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Controllable quantum walks, gravitational constant, and Casimir energy in one-dimensional
three-boson systems with on-site interactions
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This study scrutinizes one-dimensional three-boson systems with on-site interactions, delving into pertur-
bation theory, continuous-time quantum walks, and quantum Fisher information (QFI), among other areas.
Notably, two critical on-site interaction strength points emerge. At these specific locations, the QFI reaches
its zenith, exhibiting a proportionality to t4. This substantively amplifies the precision in measuring both the
Newtonian constant of gravitation and the Eötvös parameter. The improvement surpasses models devoid of
on-site interactions by 6 orders of magnitude. The methodology used to measure big G can be adapted to quantify
the Casimir energy of a many-particle system.
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I. INTRODUCTION

Quantum walks [1,2], often considered as the quan-
tum counterpart of classical random walks, have garnered
significant interest in various fields, including quantum
algorithms [3,4], quantum simulation [5–8], quantum infor-
mation [9,10], quantum computation [11], and even quantum
biology [12,13]. In the realm of quantum walks, studies on
Anderson localization [14], topological phases [15–20], and
magnon bound states [21–24] have attracted considerable
attention. These quantum walks involve various types of walk-
ing particles, including specific atoms [25–27], ions [28–30],
photons [31–37], and more general indistinguishable parti-
cles, such as bosons, fermions, and anyons [38–51]. Further-
more, quantum systems under the influence of electric or mag-
netic fields [52–55] or gravity [56–59] have provided valuable
insights. Precision measurements in gravitational quantum
walks are a particularly intriguing area of research [60–62].
Concurrently, efforts persist in the measurement of the New-
ton constant of gravitation and the examination of the Einstein
equivalence principle. A recent atom-interferometric mea-
surement has pushed the precision of the Eötvös parameter
to the 10−12 level [63], while advancements in the precision
of gravitational constant measurements over the last two cen-
turies amount to an improvement of merely about 2 orders of
magnitude [64].

The research conducted in 2015 presented insights into
quantum walks and Bloch oscillations involving two bosons
with on-site interaction in optical lattices [65]. A recent
study in 2021 focused on many-particle quantum walks and
Fisher information in one-dimensional lattices, demonstrating
bunching or antibunching behavior, Bloch oscillations, and
time scaling of the quantum Fisher information (QFI) in a sys-
tem of three indistinguishable particles with nearest-neighbor
interaction [66]. It is important to note that this study did not
include on-site interaction. Additionally, research on quantum
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walks involving three bosons in a one-dimensional lattice has
been carried out, considering two- and three-body interac-
tions [67]. Our research aims to study quantum walks and
QFI of three bosons in the one-dimensional Bose-Hubbard
model. The Bose-Hubbard model is a fundamental theoretical
framework for understanding the behavior of ultracold atoms
in optical lattices and is widely used in quantum physics re-
search. These studies shed light on the intriguing dynamics of
quantum systems, particularly in the context of Bose-Hubbard
models and quantum walks, and provide valuable insights for
further research in quantum information theory and quantum
computing.

The treatment of quantum many-body systems poses a
substantial challenge due to the exponential growth of the
Hilbert space with system size, even in the case of relatively
small systems. In recent decades, various methods have been
developed to effectively calculate the time-evolution opera-
tor in large Hilbert spaces constructed using matrix product
states (MPS) [68]. Some of the well-established approaches
include:

(i) Time-evolving block decimation (TEBD) and other
density matrix renormalization group (DMRG) schemes
[69–73];

(ii) The matrix product operator (MPO) method, denoted
as WI,II [74];

(iii) The Krylov method, which incorporates the Lanczos
process, the variational approach, and other computational
techniques [75–77]; and

(iv) The time-dependent variational principle (TDVP)
[78,79].

