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Onsager’s regression hypothesis connects the temporal relaxation of close-to-equilibrium systems with their
dynamical correlation functions at thermal equilibrium. While the hypothesis is provably correct in classical
systems, it is known to fail in the quantum regime. Here, we derive a suitably adjusted quantum version of
Onsager’s original hypothesis. Rigorous analytical results are complemented by a variety of numerical examples.

DOI: 10.1103/PhysRevB.110.014306

I. INTRODUCTION AND MAIN RESULTS

Onsager originally postulated and utilized the so-called
regression hypothesis to establish his celebrated reciprocal
relations between the kinetic coefficients of irreversible pro-
cesses close to thermal equilibrium [1]. Qualitatively, the
basic physical content of the hypothesis is that the temporal
correlations of a system at thermal equilibrium are suffi-
cient to describe how a slightly perturbed system returns to
equilibrium. The quantitative formulation of the hypothesis
will be provided later [see Eq. (15) below]. For classical
systems, Onsager’s hypothesis has been rigorously deduced
from a microscopic description, for instance, in Ref. [2]. In
the realm of quantum mechanics, the hypothesis is known
to fail, as pointed out, for example, in Refs. [3–5] (see also
Sec. V below). The main objective of our present paper is
to deduce a properly modified quantum version of Onsager’s
regression hypothesis from basic microscopic considerations
[see Eq. (18) below].

Concretely, let us consider a quantum system with Hamil-
tonian H at thermal equilibrium, described by a canonical
ensemble

ρ := Z−1 e−βH , (1)

Z := Tr{e−βH }, (2)

β := 1/kBT, (3)

where T is the system’s temperature and kB Boltzmann’s
constant. The corresponding thermal equilibrium expectation
value of an observable (Hermitian operator) A is denoted as

Ath := Tr{ρA}. (4)

Similarly, the temporal correlation (also called, among others,
dynamic or two-point correlation function) of two Hermitian
operators V and A at thermal equilibrium is given by

CVA(t ) := Tr{ρVA(t )} − VthAth, (5)

where A(t ) is the observable A at time t in the Heisenberg
picture:

A(t ) := eiHt/h̄Ae−iHt/h̄. (6)

In general, CVA(t ) in (5) is a complex valued function, whose
real and imaginary parts are denoted as

RVA(t ) := Re(CVA(t )), (7)

IVA(t ) := Im(CVA(t )). (8)

Next we turn to a slightly different situation, namely, the
system is prepared at time t = 0 in an initial state of the form

ρ0 := Z−1
g e−βHg, (9)

Zg := Tr{e−βHg}, (10)

corresponding to the canonical ensemble of a modified Hamil-
tonian

Hg := H − gV, (11)

where V is a perturbation operator and g a small parameter.
While ρ0 in (9) amounts to a thermal equilibrium state with
respect to the modified Hamiltonian Hg, it is a nonequilibrium
state with respect to the actual Hamiltonian H of the system
we are considering. Accordingly, this initial state then evolves
for t > 0 into the state

ρ(t ) = e−iHt/h̄ρ0 eiHt/h̄, (12)

yielding for an observable A the time-dependent expectation
values:

〈A〉t := Tr{ρ(t )A}. (13)

Equivalently, they can be rewritten in the Heisenberg picture
by means of (6) and (12) as

〈A〉t = Tr{ρ0A(t )}. (14)

In terms of the so-defined quantities, Onsager’s regression
hypothesis assumes the form

〈A〉t − Ath = gβ RVA(t ) (15)

for sufficiently weak perturbations, i.e., up to corrections of
order g2. As announced, it relates the temporal correlations at
thermal equilibrium to the time-dependent expectation values
of a system close to equilibrium (usually exhibiting some kind
of relaxation).

For quantum systems as we consider them here, Onsager’s
regression hypothesis (15) is known to be incorrect [3–5]
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(a simple analytical example will be provided in Sec. V).
However, an appropriately adjusted version of such a relation
has to our knowledge never been proposed until now. This is
the main objective of our present paper, namely, we will derive
for sufficiently small g the following modified relation:

〈A〉t − Ath = gβ
∞∑

k=0

(iτB)k

(k + 1)!
C(k)

VA (t ), (16)

where f (k)(t ) indicates the kth derivative of any given function
f (t ), and where

τB := h̄β (17)

is the so-called Boltzmann time. Furthermore, we will show
that the sum on the right-hand side of (16) is a purely real
function of t (even though the single summands may possibly
be complex). Exploiting the definitions in (7) and (8), one can
thus conclude that

〈A〉t − Ath = gβ
∞∑

k=0

τ k
B

(k + 1)!
Sk (t ), (18)

where

Sk (t ) :=
{

(−1)k/2 R(k)
VA(t ) for even k

(−1)
k+1

2 I (k)
VA (t ) for odd k.

(19)

In particular, Onsager’s hypothesis (15) is asymptotically
recovered for small values of τB, commonly considered as
corresponding to the classical limit in view of (17).

The rest of the paper is organized as follows. The deriva-
tion of our main results (16)–(19) is provided in Sec. II.
The validity range of these results is established in Sec. III,
complemented by the more rigorous details in Appendix A.
Some general implications of physical interest are discussed
in Sec. IV, followed by various numerical examples in Sec. V,
a modification and extension of our main results in Sec. VI
and Appendix B, and some concluding remarks in Sec. VII.

II. DERIVATION OF THE MAIN RESULTS

In essence, the derivation of our main results (16)–(19) is
relatively easy. Additional details are provided in Sec. III and
Appendix A.

