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Universal scaling of quantum state transport in a one-dimensional topological
chain under nonadiabatic dynamics
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When a system is driven across a continuous phase transition, the density of topological defects demonstrates
a power-law scaling behavior versus the quenching rate, as predicted by the Kibble-Zurek mechanism. In this
study, we generalize this idea and address the scaling of quantum state transport in a one-dimensional topological
system subject to a linear drive through its topological quantum phase transition point. We illustrate the power-
law dependences of the quantum state’s transport distance, width, and peak magnitude on the driving velocity.
Crucially, the power-law exponents are distinct for the edge state and bulk state. Our results offer a different
perspective on quantum state transfer and enrich the field of Kibble-Zurek behaviors and nonadiabatic quantum
dynamics.
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I. INTRODUCTION

Quantum state transfer in quantum networks is of cru-
cial importance in quantum control and large-scale quantum
information processing [1,2]. To achieve efficient quantum
state transfer across quantum networks, various transfer mech-
anisms have been proposed, leveraging different physical
systems. Among these mechanisms, most rely on one-
dimensional quantum chains with either static or dynamic
parameters [3,4]. These schemes can be realized in a variety of
physical systems, including photonic lattices [5–7], acoustic
systems [8], nitrogen-vacancy centers in diamonds [9], su-
perconducting qubit circuits [10,11], chains of tunnel coupled
quantum dots [12], driven optical lattices [13], NMR [14], and
so on.

The efficiency of quantum state transfer schemes is pre-
dominantly dictated by two main factors: the transfer speed
and the fidelity [15–19]. Often, these factors are at odds, pre-
senting a trade-off between high speed and high fidelity. While
adiabatic quantum evolution can ensure perfect state trans-
fer, it typically results in slow transfer speeds. Conversely,
pursuing high transfer speeds usually incurs nonadiabatic
excitations, compromising the fidelity of the quantum state
[20–22]. To reconcile the two conflicting factors, the emerg-
ing field of topological states of matter provides a promising
platform [23–26]. For instance, recent studies of high-fidelity
quantum state transfer have utilized the Su-Schrieffer-Heeger
(SSH) model to realize robust and fast quantum state transfer
protocols [27–32]. The SSH model is particularly advan-
tageous because it features edge states that are inherently
resistant to external disorder owing to topological protection
[33,34].
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Most quantum state transfer protocols operate under adia-
batic conditions, typically requiring an instantaneous energy
gap to achieve high fidelity. A prominent example of this is
Thouless pumping, which adiabatically transfers a quantized
number of electrons over a periodic cycle [35]. It poses an
intriguing question: What occurs when the system is nona-
diabatically driven across a quantum critical point where the
gap closes [20–22]? When a system is quenched across a con-
tinuous phase transition, topological excitations are formed,
and the density of these excitations demonstrates a universal
power-law scaling relationship with the quenching speed. This
phenomena, known as the Kibble-Zurek mechanism (KZM)
[36–41], has been experimentally verified on a variety of
platforms [42–52]. Recent research expanded on the KZM,
uncovering that universal characteristics are also present in the
rapid quench regime, in the full counting statistics of defects
and in significant fluctuations, thereby enhancing the under-
standing of the nonequilibrium and nonadiabatic dynamics
[53–55]. This raises an interesting question: Are there more
physical quantities that exhibit a scaling relationship with the
quenching rate if the system traverses a critical point with a
closing gap?

In this paper, we investigate the scaling behavior of quan-
tum state transport in a one-dimensional (1D) topological
chain when the system is linearly driven across the topological
quantum phase transition point. We focus on the transport
distance, the width, and the peak magnitude of the quantum
state, revealing that each of these quantities exhibits a power-
law scaling with the driving speed. Crucially, the power-law
scaling exponents display distinct values for the edge state and
the bulk state. We establish that our findings are applicable
not only to the Hermitian SSH model but also to other 1D
topological systems such as the Creutz ladder model [56,57]
and non-Hermitian SSH model. Our research offers insight
into the quantum state transfer and contributes to the broader
understanding of Kibble-Zurek behaviors and nonadiabatic
quantum dynamics.
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This paper is organized as follows. In Sec. II, we introduce
the quenching protocol in an SSH model. In Sec. III, the scal-
ing behaviors of the travel distance, the width, and the peak
magnitude are discussed. In Sec. IV, we present theoretical
arguments on the scaling behaviors. Sections V and VI discuss
the results for the Creutz ladder model and non-Hermitian
SSH model, respectively. Finally, discussion and conclusions
are presented in Sec. VII. Appendixes A and B give the calcu-
lations for probabilities projected to each extended eigenstate
for linear quenches from an edge and discuss the fidelity of
adiabatic transfer, respectively.