The choice of method depends on the specific requirements
of the study and the system being analyzed. To study the
dynamics and Bloch oscillations of a one-dimensional three-
boson system with on-site interaction, the Krylov method is
employed. The continuous-time evolution method is utilized,
allowing the application of the evolution operator at any time,
in contrast to the discrete-time evolution method, where it is
applied at discrete time steps [3,9,80].
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The research focuses on obtaining the energy spectrum,
analyzing its structure, and applying perturbation theory to
understand the system’s behavior under strong on-site inter-
action. The dynamics starting from the ground state reveal
fermionlike behaviors in terms of density and density-density
correlation. The study also explores Bloch oscillations,
providing insight into the characteristic frequency of the three-
boson system. Quantum Fisher information results guide
experimentalists in selecting an appropriate value for on-site
interaction.

II. THE BOSE-HUBBARD MODEL OF THREE PARTICLES
WITH ON-SITE INTERACTION

The Bose-Hubbard model captures the behavior of ultra-
cold bosonic atoms within a lattice. In this system, bosons
can tunnel between lattice sites with a hopping strength rep-
resented by J , and they experience on-site interactions, either
attractive or repulsive, denoted by the parameter U . This in-
teraction energy depends on the number of bosons on each
site, as given by the term

∑
i

U
2 ni(ni − 1). Additionally, an

external field introduces an energy shift per site, denoted
as F . The Bose-Hubbard Hamiltonian represented by the
equation

H =
∑
〈i, j〉

Ja†
i a j +

∑
i

U

2
ni(ni − 1) +

∑
i

iFni (1)

combines these elements to describe the overall energy of
the system. This Hamiltonian is a fundamental concept in
the study of ultracold quantum gases and is widely used to
understand the behavior of bosons in optical lattices.

The energy spectrum for a system without an external
field is given as follows. The eigenstate |�〉 of the model
is governed by the Hamiltonian operator H , resulting in
the Schrödinger equation H |�〉 = E |�〉. The eigenenergy
spectrum of the model can be obtained by the exact diago-
nalization method of the Hamiltonian [45], with the length of
the lattice being L = 21. The Hamiltonian is 121 × 121 di-
mensional, consequently there are 121 values of eigenenergy
for each value of kt . For simplicity, we fix J = 1. The energy
spectra of U = 0.5, 1.8, 10.0, and −10.0 are given in Fig. 1.
At weak repulsion U = 0.5, there is only one band primarily
composed of scattering states. The two-boson bound states
(2BS) and three-boson bound states (3BS) are mixed with
these scattering states. With increasing repulsion, 2BS and
3BS gradually emerge from the scattering states. At U = 1.8,
the 3BS level becomes prominent. Strong repulsion U = 10.0
leads to the isolation of the 3BS band around energy 3U and
the 2BS band around energy U from the scattering state band.
As seen in the bottom right panel of Fig. 1, changing the
interaction from repulsive U = 10.0 to attractive U = −10.0
shifts the 2BS and 3BS bands to the other side of the scattering
state band, while the later remains unchanged. This analysis
provides insights into how local on-site interactions affect
the energy spectrum of the Bose-Hubbard model with three
bosons. The energy spectrum of this boson system resembles
that of a one-dimensional three-fermion system with nearest-
neighbor interaction.

FIG. 1. The energy E0 as a function of the total momentum kt (in
units of π ) for different values of on-site interaction strength.

III. THE EFFECTIVE BOSE-HUBBARD MODEL
AND THE DYNAMICS

In the regime of strong on-site interaction, it is antici-
pated that three bosons residing on the same lattice site will
effectively merge, behaving as a single composite particle.
To understand this phenomenon, perturbation calculations are
employed to derive the effective single-particle Bose-Hubbard
model. In this analysis, external forces are disregarded.

The Hamiltonian, denoted as H , is decomposed into two
components: H = H0 + H1. Here, H0 represents the on-site
attraction part and is considered the unperturbated term, while
H1 stands for the hopping term and is treated as a perturbation.
H0 exhibits three distinct eigenvalues:

(i) E0 = 3U , corresponding to the ground state where
three bosons occupy a single site, denoted as {|Gj〉 = | j3〉};

(ii) E1 = U , associated with excited states where two
bosons are bound together and the third boson is free, rep-
resented as {|Ej1 j2〉 = | j2

1 j2〉} with j1 �= j2; and
(iii) E2 = 0, characterizing excited states where no bosons

are bound together, expressed as {|Ej1 j2 j3〉 = | j1 j2 j3〉}, with
j1 < j2 < j3.