Employing the definitions

ψ (λ) := eλH e−λHg, (20)

q := Tr{ρ ψ (β )}, (21)

it follows with (1) and (9) that

q = Zg/Z, (22)

and with (14) that

〈A〉t = q−1 Tr{ρ ψ (β )A(t )}. (23)

Furthermore, we can conclude from (20) and (11) that

ψ ′(λ) := dψ (λ)/dλ = eλH He−λHg − eλH Hge−λHg

= eλH gVe−λHg = gVλψ (λ), (24)

Vλ := eλHVe−λH . (25)

Integrating (24) and exploiting that ψ (0) = 1 yields

ψ (λ) = 1 + g
∫ λ

0
dx Vx ψ (x). (26)

Upon iteration, we thus obtain

ψ (λ) = 1 + g
∫ λ

0
dx Vx + g2

∫ λ

0
dx Vx

∫ x

0
dy Vyψ (y). (27)

Together with (1), (21), and (25), this implies

q = 1 + gβ Tr{ρV } + g2Q, (28)

Q :=
∫ β

0
dx

∫ x

0
dy Tr{ρVxVyψ (y)}. (29)

Likewise, one finds that

Tr{ρ ψ (β )A(t )} = Tr{ρA(t )} + g
∫ β

0
dλYt (λ) + g2Rt , (30)

where

Yt (λ) := Tr{ρ VλA(t )}, (31)

Rt :=
∫ β

0
dx

∫ x

0
dy Tr{ρVxVyψ (y)A(t )}. (32)

Assuming temporarily that

Vth := Tr{ρV } = 0 (33)

[see also (4)], and omitting terms of order g2, we thus can
rewrite (23) by means of (28) and (30) as

〈A〉t = Tr{ρA(t )} + g
∫ β

0
dλYt (λ). (34)

One readily infers from (1), (4), and (6) that

Tr{ρA(t )} = Tr{ρA} = Ath, (35)

yielding

�(t ) := 〈A〉t − Ath = g
∫ β

0
dλYt (λ) (36)

up to corrections of order g2. Since the left-hand side is real,
one also expects that the right-hand side is real separately in
every order of g. In accordance with this expectation, one can
explicitly verify that the leading order term on the right-hand
side of (36) is indeed real by exploiting that (31) implies
Y ∗

t (λ) = Yt (β − λ).
Denoting the eigenvalues and eigenvectors of H as Eν

and |ν〉, respectively, the corresponding matrix elements, for
instance, of V are abbreviated as

Vνμ := 〈ν|V |μ〉. (37)

Hence, ρ from (1) becomes a diagonal matrix,

ρνμ = δνμ pν, (38)

with diagonal elements

pν := Z−1e−βEν . (39)
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Employing (1), (6), and (25), we thus can rewrite (31) as

Yt (λ) = Tr{ρ eλHVe−λH eiHt/h̄Ae−iHt/h̄}
=

∑
νμ

pν eλEνVνμe−λEμeiEμt/h̄Aμνe−iEν t/h̄

=
∑
νμ

pν VνμAμνeEμν (it/h̄−λ), (40)

where

Eμν := Eμ − Eν . (41)

The last factor in (40) can be rewritten as

eEμν (it/h̄−λ) = eiEμν t/h̄
∞∑

k=0

(−λEμν )k

k!

=
∞∑

k=0

(−λ)k

k!
(−ih̄)k dk

dtk
eiEμν t/h̄, (42)

implying

Yt (λ) =
∞∑

k=0

(iλh̄)k

k!

dk

dtk

∑
νμ

pν VνμAμνeiEμν t/h̄. (43)

Similarly as in (40), the last double sum can be identified with
Tr{ρ VA(t )}, while the remaining integral over λ in (36) can
now be carried out, yielding

�(t ) = gβ
∞∑

k=0

(iτB)k

(k + 1)!

dk

dtk
Tr{ρ VA(t )}. (44)

So far, our derivation only applies for V ’s with the prop-
erty Vth = 0; see (33). The generalization to arbitrary V ’s is
straightforward: To begin, we define Ṽ := V − Vth and ob-
serve that employing Ṽ instead of V in (11) does not affect
any physically relevant system properties such as the relations
(1)–(10) or (12)–(14). In particular, �(t ) as defined in (36),
remains unchanged. On the other hand, Ṽ now exhibits the
property Ṽth = 0 and hence (44) must apply with Ṽ instead of
V. Altogether, the generalization to arbitrary V ’s thus simply
amounts to replacing V in (44) by V − Vth. Exploiting (5) and
(35), this finally yields (16).

Moreover, according to the discussion below Eq. (36), the
right-hand side of (44) and thus of (16) must be a purely real
function of t , as claimed below Eq. (17).

III. VALIDITY OF THE APPROXIMATION

Combining (23), (28), (30), (33), and (35) yields

〈A〉t = Ath + g
∫ β

0 dλTr{ρVλA(t )} + g2Rt

1 + g2Q
. (45)

Our main (and only) approximation in Sec. II was to neglect
the terms of order g2 in (45), resulting in (34). However, since
Q and Rt in (45) actually still depend on g themselves via
(29), (32), and (20), one may feel that a more careful justi-
fication of such an approximation would be desirable. This is
accomplished in Appendix A in the form of rigorous upper
bounds for |Q| and |Rt |. Most importantly, and in contrast
to ordinary time-dependent perturbation theory, those bounds

are not restricted to sufficiently small times but rather apply
uniformly in t .

The derivation of those bounds is based on the following
two premises: The system Hamiltonian H must be a sum
of local operators, and the perturbation V must be a local
operator; see Appendix A for further details. From now on,
these two premises are thus tacitly taken for granted.

Roughly speaking, the relevant small parameter in the de-
tailed analytical considerations in Appendix A is given, as
one might have intuitively expected, by gβ‖V ‖op (operator
norm): If this parameter is small, the neglected corrections (of
higher order in g) on the right-hand side of (16) and (18) can
be shown to be small. More precisely speaking, the system
Hamiltonian H must also, of course, somehow enter the game,
giving rise to an extra factor f (β ) [see Eq. (A33)]. The latter
accounts for the specific properties of H as detailed below
Eq. (A33), and is often expected to be of the order of unity for
small-to-moderate β values when working in natural units.

Another very important question is how Q and Rt in (45)
depend on the size of the considered system and, in partic-
ular, how they behave in the thermodynamic limit [6]. This
issue is clearly far from obvious in view of (29), (32), and
the exponential dependence on the system Hamiltonians in
(6), (20), and (25). From the rigorous considerations in Ap-
pendix A, one can infer the following quite strong conclusion
regarding this issue: If ‖V ‖op and ‖A‖op remain bounded in
the thermodynamic limit, then the same must apply to |Q| and
maxt |Rt |. Therefore, Q and Rt are indeed negligible in (45)
for sufficiently small g even after taking the thermodynamic
limit.

