ill defined, the variation of P in an insulator, which
is a polarization current density J, is well defined [83,84].
However, under the periodic boundary conditions that we used
in our simulations, J is only well defined if the contribution to
it from charge that crosses a boundary can be calculated. This
means that when a charge traveling in direction û crosses a

boundary that is normal to û, it is not moved to the opposite
boundary. Moving it to the opposite boundary would change
its contribution to J from a small contribution in direction û to
a much larger contribution in direction −û, which is inversely
proportional to the time step.

Therefore, in MD simulations with our fixed charge force
field, we used the definition

P ≡ 1

�

∑
i

(qiri + di ),

where � is the simulation cell’s volume. Under this def-
inition, variations of P are well defined as long as ions’
positions change continuously. Since we simulated under pe-
riodic boundary conditions, this meant that when ion i crossed
one of the simulation cell’s boundaries it remained where
it was, rather than being shifted by a simulation cell lattice
vector, A, to the opposite boundary. Moving it to the opposite
boundary would change P discontinuously by qiA/�.

It was not possible to calculate infrared spectra using
our variable charge force field for the following reason. The
ions’ charges vary continuously and, when an ion’s charge
increases, the origin of its increased charge is not defined,
which means that the current that transported charge to it is
not defined. The change of each ion’s charge cannot be said to
come from any particular ion unless only two ions’ charges
change. However, even in that case, the periodic boundary
conditions would mean that the direction of the current that
transported charge between the ions would not be defined.
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