In this context, | jn〉 signifies n bosons, and | j〉 represents a
single boson residing on site j. The many-body perturbation
approach uncovers important insights into the behavior of a
system in the limit of strong on-site interactions, where three
bosons effectively merge into a single composite particle.
By introducing projection operators derived from these states
and applying many-body perturbation theory [45,66,81], the
effective Hamiltonian up to third-order perturbation takes the
form

Heff = Jeff

∑
〈i, j〉

b†
i b j + μeff

∑
j

b†
jb j, (2)

where the effective hopping strength Jeff = 3J3/2U 2, the
chemical potential μeff = 3(U + J2/U ), and b†

j and b j
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FIG. 2. Panels (a), (b), (c), and (d) display the time evolutions
of particle density with increasing on-site interaction strengths, U =
−1.0, −2.0, −3.0, and −10.0, all commencing from the ground state
|Gj〉, with j = 50.

represent the creation and annihilation operators for the
composite particle consisting of three bosons on the jth
lattice site. The quasiparticle spectrum of the effective
Hamiltonian is obtained by substituting the ansatz |ψ〉 =∑

m eikt mb†
m|0〉 into the equation Heff |ψ〉 = Eeff |ψ〉, which

gives

Eeff = 3J3

U 2
cos kt + 3

(
U + J2

U

)
, (3)

with kt representing the momentum of the quasiparticle. The
resulting energy spectrum exhibits a characteristic single-
particle behavior. In the time evolution dynamics, however,
the quantum walks of this composite particle are significantly
suppressed as the interaction strength U increases. It exhibits
a maximal group speed of vmax = 3J3/U 2. This behavior dis-
tinguishes it from the quasiparticle composed of two bosons
with strong on-site interaction. For comparison, the energy of
a quasiparticle composed of two bosons with strong on-site
interaction is given by

E ′
eff = 4J2

U
(1 + cos kt ) + U . (4)

Given the wave function of the system |�(t )〉 = e−iHt |�0〉,
with |�0〉 as the initial state, the time evolution of the par-
ticle density n j (t ) = 〈�(t )|nj |�(t )〉 is depicted in Fig. 2. In
Fig. 2(a), there are three pairs of ballistic lines describing
respectively the quantum walks of a single-particle state, 2BS,
and 3BS. With increasing on-site interaction strengths, the
innermost cone becomes brighter while the outer cones fade.
In Fig. 2(d), only one bright horizontal line could be reached,
which implies that the three bounded bosons tend to be static
like a static particle without any external forces exerted on
it. This behavior of three bounded bosons with strong on-site
interaction is similar to the quantum walks of three fermions
with strong nearest-neighbor interaction. In Fig. 3, the time
evolution of particle density for U = −2.0 and U = −3.0 is
revisited. The maximal group velocities, denoted as vg, are

FIG. 3. The maximal group velocities of the quantum walks of
the single-particle state (dotted line), 2BS (dashed line), and 3BS
(solid line) are illustrated during the time evolution of particle density
with varying on-site interaction strengths, specifically U = −2.0 and
U = −3.0.

2J , 4J2/|U |, and 3J3/U 2 for the single-particle state, 2BS,
and 3BS, respectively, initially positioned at site j = 50. For
the case of U = −2.0, the dotted line aligns with the dashed
line, given that J = 1 is constant. The values of the maximal
group velocities for 2BS and 3BS exceed the slopes of the
corresponding ballistic lines. In the case of U = −3.0,
the maximal velocity of 3BS aligns well with the slope of
the corresponding ballistic line, while the dynamic behaviors
of the single-particle state and 2BS are too weak to be ob-
served. The density-density correlations, denoted as C(i, j) =
〈�(t )|nin j |�(t )〉, are displayed in Fig. 4. At U = −1.0, as
time progresses, the co-walking of bosons along the diagonal
becomes evident, alongside some independent off-diagonal
walks of a single particle. As the on-site interaction strength
increases, the phenomenon of antibunching diminishes, while
the co-walking of three bosons exhibits slow movement. We
do not discuss the case of −U , because the density is an even
function in U when F = 0 [82], signifying that nj (t )|U =
n j (t )|−U .