Due to our above premise that V is a local operator, the
requirement that ‖V ‖op must remain bounded in the thermo-
dynamic limit is (almost) automatically fulfilled. Similarly,
since the entire formalism is linear in A, and since most
physically relevant observables are (sums of) local operators,
the requirement that ‖A‖op must remain bounded in the ther-
modynamic limit does not amount to any substantial loss of
generality either.

We finally note that the extension of our present analyt-
ical results to nonlocal perturbations V amounts to a very
challenging unsolved problem, as can be understood by the
following nonrigorous arguments. Let us, for instance, con-
sider a local observable A and an extensive perturbation V
(meaning that V consists of a sum of local operators which
grows extensively with the system size [6]). For physical
reasons, it then seems intuitively reasonable to expect that the
quantities 〈A〉t and Ath in (45) exhibit a well-defined (finite)
thermodynamic limit [7]. Turning to the second term in the
numerator of (45), we observe that this term coincides with
the right-hand side of (36) and thus with (44) and (16). As
before, it is reasonable to expect that the correlations CVA(t )
in (5) exhibit a well-defined (finite) thermodynamic limit [8].
Hence, (16) is also expected to remain finite in the thermo-
dynamic limit. Finally, by means of numerical explorations
and of similar analytical considerations as in Appendix A, we
found that both Q and Rt generally seem to diverge in the
thermodynamic limit. [Incidentally, Rt/Q must still converge
to 〈A〉t according to (45).] Thus, neglecting Q and Rt in (45)
can only be justified for smaller and smaller g values as the
system size increases. In other words, the main approximation
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of our present approach breaks down for any finite g in the
thermodynamic limit.

IV. GENERAL REMARKS

Although systems with many degrees of freedom (DOFs)
are usually of foremost interest (see also Sec. III), it is nev-
ertheless remarkable that our main results actually apply to
systems with an arbitrary number of DOFs, including very
small systems.

Similarly, it is remarkable that issues like integrability,
ergodicity, or many-body localization (MBL) do not play
any role.

In most previous theoretical works in this context, the
physical interest of such temporal correlations as in (5),
(7), (8) is considered self-evident. Here, we adopt the same
viewpoint that relations like (15)–(18) are of considerable
theoretical interest in themselves without any further discus-
sion of whether and how such temporal correlations may be
experimentally measurable. (The latter is quite obvious in the
special case t = 0, which we address in more detail below,
but not any more for t �= 0.) For a more detailed discussion of
such issues, we refer to Refs. [3,5,11] and further references
therein.

As already mentioned below (19), Onsager’s original hy-
pothesis (15) is recovered for asymptotically small values
of τB in (18). Moreover, one can infer from (18) that the
deviations from Onsager’s hypothesis remain small as long as
the characteristic timescale of the correlations in (5) is large
compared to the Boltzmann time τB [9]. Experimentally, this
will often be the case unless we are dealing with rather low
temperatures. On the other hand, in numerical studies, where
choosing units with h̄ = 1 is quite natural, those corrections
are expected to be non-negligible in many cases (see also
Sec. V below).

For sufficiently large systems, one often expects, observes,
or can even show [10] that the time-dependent expectation
values in (13) approach a (nearly) constant value after initial
transients have died out, and analogously for the the tem-
poral correlations in (5) [11]. Quantitatively, these constant
values can be determined by taking the long-time average
on both sides of (18). One readily sees that this average is
zero for each summand with k > 0 on the right-hand side
of (18). Remarkably, the dependence on τB thus disappears
altogether and we recover once again the same result as in On-
sager’s original relation (15) as far as long-time averages are
concerned.

On the other hand, for large but finite systems one ex-
pects that both sides in (18) still exhibit (even for arbitrarily
late times) some small temporal fluctuations around their
long-time averages [10,11]. A quite nontrivial prediction of
our present paper is that those long-time fluctuations are
again connected via the relation (18). Furthermore, it is not
obvious at all how significant the finite τB corrections of On-
sager’s hypothesis (15) will be with respect to those long-time
fluctuations.

More generally speaking, our present theory must remain
valid even in such unusual cases where the system does not
exhibit any kind of relaxation, equilibration, or thermaliza-
tion in the long run. For instance, this may be the case for

systems with few DOFs or due to some special symmetries
and conservation laws.

Yet another interesting special case arises for t = 0,
namely, the left-hand side in the relations (15), (16), and
(18) then amounts to the difference between the thermal
expectation values for two sightly different systems with
Hamiltonians Hg and H [see Eqs. (1), (4), and (9)–(13)]. In
other words, all quantities appearing in (15), (16), and (18)
now solely refer to thermal equilibrium properties. In the con-
text of equilibrium statistical mechanics, such equations are
sometimes also denoted, for instance, as fluctuation-response
relations, though the choice of this and other names tends
to be somewhat unfortunate [5]. While Eq. (15) with t = 0
amounts to a textbook relation of this kind, our present results
(16) and (18) amount to a nontrivial improvement for quantum
systems, which to our knowledge has not been previously
known.

V. QUANTITATIVE EXAMPLES

Here, we will quantitatively illustrate some of the general
issues addressed in the previous sections by means of specific
examples. A systematic exploration of all those various ana-
lytical predictions is clearly impossible, hence we will confine
ourselves to just a few instances.

In particular, we will mainly focus on one-dimensional
Heisenberg-type Hamiltonians (XYZ models) with open
boundary conditions,

H = −
∑

a∈{x,y,z}
Ja

L−1∑
l=1

sa
l+1sa

l + h
L∑

l=1

sx
l , (46)

where sx,y,z
l are spin-1/2 operators at the lattice sites l ∈

{1, ..., L}, the Jx,y,z quantify the coupling strength of the
nearest-neighbor interactions, and h may be considered to
account for an external magnetic field. Focusing on non-
vanishing and nonidentical couplings Jx,y,z, this model is
nonintegrable for h �= 0 [12], and integrable (but still of
a nontrivial, so-called interacting type) for h = 0 [13–15].
Moreover, such models are commonly expected to exhibit
a well-defined thermodynamic limit when L → ∞ (see
Sec. III).

As mentioned in Sec. III, the perturbation V in (11) is
assumed to be a local operator. As a particularly simple
choice, we will mainly consider examples of the form V = sz

l
for some l ∈ {1, ..., L}. Physically, it is reasonable to expect
(and numerically seen) that such a local perturbation will
only lead to a notable response for observables which are not
too far away from the perturbation, and will be particularly
well visible if the observable is in some sense similar to the
perturbation. Therefore, it is natural to focus on observables
of the form A = V .