II. SSH MODEL AND QUENCHING PROTOCOL

We start with the 1D SSH model to study quantum state
transport under nonadiabatic dynamics when the system is
driven across the topological phase transition point. Our re-
sults are also applicable to other 1D topological systems, such
as the Creutz ladder model and non-Hermitian SSH model,
as presented in later sections. The Hamiltonian of an open-
boundary SSH chain with N unit cells reads

H =
N∑

n=1

J1a†
nbn +

N−1∑
n=1

J2a†
n+1bn + H.c., (1)

where a†
n (an) and b†

n (bn) are the creation (annihilation) op-
erators on the A and B sublattices in the nth unit cell. J1

and J2 are intracell and intercell couplings, respectively, and
H.c. denotes the Hermitian conjugate of all previous terms.
It is very well understood that the system undergoes a phase
transition from a topologically nontrivial phase (J1 < J2) to a
trivial phase (J1 > J2) with gap closing at J1 = J2.

We consider a quenching process in which an initial
state |ψ (ti )〉 evolves under the Shrödinger equation i d

dt |ψ〉 =
H (t )|ψ〉 to a final state |ψ (t f )〉 with a time-dependent Hamil-
tonian H (t ). We consider two different quench protocols. The
first one is called “linear quench,” with the couplings varying
with time:

J1 = βt, J2 = 1 − βt . (2)

Quench is taken from ti = 0 to t f = 1/β, with β > 0 charac-
terizing the speed of the quench. Such a quench connects the
two fully dimerized limits J1 = 0, J2 = 1 and J1 = 1, J2 = 0.
The other is called “periodic quench” and consists of two
successive linear quenches, the quench in (2) and its mirror
reflection about the t = 1/β line, such that the system returns
to the original Hamiltonian after one period and can thus be
compared to a Thouless pumping process if the quenching rate
β is sufficiently small.

We will consider two different initial states:

|ψ (ti )〉 = |1, A〉, (3)

which is located at the left edge, and

|ψ (ti )〉 = (|n, B〉 + |n + 1, A〉)/
√

2, (4)

which is located in the bulk of the chain and is far away
from the edge. For example, we can choose n = N/2. The
two initial states are both eigenstates of the initial Hamiltonian
H (ti ).

III. SCALING OF TRAVEL DISTANCES

We first consider the linear quench (2). In the adiabatic
limit β → 0, since the edge state is always gapped (even
though it is small) from other states, |1, A〉 evolves adiabat-
ically to the right edge state |N, A〉. In the opposite diabatic
limit β → ∞, |1, A〉 remains unchanged simply because there
is no time to evolve. We are interested in the intermediate re-
gion between these two limits, where the final state is expected
to be distributed over the chain. By numerically solving the
time-dependent Schrödinger equation, we calculate |ψ (t f )〉
for an open SSH chain with N = 1000 unit cells from an
initial state at the left edge [Eq. (3)] or in the middle of the
chain [Eq. (4)]. To characterize the final state, we define the
final probabilities

pn,± = |〈n,±|ψ (t f )〉|2, (5)

which are the probabilities of the final state projected to the fi-
nal localized eigenstates |n,±〉 = (|n, A〉 ± |n, B〉)/

√
2. Note

that at the final time t f , the Hamiltonian is dimerized, and
|n,±〉 are its eigenstates, with energies being ±1. Calcula-
tions show that for |ψ (ti)〉 = |1, A〉 we always have pn,+ =
pn,−, which is due to the chiral symmetry of the system. For
bulk state (4) with n = 500, pn,− is much smaller than pn,+
due to the fact that the initial state |ψ (ti )〉 is an eigenstate
of the initial Hamiltonian with a positive eigenvalue. Thus,
it suffices to focus on pn,+. One sees qualitatively different
behaviors for the two types of initial states: For evolutions
from the edge [Fig. 1(a)], pn,+ shows a smooth profile with a
single peak, resembling a coherent state, whereas for evolu-
tions from the middle [Fig. 1(b)], pn,+ develops oscillations
whose strength increases when moving away from the initial
position until a peak emerges, followed by a sharp falloff to
zero at large n. We also note that, as depicted in Fig. 1(c),
the transport does not start until near the critical point at time
t = 0.5/β. This observation will be helpful for understanding
the scaling behaviors later.