FIG. 4. The density-density correlations C(i, j) with varying on-
site interaction strengths U = −1.0, −2.0, and −10.0 and times t =
10, 20, and 30.
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FIG. 5. The evolution of particle density starting from different initial states: |�0〉 = | j − 1, j, j + 1〉 with j = 50 (left three columns)
and |�0〉 = |Gj〉 with j = 50 (right three columns), and the associated O(ω) corresponding to O(t ). The temporal period τ = 2π/ωB, where
angular frequency ωB = F , and F = 0.1 remains constant throughout the entire work.

IV. BLOCH OSCILLATION

The evolution of particle density with increasing on-site in-
teraction and the associated discrete Fourier transform (DFT)
O(ω) of the density difference O(t ) = ∑

j |n j (t ) − n j (t =
0)|/L, when an external force F is applied, are depicted
in Fig. 5. For the initial state |�0〉 = | j − 1, j, j + 1〉 with
j = 50, at U = −1.8, the evolutions of the single-particle
state, 2BS, and 3BS are evident. However, for the other two
cases, U = −0.5 and U = −10.0, only the evolution of the
single-particle state is clear. Their DFTs in the lower left
panels of this figure reveal angular frequencies of ω = ωB,
2ωB, and 3ωB, and so on, with the abbreviation ωB = F . From
the DFTs we can see that, with increasing on-site interaction,
the intensity of the single-particle state is always the largest,
followed the intensity by the 2BS, and the intensity of the
3BS is the smallest. In contrast, the dynamics of the three-
fermion system with nearest-neighbor interaction (Fig. 4 of
Ref. [66]) are evident. With increasing the nearest-neighbor
interaction V , the intensity of the single-particle state, 2BS,
and 3BS becomes the largest successively. If the evolution
begins from the initial state |�0〉 = |Gj〉 with j = 50, as U
increases, the wave fronts of the single-particle state and 2BS
fade away, resembling the evolution of a one-dimensional
three-fermion system with nearest-neighbor interaction. How-
ever, the difference is that with increasing U , the DFT displays
an early distinct peak with the angular frequency 3ωB, im-
plying that the 3BS is prominent when the evolution starts
from the ground state with three bosons sitting on the same
site. Further results on Bloch oscillation are discussed in the
next section, focusing on the calculation of quantum Fisher
information.

V. QUANTUM FISHER INFORMATION
AND PRECISION MEASUREMENTS

We delve into the QFI, the reciprocal of the Cramér-
Rao bound, in precision measurements related to gravitation.
Originating from the evolution of a pure state |�0〉 through
|�(t )〉 = e−iHt |�0〉, the QFI is expressed as

Q = 4[〈∂F �(t )|∂F �(t )〉 − |〈�(t )|∂F �(t )〉|2]. (5)

Here, the Hamiltonian H aligns with the form in Eq. (1). In-
troducing the operator function h[x] = (ex − 1)/x, the adjoint
operator adH (A) = [H, A], and G = h[aditH ](∂F H ), the QFI
takes the form

Q = 4t2(〈�0|G2|�0〉 − |〈�0|G|�0〉|2). (6)

Incorporating the reduced Planck constant h̄ and the lattice
spacing d , two critical values of U , U = ±Fd/2, lead to
maximum values of Q = 3(Jd )2(t/h̄)4. The minimum relative
uncertainty in measuring F is defined as

(
�F

F

)
min

= h̄2

d

(
�F

F

)
0

, (7)

where the bare relative uncertainty (�F/F )0 = 1/
√

3JFt2,
allowing for deviations in actual calculations based on spe-
cific models and techniques. Notably, the Eötvös parameter
η = �g/g, and �G/G, the relative uncertainty in measuring
big G, equals to �F/F : η = �g/g = �G/G = �F/F .