Yet another appealing feature of the above choice A =
V = sz

l is that the corresponding thermal expectation values
Ath in (5) can be shown analytically to vanish for symmetry
reasons [16]. Moreover, one readily concludes that VA(0) =
(sz

l )2 = 1/4. Together with (5), it follows that CVA(0) = 1/4.
Exploiting (7), Onsager’s regression hypothesis at the time
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point t = 0 thus assumes the simple form

〈A〉t=0 = gβ/4, (47)

independent of any further details of the considered system.
Since the left-hand side in (47) is bounded by the largest and
smallest eigenvalues of A = sz

l , that is, by ±1/2, the predic-
tion (47) will certainly be wrong when |gβ| > 2. To the best
of our knowledge, this is the simplest analytical example for
the failure of Onsager’s regression hypothesis in the quantum
regime.

Our next observation is that a spin-1/2 model like in (46)
does not admit a physically meaningful classical limit. The
basic reason is that the classical limit requires the emergence
of an asymptotically continuous level density for h̄ → 0 (the
simplest example is a harmonic oscillator), while the number
of energy levels in (46) is finite and independent of h̄. As
usual, in numerical explorations of such models, we thus work
in units with

h̄ = 1, (48)

implying that τB in (17) formally coincides with β.
The general strategy in our subsequent numerical explo-

rations will be to compute the left-hand side in (18) and
compare it with the numerically evaluated functions

PK (t ) := g
K∑

k=0

βk+1

(k + 1)!
Sk (t ), (49)

converging towards the right-hand side of (18) for large values
of K , while K = 0 corresponds to Onsager’s hypothesis (15).

In passing, we note that the dependence of (49) on β is
not as simple as it might appear at first glance since the
functions Sk (t ) also depend on β according to (1)–(8) and
(19). Nevertheless, it is reasonable to expect, and will be later
confirmed numerically, that the factor βK+1 is asymptotically
dominating in (49) for large β.

In the following subsections, we will present our results
for the left-hand side of (18) and for the functions PK (t ) in
(49). These results have been obtained by the numerically
exact diagonalization of the pertinent Hamiltonian H in (46).
Moreover, we have circumvented the numerical evaluation of
the kth derivative appearing in (19) as follows: As a first step,
we observe that (1) and (6) imply

Tr{ρ V (s)A(t )} = Tr{ρ VA(t − s)} (50)

for arbitrary t, s ∈ R, and hence

Tr{ρ V (k)(0)A(t )} = dk

dsk
Tr{ρ V (s)A(t )}|s=0

= dk

dsk
Tr{ρ VA(t − s)}|s=0

= (−1)k Tr{ρ VA(k)(t )}. (51)

As a second step, we define (as usual) V̇ := i [H,V ] [see
also (48)], while the higher derivatives V (k) then follow
recursively as

V (k+1) := i [H,V (k)]. (52)

0

0.02

0.04

0.06

0 1 2

A
0
−

A
th

β

FIG. 1. Numerical results for the nonintegrable spin model from
(49) with L = 16, Jx = 1, Jy = 1.2, Jz = 1.5, h = 1, and a local
perturbation in (11) with g = 0.1 and V = sz

L/2. Bold black line:
Left-hand side of (18) versus β for A = sz

L/2 and t = 0. Colored lines:
Numerical results for PK (0) from (49) with K = 0, 1, ..., 30. The first
few K values are indicated as numbers close to the corresponding
lines. The continuation for all other K is obvious. In particular, the
straight red line (K = 0) represents Onsager’s regression hypothesis
from (15).

Alternatively, if we set V (0) := V then (52) is valid for all
k ∈ N0. As expected, it follows by exploiting (6) that

V (k)(0) = V (k), (53)

and thus with (5) and (51) that

C(k)
VA (t ) = (−1)k Tr{ρ V (k)A(t )} (54)

for all k � 1. Analogous relations apply to the derivatives
of the real and imaginary parts in (7) and (8), which arise
in (19) and are thus needed in (49). The main point is that
the commutators, appearing on the right-hand side of (54)
via (52), are numerically much more convenient and accurate
than directly evaluating the kth derivative on the left-hand side
of (54).

A. Numerical results for t = 0

As mentioned at the end of Sec. IV, in the special case
t = 0 our findings are essentially tantamount to a general-
ization of the so-called fluctuation-response relation in the
context of equilibrium statistical mechanics.

A first example is depicted in Fig. 1. The main conclu-
sion is that Onsager’s regression hypothesis (straight red line,
K = 0) indeed becomes quite bad for large β (low tem-
peratures), while our improved prediction from (18) (corre-
sponding to K → ∞) works very well. Furthermore, and as
announced below Eq. (49), for any given (finite) K value,
the function PK (0) indeed seems to diverge approximately as
βK+1 for large β. Some interesting additional features, which
are numerically observed, and which can also be to some
extent understood as a consequence of this divergence and
the fact that the left-hand side of (18) is bounded (uniformly
in β), are as follows: (i) Upon increasing K , the functions
PK (0) from (49) diverge for asymptotically large β alternat-
ingly towards plus and minus infinity. (ii) The convergence
of the finite sums PK (0) from (49) towards the infinite sum
in (18) cannot be uniform in β: The larger the value of β,
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0
−
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β

FIG. 2. Same as in Fig. 1 but for smaller systems with L = 8 in
(a) and L = 2 in (b).

the larger values of K are needed until convergence sets in.
(iii) For sufficiently large but fixed β, the approximations
PK (0) considered as a function of K will initially (for small-
to-moderate K) even become worse upon increasing K , and
only later (for sufficiently large K) converge towards a really
good approximation of the infinite sum in (18).

We also remark that the perfectly straight numerical lines
for K = 0 in Figs. 1–5 are in agreement with the analytical
prediction from (47). An exception is Fig. 4(b), where the
requirement A = V = σ z

l above Eq. (47) is not fulfilled, and
hence no straight line arises for K = 0.

Turning to Fig. 2, its main message (together with Fig. 1) is
that the dependence on the system size L is remarkably weak.
In other words, the thermodynamic limit is approached very
quickly upon increasing L. We conjecture that our employ-
ing canonical ensembles as initial states in (9) may play an
important role in this context, since similar observations have
also been reported in various other numerical explorations in
the literature. We also see that, as predicted in Sec. III, our
analytical theory indeed works very well independently of
whether the considered system is small or large.