The scaling behaviors of the initial edge state are summa-
rized in Fig. 1(d), in which the probability distributions pn,+
for different values of the quenching rate β collapse to a single
curve after one rescales n and pn,+ by β. This indicates that all
the quantities, such as the travel distance and peak magnitude,
that are related to the transported quantum state will exhibit
power-law relations with the quenching rate, as illustrated in
Fig. 2. First, we consider how far the state travels under the
quench. We define the position of the peak as the traveled
distance d . In Fig. 2(a), d exhibits a power-law scaling for
both the initial edge state and bulk state d ∝ β−ν , but with dif-
ferent scaling exponents. For the edge state, ν ≈ 0.61, while
for the bulk state, ν ≈ 1.03. For the initial edge state, one
can also study the width of the profile of pn,+, defined by the
standard variance wedge = [

∑
n(n − d )2 pn,+]1/2. As plotted in

Fig. 2(b), it also exhibits a power-law scaling with the same
exponent as the travel distance: wedge ∝ β−0.61.

Moreover, in Fig. 2(c) the maxima of the probability distri-
bution pn,+ of both the initial edge state and initial bulk state
are plotted as a function of the quenching rate β. We see that
again, the maximum exhibits a power-law scaling with β, but
with different scaling exponents for the two types of initial
states. For the initial edge state, the exponent is roughly 0.61,

014303-2



UNIVERSAL SCALING OF QUANTUM STATE TRANSPORT … PHYSICAL REVIEW B 110, 014303 (2024)

FIG. 1. Distribution of probabilities pn,+ vs n for different initial
states. (a) and (b) are the distributions of the final probabilities for
initial edge state (3) and for bulk state (4), respectively. In (b) the n
axis is shifted such that the initial bulk state is at n = 0. (c) Prob-
ability profiles pn,+ at different times for a fixed quenching rate
β = 5 × 10−4. Each profile is stretched vertically so the maximum
pn,+ becomes 1. (d) The probability profiles pn,+ of the initial edge
state for different values of β collapse to a single curve after scaling
of n and pn,+.

FIG. 2. Scalings in the open SSH chain for N = 1000: (a) scaling
of the travel distance, (b) scaling of the width, (c) scaling of pn,+
at the peak. Numerical results are represented by blue dots for the
initial edge and red triangles for the initial bulk state. Solid lines are
power-law fittings. (d) Probability p1,A to return to the edge for a
periodic quench from an initial edge state. The inset shows that p1,A

oscillates with a period 2π/β.

while for the initial bulk state, 2/3 fits the numerical results
very well.

We note that in all our calculations pn,+ decay fast to
zero for n sufficiently far away from the initial positions. We
find that under periodic boundary conditions, the results for
evolutions from the bulk also fulfill the same scalings, dPBC ∝
β−1.03 and pn,+,max ∝ β2/3. We note that different boundary
conditions or different lengths of the lattice do not change
these results as long as the end of the chain is not reached
by the state evolution.

For periodic quench, after one periodic circle, one would
expect that the state would transfer from one edge state to
another edge state located at the other end of the chain if
the quench is slow enough that the system is in the adia-
batic regime, which is called Thouless pumping. However,
when crossing a topological phase transition point with gap
closing, near this gap-closing point the adiabatic condition
always breaks no matter how slow the quench is; this follows
from the adiabatic theorem, which states that the conditions
of an adiabatic evolution are that the quench is slow enough
and that the spectrum of the system is always gapped. Thus,
the adiabatic condition cannot be fully satisfied, leading to
nonzero populations of excited states, and thus, the quantized
state transfer cannot be realized. Here, in order to quantify
the state transfer, we examine the final probability at the first
lattice point p1,A after one periodic quench. Plotting p1,A vs
β for quenches from an edge in Fig. 2(d), we see that p1,A

oscillates between zero and an upper bound p1,A,max, which
scales as β0.3. Plotting p1,A vs 1/β shows that this oscillation
has a fixed period of 2π/β [inset of Fig. 2(d)].

It is interesting to see whether the observed scaling laws
apply to other quench protocols. For evolution from an edge,
we considered a quench with a sinusoidal shape,

J1 = sin2(βt ), J2 = cos2(βt ) (6)

from ti = 0 to t f = π/(2β ). We find that the behavior of pn,+
is similar to the linear quench shown in Fig. 1.