If the on-site interaction vanishes, the QFI value Q0 =
24(Jt/h̄F )2 leads to a relative uncertainty in measuring F
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FIG. 6. The evolution of particle density at critical on-site inter-
action U = −F/2 starting from the ground state |Gj〉, with j = 50,
and the associated O(ω). The maximal evolution times are respec-
tively tm = 130, 195, and 260.

expressed as
(

�F

F

)
U=0

= h̄

2
√

6Jt
, (8)

for ultracold atoms with kinetic energy as low as 1 nK,
where J ∼ kBT ≈ 1.38 × 10−32 J. At t = 130, (�F/F )U=0 =
1.20 × 10−5 or 12 parts per million (ppm), approximately half
of the 22 ppm relative standard uncertainty recommended by
the Committee on Data for Science and Technology [64]. The
rate of the two uncertainties is

(�F/F )min

(�F/F )U=0
= 2

√
2h̄

dFt
≈ 2.43 × 10−6, (9)

considering t = 130, d = 680 nm, and F = mg ≈ 1.39 ×
10−24 N for a Rb atom.

In Fig. 6, the evolution of particle density at the critical
value U = −0.05 and the corresponding O(ω) are illustrated.
Interestingly, Figs. 6(a), 6(b), and 6(c) display peak coordi-
nates around ω/ωB = [2, 4, 6, . . . , 18], [3, 6, 9, . . . , 18], and
[4,8,12,16], respectively. Figure 6(a) reveals peak coordinates
divided by 2, 4, 6, ..., 18, respectively, then subtracted by
1, yielding [−0.0360, 0.000750, 0.00400, . . .]. The root mean
square of these data gives (�ωB/ωB)0 ≈ 1.24 × 10−2. Given
h̄ωB = Fd , the bare uncertainty (�F/F )0 = (�ωB/ωB)0.
Similarly, Figs. 6(b) and 6(c) provide (�ωB/ωB)0 ≈ 7.46 ×
10−3 and 5.29 × 10−3, respectively. These results depend on
the step size and range of ω, as well as the evolution of particle
density.

The remarkable progress in precision measurement is ex-
emplified by the study of interacting bosons with tailored
on-site interactions. However, the significance of this proposal
extends beyond its immediate scope. Utilizing neutral bosonic
atoms, such as Rb, as a prime example, we consider a scenario
where three atoms, each separated by a distance a within a

one-dimensional lattice, are confined to a single site, with a
significantly smaller than the lattice spacing d (a 	 d). The
Casimir energy between each pair of atoms separated by a
distance a is determined by the expression

Ec(a) = − 23

4π
h̄c

α1α2

a7
, (10)

where α1 and α2 represent the static polarizabilities of the
atoms [83,84]. Taking α1 = α2 = 4πr3/3, with the atom
radius r = 265 pm, and d = 100a, we apply the criterion
|Ec(a)| = Fd/2 to determine a ≈ 38.7 nm, surpassing the
atom radius r. Consequently, the Casimir energy and the
Casimir-Polder force are approximately Ec(a) ≈ −2.69 ×
10−30 J and Fc(a) ≈ −4.87 × 10−22 N, respectively, with
Fc(a) exceeding the weight of a Rb atom by 2 orders of
magnitude.

To realize the critical value criterion, one can adjust the
lattice spacing d and measure the bare uncertainties at a fixed
maximal evolution time. Once the bare uncertainty reaches
a minimum, the criterion is achieved. By fixing the lattice
spacing d and increasing the value of a, the Casimir energy
diminishes rapidly. Injecting energy equivalent to (Fd/2 −
|Ec(a)|) into the trapped particles allows the critical value
criterion to be met. Subsequent accurate counting of the in-
jected energy enables the measurement of the Casimir energy
and the Casimir-Polder force. For precise measurement of the
Casimir-Polder force, a preferable scenario involves a two-
boson system occupying adjacent sites in a two-dimensional
lattice, although this is not discussed here.