Figure 3 exemplifies the impact of the neglected higher
order terms in g. In agreement with the analytics at the end
of Appendix A (see also Sec. III), the essential quality pa-
rameter for the reliability of our present linear response type
approximation is the product gβ‖V ‖op, where ‖V ‖op = 1/2
in all our numerical examples. Quantitatively, the differences
between the numerically exact results (bold black lines) and
the analytical linear response theory (colored lines with suf-
ficiently large K) indeed become visible on the scale of these
plots when β is comparable or larger than 1/g.

Figure 4 illustrates the behavior for a different choice of the
perturbation V and the observable A. Particularly noteworthy

0

0.1

0.2

0

0.2

0.4

0.6

A
0
−

A
th

A
0
−

A
th

β

FIG. 3. Same as in Fig. 1 but for stronger perturbations with
g = 0.4 in (a) and g = 1 in (b).

are the following features of Fig. 4(b): (i) Quantitatively,
the observed effects are generally weaker than in the other
examples (note the y-axis scales). (ii) The relative deviations

0
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0 1 2 3

0

0.008

0.016

0 1 2
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0
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A
th

β

A
0
−
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FIG. 4. Same as in Fig. 1 but for a different perturbation and
observable, namely, V = A = sz

1 in (a) and V = A = sx
L/2 in (b).

Moreover, in (a) the depicted range of β values is somewhat larger
than in Fig. 1.
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FIG. 5. Same as in Fig. 1 but for an integrable model with h = 0
in (49). Moreover, the depicted range of β values is somewhat larger
than in Fig. 1.

(finite-g effects) between the numerically exact results (black)
and our analytics (corresponding to K → ∞) are larger than
in Figs. 1, 2, and 4(a), but the absolute deviations remain com-
parable. (iii) Unlike in Fig. 3, those deviations hardly grow
with increasing β as far as their absolute values are concerned,
but the relative deviations still grow in nearly the same way.
(iv) Similar considerations apply to the differences between
Onsagers’s hypothesis (K = 0, red) and the numerically exact
results. (v) As stated, Onsager’s hypothesis no longer amounts
to a straight line.

For the rest, it does not seem to us of great interest to
present here further results for still other examples of V and
A; see also the general considerations above Eq. (47).

Turning to Fig. 5, a comparison of these results (for h = 0)
with those in the other examples (with h = 1) confirms the
prediction from Sec. IV that our analytical theory works very
well for nonintegrable (h �= 0) as well as for integrable (h =
0) models.

As yet another, somewhat more exotic example, we finally
consider a so-called frustrated ferromagnetic Heisenberg spin-
1/2 chain of the form [17,18]

H = −
L−1∑
l=1

�sl+1 · �sl + J
L−2∑
l=1

�sl+2 · �sl , (55)

with J > 0 (frustration) and �sl := (sx
l , sy

l , sz
l ); see also below

Eq. (46). Besides the special feature of frustration, this model
is also known to exhibit numerous degeneracies [due to its
SU(2) symmetry] and to be nonintegrable. The concomitant
numerical findings in Fig. 6 are quite similar to those in (5),
indicating that frustration and/or degeneracies do not seem to
play an important role with respect to the questions in which
we are interested here.

B. Time-dependent numerical results

Figure 7 depicts the time-dependent comparison of the
left-hand side of Eq. (18) with the approximations on the
right-hand side of Eq. (49) for two representative K values.
As before, Onsager’s regression hypothesis (red lines, K =
0) quite notably deviates from the numerically exact results
(black). The approximation for K = 10 (blue) is sometimes
better and sometimes worse than that for K = 0. This is in

0
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0.04

0.06

0 1 2 3

A
0
−

A
th

β

FIG. 6. Same as in Fig. 1 but for the frustrated spin chain model
from (55) with J = 0.25. Moreover, the depicted range of β-values
is somewhat larger than in Fig. 1.

accordance with the fact that the lines for K = 0 and K = 10
in Fig. 1 cross each other near β = 2 [see also item (iii) in
Sec. V A]. For K � 20, our numerical data were found to
practically coincide with the black lines in Fig. 7. In other
words, our analytical theory (corresponding to K → ∞) in-
deed agrees very well with the numerically exact results for
all times t which we actually explored.

We also observe that the finite-K effects in Fig. 7 are partic-
ularly pronounced when the numerically exact curves (black)

−0.02

0

0.02

0.04

0 10 20

−0.02

0

0.02

0.04

1000 1010 1020

A
t
−

A
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t

A
t
−

A
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t

FIG. 7. Numerical results for the same model as in Fig. 1 with
β = 2. Black lines: Left-hand side of (18) versus t for (a) t ∈ [0, 20]
(initial behavior) and (b) t ∈ [1000, 1020] (long-time behavior). Col-
ored lines: Numerical results for PK (t ) from (49) with K = 0 (red)
and K = 10 (blue). The corresponding results K = 20 and K = 30
were found to be indistinguishable from the black lines and are
therefore not shown.
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FIG. 8. Same as in Fig. 7 but for a smaller system with L = 4.

exhibit large curvatures, and are comparatively small near
turning points. Unfortunately, we did not succeed in coming
up with a simple intuitive explanation of this observation.

While Fig. 7(a) illustrates the initial relaxation behavior for
t ∈ [0, 20], the everlasting long-time fluctuations discussed at
the end of Sec. IV are exemplified by the behavior for t ∈
[1000, 1020] in Fig. 7(b). Though the detailed behavior for
those large times is quite nontrivial, the agreement with our
analytical theory is still nearly perfect for sufficiently large K ,
while the deviations for K = 0 (Onsager’s hypothesis) are still
quite notable.

Finally, Fig. 8 confirms (upon comparison with Fig. 7) the
theoretical prediction [10,11] (see also Sec. IV) that these
long-time fluctuations quickly decrease as the system size is
increased. For the rest (initial relaxation behavior, long-time
average), the dependence on the system size is rather weak, as
already observed in the previous subsection. Moreover, Fig. 8
once more confirms the prediction that our analytical theory
works very well even for small systems and/or in the absence
of a distinct initial relaxation.