For evolution from the bulk, we considered the above sinu-
soidal quench and a sudden quench where J1 and J2 are both
set to nonzero constants from t = 0 to t f = 1/β and found the
same scaling laws, dbulk ∝ β−1 and pn,+,max ∝ β2/3.

IV. THEORY OF QUENCHES

In this section, we present theoretical arguments on the
scaling behaviors of the quantum state transport under the
nonadiabatic quench dynamics discussed above.

A. Theory of quench from an edge

To understand the scaling behaviors, we first look at the
spectrum of the system. For a chain with an odd number of
sites, the eigenvalues of the Hamiltonian have analytical forms
[58]: There is a single edge state with zero energy, and 2N − 2
extended states with energies

E = ±ε j = ±|J2 + J1eik j |,
where k j = π j/N and j = 1, 2, . . . , N − 1. As a result of this
spectrum, during an evolution the edge state is gapped from all
the extended states except near time t = t f /2 = 1/(2β ). For
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an evolution starting from the left edge, we expect that during
the quench the state should remain near the left edge until
close to t f /2, when the gaps become minimal [see Fig. 1(c)].
At t f /2, a portion of the state transfers to each extended state,
which then travels at the group velocity of the extended state

vk = dε j/dk = J1J2 sin(k j )/ε j, (7)

and the whole state is a superposition of the traveling of
each extended state. In Appendix A, we further justify this
picture by calculating probabilities projected to each extended
eigenstate.

Based on this picture, we can estimate the travel distance
dedge. Note that the Hamiltonian depends linearly on time
and thus constitutes a multilevel Landau-Zener (LZ) problem,
which may not be solved exactly. The traditional LZ problem
is to find the transition probabilities from an initial state to
each final energy state. The exactly solvable models are rare
and have been found to exist only in some special forms
[59–63]. Here, instead of looking for an exact solution, we
provide an ansatz that can be fitted by numerical results.
We observe that the transition probability to each final state
(denoted as pk [64]) is solely determined by a dimensionless
parameter �2

k/β, where �k = εk = cos(k/2) is the gap be-
tween an extended state and the edge state at t = t f /2. One
can use the following ansatz:

pk = c3
(
1 − e− c1�2

k
β

)
e− c2�2

k
β . (8)

c1 and c2 are two fitting parameters, and c3 is an overall
normalization factor. A comparison with numerical results is
presented in Appendix A. Note that pk is small for both small
and large �k , and it reaches a peak at �2

k/β ≈ 1. The wave
vector corresponding to this peak is k = 2 arccos

√
β, which

can be used to estimate the travel distance as

dedge =
∫ 1/β

1/(2β )
|vk|dt, (9)

assuming that the traveling starts roughly at time 1/(2β ) and
ends at time 1/β. This integral can be analytically performed,
giving

dedge = 1

8
√

β

⎛
⎝2 − β

1 − β
arccosh

1√
β

−
√

1

1 − β

⎞
⎠. (10)

The green curve in Fig. 2(a) is Eq. (10), which agrees well
with the exact dedge, and for large β it correctly predicts the
drop in dedge below the power-law scaling.

The power-law scaling of dedge can now be understood.
Since β 	 1 in almost the whole range of β considered,
keeping the leading order in β gives

dedge ≈ 1

8
√

β

(
ln

4

β
− 1

)
. (11)

Thus, dedge scales as dedge ∝ β−1/2 ln(1/β ), which is visually
close to a power law dedge ∝ β−ν with some ν > 1/2 within a
range of β.

B. Theory for quench from the bulk

As mentioned before, for evolution from the bulk we
can consider a chain with periodic boundaries. Now the
Hamiltonian can be reduced to a 2 × 2 matrix in the momen-
tum space labeled by k = 2π j/N ( j = 0, 1, . . . , N − 1), with
eigenenergies E = ±εk = ±|J1 + J2e−ik|. Let us denote the
corresponding eigenvectors in the kth block as |ψk,±〉. The
initial localized state |ψ (ti )〉 = (|ni, B〉 + |ni + 1, A〉)/

√
2 can

be written as a superposition of all eigenstates with positive
energies:

|ψ (ti)〉 = (1/
√

N )
∑

k

e−ikni |k〉 ⊗ |ψk,+〉. (12)

During the quench each |k〉 ⊗ |ψk,+〉 travels with velocity
vk = ∂ε j/∂k and reaches a distance

∫ 1/β

0 vkdt at the final time
[65]. Note that unlike evolution from the edge, the travel-
ing starts immediately at t = 0. We can estimate the travel
distance dbulk as the largest distance traveled by all the eigen-
states, which simply gives rise to dbulk = c/β obtained with a
change in the variable t → t/β. Here, c is a constant and is
numerically determined to be around 0.24.