In the preceding illustrative calculations, the kinetic en-
ergy of an ultracold atom at 1 nK is approximately 10−32 J,
significantly smaller than the estimated Casimir energy at
around 10−30 J. Consequently, the noise originating from the
ultracold atoms can be effectively mitigated. However, as the
proposed approach remains theoretical at this stage, definitive
knowledge concerning potential imperfections is currently
lacking.

It might be noticed that there are some similarities between
the three-boson model with only on-site interaction and the
three-fermion model with nearest-neighbor interaction. This
raises the question of whether there are similarities in the QFI
of the two models. In Fig. 7, QFI values (Q) are depicted over
time for the two models with different interaction strengths.
When the interactions are weak, the Q value of the three-
fermion model approaches that of a single-particle model
as the interaction strengths decrease, while the Q value of
the three-boson model triples. When the interactions are
strong, the Q values of both models decrease rapidly with
increasing interaction strengths, with the three-boson model’s
Q value decreasing slightly more quickly. At moderate inter-
action strengths U = V = 0.07, the Q values of both models
reach considerable magnitudes over time. As expected, there
are critical values of V = ±F at which the Q value reaches
the maximum J2t4, which is one-third of the maximum Q
value of the three-boson model with only on-site interaction.
Since the quartic curves themselves are trivial, we do not
include them in the figure. Because the Casimir-Polder force
between neutral atoms is sensitive to their spacing, a three-
fermion prototype with only nearest-neighbor interaction
would face a dilemma: measuring the Casimir-Polder force
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FIG. 7. The depicted QFI values (Q) in terms of 4t2 vary with
time t/τ for the three-boson model with only on-site interaction U
and the three-fermion model with only nearest-neighbor interaction
V . The initial states for the two models are three bosons sitting on a
single site and three fermions sitting on three sequential sites, respec-
tively. The interaction strengths are chosen as weak U = V = 0.001,
strong U = V = 1.0, and moderate U = V = 0.07. Q is symmetric
with respect to the signs of the interactions.

with fixed lattice spacing and adjusting the lattice spacing to
meet some critical value criterion. Furthermore, when three
neutral fermionic atoms with only nearest-neighbor interac-
tions are arranged in a line, the Casimir-Polder force between
the first and third atoms becomes significant. In such cases,
it is essential to include next-nearest-neighbor interactions in
the three-fermion model to accurately describe the system.

VI. CONCLUSION

Examining the energy spectrum of the one-dimensional
three-boson system with on-site interaction unveils that the
energy band structure is predominantly shaped by the contri-

bution of one or two particles within the system. In contrast,
the emergence of the energy level structure stems from the
collective behavior of the entire system, where three particles
are intricately bound together. Intriguingly, the three-boson
system with on-site interaction showcases clustering behavior
akin to that of the three-fermion system with nearest-neighbor
interactions. This observation suggests the effective substi-
tutability of the boson system for a fermion system in specific
scenarios. Unlike other three-particle systems with strong
interactions that yield multiple-frequency information, our
model distinctly provides a characteristic frequency for the
bulk system.

At specific values of on-site interaction (i.e., U = ±Fd/2),
the QFI exhibits a remarkable proportionality to t4, a phe-
nomenon not observed before in other two- or three-particle
systems. This unique behavior implies that the relative un-
certainty in measuring big G or the Eötvös parameter can
be as low as 2.4 ppm of the relative uncertainties in the
absence of on-site interactions, provided that all other re-
lated observables can be measured with enough precision. In
the proposed experimental framework, meticulously tailored
for neutral bosonic atom systems, conducting measurements
for the Casimir energy is entirely feasible. This endeavor
promises to unveil a captivating connection between the
Casimir-Polder force and gravity. Both refining the measure-
ment precision of the Newtonian gravitational constant and
measuring the Casimir-Polder force between neutral particles
deserve experimentalists dedicating a significant amount of
time and effort to bring them to fruition. Our proposed scheme
offers the opportunity to address both tasks concurrently.

Leveraging cutting-edge facilities and techniques such as
periodic optical lattices [85], magneto-optic traps [86], and
gravimeters or quantum gravity gradiometers [87], we antici-
pate the actualization of the proposed experiments in the near
future.
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