VI. GENERALIZATION

Our goal is to extend the results from Sec. I to more general
density operators than in (1) and (9), provided the system
satisfies certain additional assumptions, namely, we assume
that there exists a projector P onto some sub-Hilbert space H̃
with the property

[H, P] = [V, P] = 0. (56)

The most important example arises when the system Hamil-
tonian H as well as the perturbed Hamiltonian Hg from (11)

exhibit a common conserved quantity S, i.e.,

[H, S] = [V, S] = 0, (57)

and if we identify H̃ with one of the eigenspaces of S. [One
readily verifies that the property (56) is indeed fulfilled in such
a case.] More generally, if there are several (commuting) con-
served quantities of H and Hg, the subspace H̃ may be chosen
as an eigenspace of one of those conserved quantities, but also
as a common eigenspace of several conserved quantities.

Given that (56) is fulfilled, we show in Appendix B that
our main results from (16)–(19) are still valid if the canonical
ensembles in (1) and (9) are replaced by

ρ := Pe−βH/ Tr{Pe−βH }, (58)

ρ0 := Pe−βHg/ Tr{Pe−βHg}. (59)

In other words, we can replace the original density operators
from (1) and (9) by their projections (or reductions) onto any
invariant subspace H̃, whereas the observable A and system
Hamiltonian H still remain entirely unchanged, for instance,
in (4)–(6) and in (12)–(14).

While one may come up with various intuitive arguments
of why these findings might not be entirely unexpected, the
details of a more rigorous line of reasoning are not obvious at
all; see Appendix B.

If relations as in (56) apply simultaneously to two different
projectors P1 and P2, our main results from (16)–(19) are valid
for each of the two corresponding ensembles of the forms (58)
and (59). It thus might seem tempting to conjecture that linear
combinations thereof are also still be admissible. However,
this cannot be true in view of the fact that the left-hand side
of (16) is linear in ρ, while the last term in (5) and thus the
right-hand side of (16) is nonlinear in ρ.

To numerically illustrate these analytical findings, we con-
sider a random field Heisenberg spin-1/2 chain of the form

H =
L−1∑
l=1

�sl+1 · �sl +
L∑

l=1

hl s
x
l , (60)

where �sl := (sx
l , sy

l , sz
l ); see also below Eq. (46). Moreover, the

hl are independent random variables, uniformly distributed
within the interval [−hmax, hmax] for some arbitrary but fixed
hmax � 0. This model is thus quite similar to (46), except
that all nearest-neighbor coupling strengths Ja are now cho-
sen equal to −1 and the external magnetic field is now
randomized.

The model (60) is one of the standard examples considered
in the context of MBL, see, for instance, Refs. [19,20] and
further references therein. Regarding the disorder strength
hmax, we focus on the choice hmax = 5, for which the model
has been reported to exhibit MBL in Ref. [19]. We remark
that whether and in which sense this finding from Ref. [19]
is actually correct is still debated in the literature. This con-
troversy is in itself not of immediate relevance in our present
paper: For us, the model (60) just serves the purpose to further
enlarge the diversity of different models we are numerically
exploring.
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FIG. 9. Numerical results for the random field spin chain from
(60) with disorder strength hmax = 5 for an observable A and a
perturbation in (11) with A = V = sx

L/2 and g = 0.1. Furthermore,
Eqs. (58) and (59) have been employed with a projector P onto the
eigenspace of the conserved quantity from (61) with vanishing eigen-
value (subsector with zero total magnetization). All further details are
as in Fig. 1 except that curves up to K = 50 are shown.

Particularly important in our present context is the well-
known fact [19] that the total magnetization

S :=
L∑

l=1

sx
l (61)

is a conserved quantity of the model from (60). Similarly as
in Ref. [19], we thus restrict ourselves to the eigenspace H̃
of S with eigenvalue zero, and thus with the corresponding
projector P onto H̃ appearing in Eqs. (58) and (59). Moreover,
we focus on perturbations of the form V = sx

l to fulfill the
second condition in (56).

The main qualitative features of our numerical findings in
Fig. 9 are quite similar to those in Fig. 4(b), suggesting that
neither the disorder nor the restriction to a subspace of the
conserved quantity seems to have a major impact with respect
to the main issues of our present paper.

VII. CONCLUSIONS

Our main result consists of a modification of Onsager’s
regression hypothesis [see Eq. (18)], which is analytically
shown to be correct in linear order of the perturbation strength
g in (11). In contrast to most other perturbative approaches
in similar contexts, the neglected nonlinear corrections can
be rigorously bounded for a large class of physically relevant
model systems and for arbitrarily large times t (see Sec. III).
Further noteworthy general features of the theory are collected
in Secs. IV and VI, while more detailed quantitative examples
are provided in Secs. V and VI.

Since Onsager’s regression hypothesis is known to fail
in the quantum regime [3–5] [see also around Eq. (47)],
a common proposal has been that the adequate quantum
version of the hypothesis should be nothing else than the well-
established fluctuation-dissipation theorem (FDT) [4,21,22].
This proposal is incorrect for the following reasons. With
respect to the specific questions in which we are interested
here, a very basic feature of the FDT is that it does not
admit any non-trivial prediction concerning the initial time

point t = 0. On the other hand, Onsager’s regression hy-
pothesis from (15) does make a nontrivial prediction for
t = 0. While the latter prediction is still not quantitatively
right, it is appropriately corrected by our present theory
(see Sec. V A).

Formally speaking, Onsager’s original regression hy-
pothesis works well in the combined linear response and
near-classical regime, i.e., when both the perturbation param-
eter gβ‖V ‖op (see Sec. III) and the Boltzmann time τB in
(17) are simultaneously small. Or, when working in natural
units with h̄ = 1 and ‖V ‖op = 1, both gβ and β must be
simultaneously small. In contrast, our present theory works
well as long as the product gβ is small, while β may not be
small. On the other hand, to explore very low temperatures
(large β) and not too small perturbations, one necessarily must
go beyond the present linear response regime. This will be the
subject of a separate publication.