To understand the magnitude of the peak pn,+,max, we
consider the corresponding amplitude, which can be approxi-
mated by assuming adiabatic evolution [66]:

〈nmax,+|ψ (t f )〉 = (1/N )
∑

k

e−ikni ei(knmax−ϕk ), (13)

where ϕk = ∫ 1/β

0 εkdt is the adiabatic phase accumulated dur-
ing the evolution of |ψk,+〉. The magnitude can be estimated
by the stationary phase approximation. Let us consider Taylor
expansion of ϕk near kmax, which is the momentum labeling
each final state with maximum transition probability. There-
fore, we have (∂2ϕk/∂k2)kmax = 0. Since ∂ϕk/∂k = ∫ 1/β

0 vkt ,
we have (∂ϕk/∂k)kmax = dbulk = nmax − ni. Thus, the exponent
in 〈nmax,+|ψ (t f )〉 is dominated by the third-order expan-
sion (k − kmax)3 term. It is easy to see that ϕk ∝ 1/β, so
(∂3ϕk/∂k3)k=kmax = C/β, where C is a constant. Replacing the
summation

∑
k by integration

∫
dk/(2π/N ), we arrive at

〈nmax,+|ψ (t f ) ≈ 1

2π

∫ ∞

−∞
dke−(i C

6β
)(k−kmax )3

, (14)

which scales as ∝ β1/3, and thus, pn,+,max =
|〈nmax,+|ψ (t f )〉|2 ∝ β2/3.

C. Theory of periodic quench

We now consider the probability p1,A to return to the left
edge in a periodic quench, which can be considered as con-
sisting of two linear quenches. The return probability is given
by p1,A = |∑k (Ak,+ + Ak,−)|2, where Ak,± is the amplitude
contributed by an extended state labeled by k and ±. It can be
written as Ak,± = √

pk
√

p′
ke−iϕk,± , where p′

k is the transition
probability from the extended state to the edge state during
the second linear quench, and ϕk,± is the phase for this am-
plitude. The sum in p1,A can be simplified by noticing that the
multistate LZ model corresponding to the considered linear
quench belongs to bipartite models studied in [61]. According
to [61], the transition probability matrix of such a model is
symmetric, so p′

k = pk . Moreover, chiral symmetry further
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implies ϕk,+ = −ϕk,−. Thus, we have

p1,A =
(

2
∑

k

pk cos ϕk,+

)2

. (15)

We may approximate ϕk,+ at k ∼ π by the adiabatic phase
accumulated during the quench, namely, the area under the
curve of εk in an E vs t diagram. Since the peak of pk is at
k = 2 arccos

√
β, which for β 	 1 is close to π , we need

to calculate only ϕk,+ for k ∼ π , which is simply ϕk,+ ≈∫ 3/(2β )
1/(2β ) εkdt = 1/(2β ). Therefore, we arrive at the observed

result that p1,A oscillates with a period of 2π/β. In fact,
what takes place here is the phenomenon of Landau-Zener-
Stückelberg interferometry [67]: The interference between the
total amplitude of all positive-energy extended states

∑
k Ak,+

and that of all negative-energy extended states
∑

k Ak,− leads
to a periodic dependence of the return probability on 1/β.
A maximum is reached whenever

∑
k Ak,+ and

∑
k Ak,− are

in constructive interference, namely, when arg(
∑

k Ak,+) = 0.
Thus, at a given β the upper bound of p1,A reads p1,A,max =
|2 ∑

k pkeiϕk,+ |2. The calculation of p1,A,max using Eq. (15)
with numerically obtained pk and ϕk,+ agrees well with the
upper bound of p1,A in Fig. 2(d).