A quite common practice in cases like ours is to devise
some sort of expansion in the perturbation parameter, and
then to simply neglect all nonlinear terms without any fur-
ther consideration of their actual effect. Such a strategy has
been severely criticized in a hardly accessible but nevertheless
highly cited paper by van Kampen [23]; see also Sec. 2 in
Ref. [21]. Within our present approach, those nonlinear terms
can be rigorously bounded for a large class of physically
relevant model systems. On the other hand, we pointed out
in Sec. III that the higher order terms are seen to diverge
in the thermodynamic limit for other model classes, most
prominently when the perturbation operator is an extensive
quantity. In other words, the widespread opinion that van
Kampen’s criticism is irrelevant for all practical purposes may
not be appropriate. A more detailed account of our ongoing
explorations in the case of extensive perturbations will be
given elsewhere.
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APPENDIX A: RIGOROUS JUSTIFICATION
OF THE APPROXIMATION (34)

As usual, the Hilbert space of the considered model is
denoted as H, and the norm ‖φ‖ of any vector |φ〉 ∈ H is
defined as 〈φ|φ〉1/2. Furthermore, for any linear (but not nec-
essarily Hermitian) operator B : H → H, the operator norm is
defined as

‖B‖op := sup
‖φ‖=1

‖B|φ〉‖. (A1)

If B is Hermitian, this is equal to the maximum (supre-
mum) of all its eigenvalues in modulus. Some well-established
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relations for arbitrary linear (but not necessarily Hermitian)
operators B and C are

‖BC‖op � ‖B‖op‖C‖op, (A2)

‖B + C‖op � ‖B‖op + ‖C‖op, (A3)

‖B†‖op = ‖B‖op, (A4)

‖B†B‖op = ‖B‖2
op. (A5)

For example, ψ (λ) in (20) is such a linear but generally not
Hermitian operator.

Our first main goal is to derive bounds for the quantity Rt

from Eq. (32), which we rewrite as

Rt =
∫ β

0
dx

∫ x

0
dy rt (x, y), (A6)

rt (x, y) := Tr{ρVxVyψ (y)A(t )}. (A7)

Considering Tr{ρB†C} as a scalar product of two arbitrary
linear (but not necessarily Hermitian) operators B and C, the
Cauchy-Schwarz inequality takes the form

|Tr{ρ B†C}|2 � Tr{ρ B†B}Tr{ρ C†C}. (A8)

Moreover, for an arbitrary Hermitian, non-negative operator
D, one readily verifies by evaluating the trace by means of
the eigenbasis of D that |Tr{ρD}| � ‖D‖opTr{ρ} = ‖D‖op.
Since B†B and C†C in (A8) are Hermitian and non-negative,
it follows with (A5) and (A8) that

|Tr{ρB†C}|2 � ‖B‖2
op‖C‖2

op. (A9)

By exploiting this result and (A2), we can infer from (A7) that

|rt (x, y)| � ‖Vy‖op‖Vx‖op‖ψ (x)‖op‖A‖op. (A10)

Without any significant loss of generality, we henceforth re-
strict ourselves to non-negative values of β (negative β can be
readily accounted for by changing the sign of H , Hg, and V in
(11)). Equation (A6) together with (A10) then yields

|Rt | �
∫ β

0
dx

∫ x

0
dy |rt (x, y)| � β2

2
M2

V Mψ ‖A‖op, (A11)

MV := max
y∈[0,β]

‖Vy‖op, (A12)

Mψ := max
y∈[0,β]

‖ψ (y)‖op. (A13)

Exploiting (24) and (A2), we can conclude that

‖ψ ′(y)‖op � g‖Vy‖op‖ψ (y)‖op. (A14)

To deduce an upper bound for ‖ψ (y)‖op from this relation,
we proceed similarly as in Ref. [25]: Observing that |‖B‖op −
‖C‖op| � ‖B − C‖op for arbitrary B and C [see (A3)], and
choosing B = ψ (y + dy) and C = ψ (y), it readily follows
that ∣∣∣∣d‖ψ (y)‖op

dy

∣∣∣∣ � ‖ψ ′(y)‖op. (A15)

With (A14) and (A12), this implies for all y ∈ [0, β] that∣∣∣∣d‖ψ (y)‖op

dy

∣∣∣∣ � g‖Vy‖op‖ψ (y)‖op � gMV ‖ψ (y)‖op.

(A16)

Focusing on y ∈ [0, β] and observing that the real valued
function ‖ψ (y)‖op of y is non-negative and that its growth
is upper bounded by the right-hand side of (A16), it must
be upper bounded by a function f (y) which satisfies f ′(y) =
MV f (y) and f (0) = ‖ψ (0)‖op. Upon integrating this equa-
tion and exploiting that ψ (0) = 1 according to (20), we thus
obtain

‖ψ (y)‖op � eygMV . (A17)

With (A13), this yields

Mψ � egβMV . (A18)

In view of (A11), (A12), (A18), the main remaining task
is to upper bound the operator norm of Vy := eyHVe−yH [see
Eq. (25)]. Such bounds have been previously obtained for
a considerable variety of Hamiltonians H and perturbations
V ; see, for instance, Refs. [24,26–28] and further references
therein. Focusing on Ref. [24], Eq. (4) therein can be rewritten
in our present notation as

‖Vy‖op = ‖eyHVe−yH‖op � ‖V ‖op f (y). (A19)

Concerning f (y), let us first consider lattice systems in one di-
mension with nearest-neighbor interactions and Hamiltonians
of the form

H =
L∑

l=1

hl . (A20)

See Eq. (5) in Ref. [24] and our present Eq. (46) for an
explicit example. Similarly as below Eq. (5) and in Eq. (14)
of Ref. [24], we employ the definitions

γ := max
l

‖hl‖op, (A21)

qy := e2|y|γ − 1. (A22)

The first main result in Ref. [24] then takes the form [see
Eq. (19) therein]

f (y) = e2qy . (A23)

Analogously, Eq. (39) in Ref. [24] implies the following
bound for lattice systems in arbitrary dimensions:

f (y) � 9

1 − 2γ |y|z , (A24)

where z is the coordination number of the considered lattice,
which means that each vertex is attached or adjacent to at most
z bonds (see above Eq. (38) and beginning of Appendix B
in Ref. [24]). It thus seems that this result, in particular, is
not restricted to cases with nearest-neighbor interactions. The
main point is that only β values with β � 1/2γ z are now
admitted. In any case, the Hamiltonian H must be of the form
(A20) with local operators hl (hence H itself is often denoted
as a local Hamiltonian).