V. SCALING BEHAVIORS IN
THE CREUTZ LADDER MODEL

We have considered the SSH model as an example to study
the scaling behaviors of quantum state transfer under nonadia-
batic quench dynamics. To illustrate that the scaling behavior
is not restricted to some special model but is universal, we
now consider another model originally proposed by Creutz in
[56]. The Creutz model is also a 1D chain consisting of two
lattice points, A and B, as depicted in Fig. 3. The Hamiltonian
reads

HCreutz = −
N∑

i=1

[K (a†
nbn+1 + b†

nan+1)

+ K (e−iθ a†
nan+1 + eiθ b†

nbn+1)

+ Ma†
nbn + H.c.], (16)

where n labels unit cells with a total of N ; A and B label the
sublattices; and M, K , and Ke−iθ are the vertical, diagonal, and
horizontal hopping integrals, respectively. The phase factor
e±iθ mimics the presence of a magnetic field which pierces
the ladder and supplies a magnetic flux θ/π per plaquette.
a†

n (an) and b†
n (bn) are the creation (annihilation) operators

on sublattices A and B in the nth unit cell, respectively. We
consider two different quenching protocols. The first one is
quenching M and K ,

M = βt, K = 1 − βt, (17)

with fixed θ = −π/2 and time changing from ti = 0 to t f =
1/β. The second one is quenching θ in the following way:

θ = βt − π/2 ∈
(
−π

2
,
π

2

)
, (18)

with fixed M = 0 and K = 1 and time changing from ti = 0
to t f = π/β. Both of the quench protocols are described by

FIG. 3. (a) Diagram depicting the structure of the Creutz ladder
model, with A and B being the two sublattices. W , K , and Ke±iθ

are the vertical, horizontal, and diagonal hopping integrals. (b) The
spectrum of E vs βt for quenching M and K of the Creutz ladder
model. (c) The spectrum of E vs βt for quenching the complex phase
θ of the Creutz ladder model.

the quenching rate β. The instantaneous eigenvalues of the
Hamiltonian as a function of time t are plotted in Fig. 3.

We consider two different initial localized states. One is a
plaquette-blocked state,

|ψ (ti )〉n = 1
2 (−ia†

n + b†
n + a†

n+1 − ib†
n+1)|0〉, (19)

localized in the middle of the chain with n = N/2. The other
is a topological edge state located at the left edge:

|L〉 = 1√
2

(a†
1 − ib†

1)|0〉. (20)

Note that these initial states are eigenstates of the initial
Hamiltonian.

The two quenching protocols start with the same ini-
tial parameters but go through different phases. Under open
boundary conditions, the initial parameters are M = 0, K = 1,
and θ = −π/2; there are two localized chiral zero-energy
modes at the left edge and the right edge. For the first
quench protocol quenching M and K , the system undergoes
a phase transition at time t = 0.65/β, after which the system
enters a topologically trivial phase with no edge states [as
shown in Fig. 3(b)]. For the second quench protocol in which
only θ is quenched, we can see that there are always two
zero-energy modes, as shown in Fig. 3(c), even though the
system crosses a quantum critical point at θc = 0 with gap
closing.

We now discuss the scaling behavior of quantum state
transfer under the quench dynamics of the Creutz lad-
der model by numerically solving the time-dependent
Schrödinger equation for a chain with N = 1000. First, we
study the first quench protocol that quenches M and K . We
plot the probability profile pn of the final state in Fig. 4(a)
for the two different initial states, the left edge state |L〉 and
the plaquette-block state |ψ (ti)〉n,+ localized in the middle of
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FIG. 4. Profile of pn,+ and scalings of quenching M and K in
the open Creutz ladder for N = 1000 for different initial states:
(a)–(c) left edge state |L〉 and (d)–(f) bulk platform |ψ (ti )〉n. (a) and
(d) are distribution diagrams for two cases at different β distin-
guished by black, blue, and red dots. Scalings of travel distances and
the maximum of pn,+ for |L〉 provided in (b) and (c) show dedge ∝
β−0.63 and pn,+,max ∝ β0.6. (e) and (h) show that the bulk platform
state transmits at the scaling as d ∝ β−1.08 and pn,+,max ∝ β

2
3 .

the chain with n = 500. Like in the case of the SSH model,
we can see that the distribution of final states exhibits quite
different profiles for the two different initial states. For the
initial edge state, the final state has a smooth profile for differ-
ent values of β, while for the initial plaquette-block state, the
shape of the final state is not smooth but, instead, shows two
sharp peaks.

Further, we study the scaling of the travel distances d and
the maximum of pn,+ as a function of the quenching rate β.
Compared with the result in the SSH model, for quenching
from the edge state, the travel distance and the maximum of
pn,+ obey almost the same power-law scaling, with dedge ∝
β−0.63 and pn,+,max ∝ β0.6. Additionally, the scalings for evo-
lution from |ψ (ti )〉n are almost in accordance with that in
the case of evolution from the SSH middle state, which has
dbulk platform ∝ β−1.08 and pn,+,max ∝ β

3
2 .