More precisely speaking, the results in (A22)–(A24) actu-
ally only apply if V is a local operator which acts on a single
site of the lattice; see below Eq. (5) in Ref. [24]. By linearity,
one readily infers that the same results remain valid if V is a
sum of single site operators and ‖V ‖op in (A19) is replaced
by the corresponding sum of operator norms. Moreover, for
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one-dimensional lattice Hamiltonians (A20) with nearest-
neighbor interactions, the bound (A19) still remains valid for
operators V which act on Ns consecutive sites (the letter s
stands for support), while (A23) must now be generalized as
follows [29]:

f (y) = 1 − qNs
y

1 − qy
e2qy . (A25)

The generalization to sums of such operators is again obvious.
For lattice Hamiltonians (A20) with more general interactions
and in more than one dimension, analogous generalizations
are expected to be feasible as well [29].

Next, we can conclude from (25), (A12), and (A19) that

MV � ‖V ‖op f (β ) (A26)

and with (A13), (A18) that

|Rt | � ‖A‖op M2egM/2, (A27)

M f (β ) := β f (β ) ‖V ‖op. (A28)

Finally, we turn to the quantity Q from (29). Obviously,
this quantity is recovered by choosing A = 1 in (32) and thus
in (A27), yielding

|Q| � M2egM/2. (A29)

It is instructive to rewrite (A27)-(A29) as

g2|Rt | � ‖A‖op F (ε), (A30)

g2|Q| � F (ε), (A31)

F (x) := x2ex/2, (A32)

ε := gβ f (β )‖V ‖op. (A33)

We also recall that gβ‖V ‖op quantifies the perturbation
strength in (11) in units of the thermal energy, and that f (β )
is of order unity at least for small-to-moderate values of β if
we work in natural energy units with J = 1 in (A21).

The main conclusion is that the right-hand side of (A30) is
independent of t . Moreover, g2Rt in (A30) and g2Q in (A31)
scale asymptotically (at least) quadratically with g, β, and V .

Altogether, (A30)–(A33) thus amount to a rigorous justi-
fication of the approximation (34) in the main text (see also
discussion at the beginning of Sec. III).

APPENDIX B: DERIVATION OF THE GENERALIZATION
FROM SEC. VI

As in Sec. VI, we take for granted that the Hamiltonian H
and the perturbation V in (11) obey the relations (56), where
P is a projector onto some subspace H̃.

By exploiting (56) and utilizing the common eigenbasis of
H and P, one readily verifies that

PezH = ezH P = PezH P (B1)

for any z ∈ C, and similarly for Hg from (11):

PezHg = ezHgP = PezHgP. (B2)

Defining the projected (or reduced) Hamiltonians as

H̃ := PHP, H̃g := PHgP, (B3)

one furthermore can infer that

PezH = PezH̃ = ezH̃ P = PezH̃ P, (B4)

and likewise for H̃g. On the other hand, relations such as,
for instance, PezH P = ezPHP are generally not valid ! (This
is particularly obvious for z = 0.)

Similarly as in (B3), we define the following projected (or
reduced) counterparts of the original quantities introduced in
Sec. I:

Ã := PAP, Ṽ := PV P, (B5)

ρ̃ := Pe−βH̃ P/ Tr{Pe−βH̃ P}, (B6)

Ãth := Tr{ρ̃Ã}, (B7)

Ã(t ) := PeiH̃t/h̄Ãe−iH̃t/h̄P, (B8)

C̃VA(t ) := Tr{ρ̃ Ṽ Ã(t )} − ṼthÃth, (B9)

ρ̃0 := Pe−βH̃gP/ Tr{Pe−βH̃gP}, (B10)

〈̃A〉t := Tr{ρ̃0Ã(t )}. (B11)

Essentially, everything is thus projected (or reduced) onto the
subspace H̃.

The key point of this Appendix consists of the claim that
our main result (16) still remains valid when working from the
outset within the subspace H̃, and assumes the form

〈̃A〉t − Ãth = gβ
∞∑

k=0

(iτB)k

(k + 1)!
C̃(k)

VA (t ). (B12)

To substantiate this claim, we simply must replace all the
quantities in Sec. I and Appendix A by their above defined
reduced counterparts. The only major problem is that the re-
duced Hamiltonian H̃ and perturbation Ṽ generally no longer
exhibit the specific properties of their original counterparts
H and V which are required, for instance, around (A20),
(A24), and (A25). This problem can be solved by noting that
the actual remaining task in our present case is, analogously
to the sentence below (A18), to upper bound the operator
norm of

Ṽy := PeyH̃Ṽ e−yH̃ P. (B13)

By exploiting (B4) and (B5), it follows that

Ṽy = PeyHVe−yH P, (B14)

and with (25), (A2) that

‖Ṽy‖op � ‖Vy‖op‖P‖2
op. (B15)

Recalling the definition (A1) and the fact that P is a projector,
it follows that ‖P‖op = 1 and hence

‖Ṽy‖op � ‖Vy‖op. (B16)

Accordingly, we can again exploit (A19) and all the results for
f (y) as detailed below (A19). Altogether, this completes the
justification (A12).
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Finally, we note that some of the projectors P and
tilde symbols in (B6), (B8), (B10) are actually superfluous
according to (B1)–(B4). In particular, one readily confirms
that

ρ̃ = Pe−βH/ Tr{Pe−βH }, (B17)

Ã(t ) = PeiHt/h̄Ae−iHt/h̄P = PA(t )P, (B18)

ρ̃0 = Pe−βHg/ Tr{Pe−βHg}, (B19)

where A(t ) is defined in (6). Moreover, (B7), (B9), (B11) can
be rewritten as

Ãth := Tr{ρ̃A}. (B20)

C̃VA(t ) = Tr{ρ̃ VA(t )} − ṼthÃth. (B21)

〈̃A〉t = Tr{ρ̃0A(t )}. (B22)

It follows that (B12) assumes the same form as (16) if the
canonical ensembles ρ and ρg from (1) and (9) are replaced
by their counterparts ρ̃ and ρ̃g from (B17) and (B19). Anal-
ogous modifications of (7), (8), (18), (19), as well as of
Onsager’s hypothesis (15), are obvious and therefore omit-
ted. Upon dropping the tilde symbols in (B17) and (B19),
our verification of the statement above Eq. (58) is thus
completed.
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