For the second quench protocol, unfortunately, if the initial
state is on the edge, e.g., |L〉, the state does not move and
is always localized in the original location. For the initial
plaquette-block state, we obtain the same scaling exponents
for the distance and peak of the transported wave function.

FIG. 5. Energy spectrum of a non-Hermitian SSH model and the
scaling behavior of the traveled quantum state. (a) The real part and
(b) imaginary part of the instantaneous energy levels as a function
of time. (c) Rescaled probability profile for different values of the
quench rate β. (d) Scalings of traveled distances and the maximum
of pn,+ for the initial edge state. The numbers of unit cells is taken as
N = 50 for (a) and (b) and N = 500 for (c) and (d).

VI. SCALING BEHAVIOR OF THE NON-HERMITIAN
SSH MODEL

We consider a non-Hermitian SSH model with imaginary
on-site energy iγ and −iγ :

H =
N∑

n=1

[(J1a†
nbn + J2a†

n+1bn + H.c.)

+ iγ a†
nan − iγ b†

nbn]. (21)

Here, we still quench J1 and J2 in such a protocol:

J1 = βt, J2 = 1 − βt (22)

from time ti = 0 to t f = 1/β, with β being the quenching rate.
Even in the presence of imaginary on-site energy, at the initial
time, the system is dimerized, with two edge states located
at the two ends of the chain. At the final time t f , the system
is also dimerized, with eigenenergies ε± = ±

√
1 − γ 2 and

eigenstates

|±〉 = 1√
2

[|n, A〉 + (±
√

1 − γ 2 − iγ )|n, B〉]. (23)

During the quench, the system undergoes two exceptional
points at J1 − J2 = ±γ . The instantaneous eigenenergies with
open boundary conditions are plotted in Figs. 5(a) and 5(b).
The probability distributions pn,+ for the initial edge state
after linear quench dynamics are numerically calculated for
different values of the quench rate β. The profile is similar to
that in the Hermitian case, but with a very large magnitude of
the order of eγ /β due to the non-Hermitian term. Nevertheless,
after rescaling the probability with a factor e−γ /β , we can
still obtain a very well defined probability profile, as shown
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in Fig. 5(c) for different values of β. Like in the Hermitian
SSH model and Creutz ladder model, we still have scaling be-
haviors for the travel distance d and peak magnitude pn,+,max,
with the latter rescaled by e−γ /β . The scaling exponent is the
same, 0.61, which indicates a universal value.

VII. DISCUSSION AND CONCLUSIONS

We considered the dynamical behaviors of quantum state
transport in a 1D topological chain which is driven across the
topological phase transition with gap closing. We found that
the state transport exhibits universal power-law scaling behav-
iors with the quenching rate, which enriches the Kibble-Zurek
phenomena. More importantly, starting from the edge state
or bulk state will produce distinct scaling exponents. After
a periodic quench circle, Thouless pumping does not hold if
the topological transition is crossed; rather, the probability of
returning to the initial edge state is nonzero and also exhibits
power-law scaling with the quenching rate. Our results are of
broad interest in nonequilibrium quantum statistical mechan-
ics, connecting quantum state transfer with the breakdown
of adiabatic dynamics, and should find broad applications
in quantum information, quantum annealing, ultracold atom
physics, and the study of critical phenomena.
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APPENDIX A: PROBABILITIES PROJECTED TO
EXTENDED EIGENSTATES FOR LINEAR QUENCHES

FROM AN EDGE

In the main text, for linear quenches from the edge, our
theoretical estimate of the travel distance is based on the
picture that the edge state transfers to each extended state near
t = t f /2, which then travels at its group velocity. Here, we
justify this picture by calculating the probabilities projected
to each extended eigenstate.

We work on a chain with an odd number of sites whose
eigenvalues and eigenstates have analytical forms. The eigen-
values, from lowest to highest (assuming that J1 and J2 have
the same sign), are [58]

ε j = −|J1 + J2e−ik j | for j = 1, 2, . . . , N − 1,

εN = 0,

ε j = |J1 + J2e−ik j | for j = N + 1, . . . , 2N − 1, (A1)

where k j = π j/N . (Note that, unlike in the main text, we
used the integer j to label the states, which now range from
1 to 2N − 1. The definition of ε j is also different from εk; it

FIG. 6. pj vs � j at β = 5 × 10−4 for N = 1000 sites for evolu-
tions from an edge. The blue dots are exact results, and the red line
is a fitting by Eq. (A5) with c1 = 1.03, c2 = 0.657, and c3 = 0.0856.

can now take negative values.) The corresponding normalized
eigenstates are

|ψ j〉 = 1√
N

[
−

N∑
n=1

sin(nk j + φ j )|n, A〉

+
N−1∑
n=1

sin(nk j )|n, B〉
]

for j < N, (A2)

|ψN 〉 =
√

1 − (J1/J2)2

1 − (J1/J2)2N

N∑
n=1

(
−J1

J2

)n−1

|n, A〉, (A3)

|ψ j〉 = 1√
N

[
N∑

n=1

sin(nk j + φ j )|n, A〉

+
N−1∑
n=1

sin(nk j )|n, B〉
]

for j > N, (A4)

where φ j = arg(J1 + J2e−ik j ) is a phase shift on sublattice A.
|ψN 〉 is the edge state, which is localized at the left (right)
end of the chain if J1 < J2 (J1 > J2). All other eigenstates are
extended; note that they depend on time through φ j .

With these analytical expressions, one can readily cal-
culate |〈ψ j |ψ (t )〉|2, i.e., probabilities of the evolving state
projected to each extended eigenstate at any time. We looked
at |〈ψ j |ψ (t )〉|2 at the final time t f of a linear quench, which we
denote as p j . We observe that p j = p2N− j , which originates
from chiral symmetry, so it suffices to consider only the j > N
states. Figure 6 shows p j vs � j [� j = | cos(k j/2)| is the gap
between the jth extended state and the edge state at t = t f /2]
at β = 5 × 10−4. We see that as � j increases, p j increases
from zero, reaches a peak, and then decreases to zero. We find
that for different β the profiles of pj vs � j can be fitted by a
function of the form

p j = c3
(
1 − e− c1�2

j
β

)
e− c2�2

j
β . (A5)

The fitting parameters c1 and c2 depend slightly on β, and c3 is
an overall normalization factor. At β = 5 × 10−4, p j reaches
its maximum at �2

j/β = 0.967.
We further use p j to calculate the final state’s profile pn,+

by assuming that the jth eigenstate travels at a speed |vk| =
|∂ε j/∂k| and finally produces a wave package with a strength
p j centered at d j = ∫ 1/β

1/(2β ) |vk|dt , and the final profile pn,+ is
a summation of all these wave packages. Each wave package
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FIG. 7. pn,+ vs n at β = 5 × 10−4 for N = 1000 sites for evolu-
tions from an edge. The blue dots are exact results, and the red line
is from the calculation using pj as described in the text, with each
wave package taken as a rectangular function (pj/40) rect[(n − 1 −
dj )/40].

has a certain shape with a certain width which our theory
does not predict, and we simply take it to be the rectangular
function (p j/W ) rect[(n − 1 − d j )/W ], where the width W
(assumed to be the same for all j) is treated as a fitting
parameter. Such a calculation gives a profile which reproduces
well the exact pn,+, as shown in Fig. 7. This further confirms
the picture that the edge state transfers to each extended state
and then travels at its group velocity.

APPENDIX B: FIDELITY OF ADIABATIC TRANSFER

The power-law scalings we found occur when the state
does not evolve to the other edge (the edges) of the chain;

FIG. 8. Fidelity of adiabatic transfer in the SSH model, F vs β,
for N = 100 for evolutions from an edge. The blue dots are exact
results, and the red dashed line is Eq. (B1).

namely, we have effectively been considering a semi-infinite
(infinite) chain. For a finite chain with an odd number of sites,
in the adiabatic limit β → 0 we expect that |1, A〉 evolves
adiabatically to |N, A〉 since the edge state is always gapped
from other states. For a larger β this adiabatic transfer is not
perfect, and its efficiency can be characterized by the fidelity
F = |〈N, B|ψ (t f )〉|2. In Fig. 8 we plot F vs β for a chain with
N = 100 with an odd number of sites. We found that F can be
fitted by a simple formula:

F = [
max

(
1 − 2e

− 2
N2β , 0

)]2
, (B1)

which works for different values of N . The appearance of
1 − 2e−2/(N2β ) in (B1) reminds us the transition probability
of staying on the middle level in the bow-tie model [68]
and implies that the considered SSH model with linear time
dependence may be somewhat similar to the bow-tie model.
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